The
Leadership and Learning Center ${ }_{w}$

Common Formative Assessments, Performance Tasks, and the Common Core State Standards

Cathy J. Lassiter, Ed.D. and Brandon Doubek, Ed.D.

Session Objectives

- Discuss the current work of the national assessment consortiums
- Review assessment types and terms
- Practice using the Common Core spirals as a tool for assessment development and alignment for rigor and mastery
- Examine methods to use the CCSS spirals to maximize Teacher Based Teams and/or PLCs

The National Assessment Scene

PARCC

STATES IN THE PARTNERSHIP FOR ASSESSMENT OF READINESS FOR COLLEGE AND CAREERS

PARCC Assessment Design

- Include a mix of:
- Constructed response
- Performance-based tasks
- Computer-enhanced \& scored items
- Administered on computer

- Automated as well as human scoring

SMARTER

Balanced Assessment Consortium

SMARTER

SMARTER Balanced

- Designed to provide valid, reliable, and fair measures of student progress toward attainment of the knowledge and skills required to be college and career ready
- Comprehensive accountability measures that include computer adaptive assessments and performance tasks, administered the last 12 weeks of the school year in grades 3-8 and high school

PARCC Timeline

- 2010-11
- Member states approve common policies \& procedures
- 2011-12
- Item development \& piloting
- 2012-14
- Field testing
- 2014-2015
- Summative assessments in use
- Summer 2015
- Setting achievement standards

SBAC Timeline

- 2011
- Develop formative tools, processes \& practices
- 2012
- Item development completed \& interim items available for use
- 2013
- Field testing
- 2014
- Achievement standards proposed, policies adopted
- 2015
- Summative assessments operational \& achievement standards adopted

The CCSS Starting Line

The "Spiral Effect" metaphor relates to the ascending level of difficulty embedded in the content of each succeeding grade-specific standard as it approaches the CCR Anchor Standard.

As students move along the plane of a particular learning trajectory they study the same expectation each year at ever increasing increments of complexity and sophistication.

Assessment Types

- Formative (as and for learning) vs. summative (of learning)

Assessment for Learning

Assessment Of Learning

Assessment

for Learning

Assessment Of Learning

Assessment

 Of Learning
Learning Activity

Assessment Terms

- Selected response
- Constructed response
- Performance based

Formative assessment is capable of triggering big boosts to students' achievement - the educational equivalent to the cure for the common cold.

James Popham, 2010 Strategic Priorities for School Improvement, Harvard Education

Letter, No. 6

Common Core

Assessment Activity 1
The sample:

1. Read through the spiraled standards for CCR Reading Anchor Standard 8
2. Analyze standard RI.6.8 as it relates to the whole picture
3. Review the completed sample assessment development template

4. Discuss at your tables

- Assessment Activity 2
- Analyze the entire spiral for CCR Anchor Standard 9
- Select a grade-level standard and complete the assessment development template
- Refer to the previous sample template

Grade 9

 concepts are reinforced and expanded as students advance through the grades.

Connecting Data to Learning

The oldest method:

1. What is the next chapter in the book?
2. How much content do I need to cover?
3. How will I teach this content or skill? "Teach, test, hope for the best."

Connecting Data to Learning

Shifting from teacher centered to student centered in standards based education, the new method:

1. What should my students know and be able to do? (curriculum)
2. How do I get them there? (instruction)
3. What if that doesn't work? (revised instruction and rti)
4. What if they already know this or may have trouble learning it? (differentiation)
5. How will I know they "got it"? (assessment)

Connecting Data to Learning

Shifting from teacher centered to student centered in standards based education, the new method:

1. What should my students know and be able to do?
2. How do I get them there?
3. What if that doesn't work?
4. What if they already know this or may have trouble learning it?
5. How will I know they "got it"? (data)

Connecting Data to Learning

Shifting from teacher centered to student centered in standards based education, the new method:

1. What should my students know and be able to do?
2. How do I get them there?
3. What if that doesn't work?
4. What if they already know this or may have trouble learning it? (data)
5. How will I know they "got it"? (data)

The Best (Most Useful) Data Should be Connected to Feedback

Importance of Feedback

Visible Learning

Zone of

 Desired EffectsHattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.

The Barometer

What teachers accomplish in a typical year

The greatest impact on student achievement outcomes

KEY

Students could have achieved w/o schooling

Feedback: Teacher \& Student

Rank $10^{\text {th }}$ Overall and $4^{\text {th }}$ in the Teaching Domain

Feedback to Teachers Helps Make Learning Visible

* Feedback is the most powerful when it is from the student to the teacher. "When teachers seek . . . feedback from students as to what the students know, what they understand, where they make errors, when they have misconceptions, when they are not engaged - then teaching and learning can be synchronized and powerful."

Feedback: Teacher \& Student

* Effective feedback fills the gap between what is understood and what is aimed to be understood.
* The more challenging the task the more critically feedback is needed.

Feedback: Teacher \& Student

The major feedback questions are: Where am I going? (learning goals)
\& How am I going? (selfassessment \& self-evaluation) Where to next? (progression, new goal)

Why Do Teachers Assess?

- To set education goals and standards
- To evaluate teaching
- To provide instructional feedback to students
- To grade student achievement
- To evaluate curriculum
- To identify student education needs

Purpose of Assessment

Types of Assessments

- Formative Simple (informal) \checkmark No paper, pen, pencil; not for a grade
- Formative Complex (formal) \checkmark Uses paper, pen, pencil; not for a grade
(most typical Common
Formative Assessment, or CFA)

Types of Assessments

- Summative Simple (informal)
\checkmark Smaller test (e.g., chapter test); for a grade
- Summative Complex (formal)
\checkmark Larger test (e.g., unit, midterm or final exam, high stakes state tests); for a grade or evaluation of cumulative information

The Category of Assessment Least Used but Equally Important for Successful Learning:

Assessment AS Learning

$>$ Self-Reflections of Learning
Today I worked on...
It was difficult to...
I really enjoyed...
If I could change one thing given more time,...
It would help me if.....
>Stengths, Needs, Attitudes, Preferences > Multiple Intelligences

What data are teachers in your building or district currently collecting?

\%
\%
\%
\%
\%
\%

What data are teachers in your building

 or district currently collecting?| Simple
 Formative | Complex
 Formative | Simple
 Summative | Complex
 Summative | Surveys | Pre Assess- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ment Data | | | | | |

What data are teachers in your building

 or district currently collecting?

Typical

$$
30 \%
$$

15\%
2\%
3%
Better 25%
15%
15\%
10\%
15\%
15\%

Ungraded

Simple Summative

- Quiz
- End of Section
- Chapter Test
-Vocabulary Test -Math Review Quiz

Observed
Simple Formative
-No paper/pen
-Observation
-Discussion

Complex Formative

- PRETEST
- POSTTEST
-Short Cycle
-Collaboratively created and scored
-Posttest shows growth before getting a grade

Bloom's Cognitive Taxonomy

earning Understanding Knowing
 Background Relevance BEFORE DURING AFTER

Using Bloom's Taxonomy and Gardner's Multiple Intelligences for Entry into Learning Progressions

Priority
Standards

Performance

 AssessmentImplement
Compare

Design
Estimate
Judge

Whole and Small-Group Instruction throughout Tasks 1-4
Increase in Rigor/Difficulty
Advance in Levels of Bloom's Taxonomy Incorporate Nonfiction Writing

Adapted from Diana Greene, Deputy Superintendent, Marion County, FL

$5^{\text {th }}$ Grade

Number Sense Engaging Scenario

Engaging Scenario:

- Imagine a group of Aliens have just arrived on Earth from Beiberland and you are the first to greet them. They have come to Earth to learn about different numerical systems. In Beiberland they use a Base Three (Ternary system). They have brought with them a guide of this system and want you to create a corresponding guide to explain the United State's base ten system. They need it to be detailed enough so that others on Beiberland can understand the essential elements of the Base Ten system to determine if this system will replace their current system.

S,C,R,A,P:

- Situation: Aliens Iand on Earth
- Challenge: To explain and convince them about our Base Ten system
- Role: Alien Greeter
- Audience: "Aliens"
- Product: Brochure that Aliens could take back to their world

Tasks:

- Task 1: Explain how numbers, value of decimals, and powers of 10 work (2)
- Task 2: Show how our system is used by interpreting numerical expressions (3)
- Task 3: Compare both systems by analyzing patterns and relationships (4)
- Task 4: Convince the Aliens that the Base 10 system is the most effective one to use (5)

Operations and Algebraic Thinking

- Write and interpret numerical expressions.
- Analyze patterns and relationships.

Number and Operations in Base Ten

- Understand the place value system.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
9. Gardner's Multiple Intelligences:
overbal - through presentation
ointrapersonal - group project
ospatial - creating book
ological - mathematical
otechnology - brochure

Number System on Beiberland

Why we want to change our system
Representations of integor numbers in tomary do not got uncomfortabiy lengtry as quickly as in binary. For example, decimal 365 gactespocda vo binary 101101101 (9 diges) and to sernary 111112 (5 digis). Howover, they are still far less compact than the corresponding representations in bases such as decimal

What we need from you is
List of Basic Numbers:

Base Three	1	2	10	11	12	20	21	22	100	101	102	1000	1001	1002	1010	1011	1012	1020	1021	1022	1100
Base Ten																					

Value of decimal/patterns
Powers of Three/Ten

Base Three	$3^{3^{0}=1}$	$3^{3}=$ 10	$3^{2}=$ 100	$3^{3}=$ 1,000	$3^{4}=10,000$	$3=$ 100,000	$3^{3}=$ $1,000,000$	$3^{7}=$ $10,000,000$	$3^{5}=$ $100,000,000$
Base	10^{0} Ten								

Patterns when multiplying/dividing by powers of ten
Rounding
Comparing
The benefit of our Base Three System:
Why we have this system:
What is the purpose of the zero in the Base Three System:

Maximizing TBTs and BLTs Data Processes

Step 1: Collect \& Chart the Data

- Data is assembled prior to the meeting
- Results include names of students at multiple performance levels
- Data is disaggregated by teacher
- Data includes student work samples

Step 2: Analyze to Prioritize

- Student academic strengths and needs are determined from the data
- Accurate inferences are drawn to get at root causes
- Academic priorities are determined from the list of needs for multiple groups of students

Step 3: Establish SMART Goals

- Goal is based on the prioritized need from Step 2
- Goal is SMART:
- Specific
- Measurable
- Achievable
- Relevant
- Time frame

Step 4: Select Instructional Strategies

-Strategies directly link to the goal and the prioritized needs
-All teachers agree to implement the strategy as prescribed in the meeting
-Strategies are determined for each performance group
-Steps for implementation, frequency, duration, and resources are clear

Step 5: Determine Results Indicators

- Indicators describe what the teacher will be doing if the strategy is being implemented
- Indicators describe what the students will be doing
- Indicators describe the anticipated change in student performance if the strategy is having the desired effect

Learning Activity

The one true purpose of educational assessment is to correctly determine student understanding of the standards in focus and then to use those assessment results to inform, modify, adjust, enrich, and differentiate instruction to meet the learning needs of all students. Larry Ainsworth

Lead + Learn Press Publications

Visit our online store at
www.LeadandLearn.com/books to check out our new releases, end-of-year clearance items, and other special offers!

Questions and Discussion

Cathy J. Lassiter, Ed. D. \& Brandon Doubek, Ed.D.
The Leadership and Learning Center 1.866.399.6019, Ext. 526
CLassiter@LeadandLearn.com Bdoubek@LeadandLearn.com
\section*{LeadandLearn.com}
The
Leadership
and Learning Centerw

