
WE CREATE MOTION

Communications
Manual

MC 5010

MC 5005

MC 5004

MC 5004 P STO

MCS

MC 3603

EN

Imprint

2

Version:
6th edition, 30.08.2021

Copyright
by Dr. Fritz Faulhaber GmbH & Co. KG
Daimlerstr. 23 / 25 · 71101 Schönaich

All rights reserved, including those to the translation.
No part of this description may be duplicated, reproduced,
stored in an information system or processed or
transferred in any other form without prior express written
permission of Dr. Fritz Faulhaber GmbH & Co. KG.

This document has been prepared with care.
Dr. Fritz Faulhaber GmbH & Co. KG cannot accept any
liability for any errors in this document or for the
consequences of such errors. Equally, no liability can be
accepted for direct or consequential damages resulting
from improper use of the equipment.

The relevant regulations regarding safety engineering
and interference suppression as well as the requirements
specified in this document are to be noted and followed
when using the software.

Subject to change without notice.

The respective current version of this technical manual is
available on FAULHABER's internet site:
www.faulhaber.com

6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051

https://www.faulhaber.com

Content
1 About this document ... 5

1.1 Validity of this document .. 5

1.2 Associated documents .. 5

1.3 Using this document .. 5

1.4 List of abbreviations ... 6

1.5 Symbols and designations .. 7

2 Overview ... 8

2.1 Basic structure of an EtherCAT device .. 8

2.2 FAULHABER Motion Manager ... 9

2.3 Pre-conditions for communication (Physical Layer) ... 10

2.4 ESI file .. 11

2.5 Identification of a slave ... 11

3 EtherCAT communication .. 12

3.1 Introduction .. 12

3.2 Data Link Layer ... 12

3.2.1 EtherCAT frames and datagrams ... 13
3.2.2 SyncManager management ... 14
3.2.3 Addressing... 15
3.2.4 Interfaces to the Application Layer ... 15

3.3 Application Layer ... 16

3.4 PDO (Process Data Object) ... 17

3.4.1 PDO configuration .. 17
3.4.2 PDO mapping in the standard configuration...................................... 17

3.5 SDO (Service Data Object) .. 18

3.5.1 SDO error description ... 19

3.6 Emergency object (error message) .. 20

3.7 Synchronization .. 22

3.7.1 Synchronization via distributed clocks (DC-Sync)................................ 22
3.7.2 Synchronization via a SyncManager event (SM-Sync)......................... 23

3.8 Layer management .. 24

3.8.1 Controlling the EtherCAT state machine... 24
3.8.2 Slave Information Interface (SII) .. 25

3.9 Entries in the object dictionary ... 25

3.10 Error handling .. 26

3.10.1 Device faults .. 26
3.10.2 Communication error ... 27

3.10.2.1 Checking EtherCAT frame entries for errors........................ 27
3.10.2.2 Error response .. 28
3.10.2.3 Analysis of the network traffic ... 29
3.10.2.4 EtherCAT AL status codes and troubleshooting 29

3.11 Saving and restoring parameters .. 31

3.11.1 Save parameters.. 31
3.11.2 Restoring settings ... 32
3.11.3 Changing the parameter set .. 32
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
3

Content
4 Trace recorder ... 35

4.1 Trace settings .. 35

4.2 Reading the trace buffer ... 37

4.3 Typical execution of the trace function .. 38

5 Parameter description .. 39

5.1 Communication objects acc. to CiA 301 .. 39

5.2 Manufacturer-specific objects ... 47
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
4

About this document
1 About this document

1.1 Validity of this document
This document describes:

 Communication with the drive via EtherCAT

 Basic services provided by the Communication structure

 Methods for accessing the parameters

 Drive from the viewpoint of the communication system

This document is intended for software developers with EtherCAT experience, and for
EtherCAT project engineers.

All data in this document relate to the standard versions of the drives. Changes relating to
customer-specific versions can be found in the corresponding data sheet.

All data in this document relate to the firmware revision J.

1.2 Associated documents
For certain actions during commissioning and operation of FAULHABER products additional
information from the following manuals is useful:

These manuals can be downloaded in pdf format from the web page www.faulhaber.com/
manuals

.

1.3 Using this document
 Read the document carefully before undertaking configuration.

 Retain the document throughout the entire working life of the product.

 Keep the document accessible to the operating personnel at all times.

 Pass the document on to any subsequent owner or user of the product.

Manual Description

Motion Manager 6 Operating instructions for FAULHABER Motion Manager PC software

Quick start guide Description of the first steps for commissioning and operation of FAULHABER
Motion Controllers

Drive functions Description of the operating modes and functions of the drive

Technical manual Instructions for installation and use of the FAULHABER Motion Controller

CiA 301 CANopen application layer and communication profile

CiA 402 CANopen device profile for drives and motion control
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
5

https://www.faulhaber.com/de/support/bedienungsanleitungen#
https://www.faulhaber.com/de/support/bedienungsanleitungen#

About this document
1.4 List of abbreviations

Abbrevia-
tion

Meaning

AL Application Layer

Attr. Attribute

CAN Controller Area Network

CSP Cyclic Synchronous Position

CSV Comma-Separated Values

DC Distributed Clocks

DL Data Link Layer

EEPROM Electrically Erasable Programmable Read-Only Memory

EMCY Emergency

ESC EtherCAT Slave Controller

ESI EtherCAT Slave Information

ETG EtherCAT Technology Group

EtherCAT Ethernet for Control Automation Technology

FCS Frame Check Sequence

FMMU Fieldbus Memory Management Unit

HB High Byte

HHB Higher High Byte

HLB Higher Low Byte

LB Low Byte

LHB Lower High Byte

LLB Lower Low Byte

LSB Least Significant Byte

LSS Layer Setting Service

MSB Most Significant Byte

OD Object dictionary

PDO Process Data Object

PP Profile Position

PV Profile Velocity

ro read only

RTR Remote Request

rw read-write

RxPDO Receive Process Data Object (PDO received from the drive)

SDO Service Data Object

SII Slave Information Interface

PLC Programmable Logic Controller

Sxx Data type signed (negative and positive numbers) with bit size xx

TxPDO Transmit Process Data Object (PDO sent from the drive)

Uxx Data type unsigned (positive numbers) with bit size xx
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
6

About this document
1.5 Symbols and designations

NOTICE!
Risk of damage.

 Measures for avoidance

 Pre-requirement for a requested action

1. First step for a requested action

 Result of a step

2. Second step of a requested action

 Result of an action

 Request for a single-step action

Instructions for understanding or optimizing the operational procedures
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
7

Overview
2 Overview
EtherCAT is a registered trade mark and patented technology licensed by Beckhoff Automa-
tion GmbH, Germany.

2.1 Basic structure of an EtherCAT device

Fig. 1: Basic structure of an EtherCAT device

Physical Layer
The EtherCAT Physical Layer is structured according to IEEE 802.3, the specification for the
Ethernet, with the standard 100Base-TX. It represents the link between the EtherCAT
master and the EtherCAT slaves. The Physical Layer exchanges data packets with the Data
Link Layer, and encodes / decodes these data packets by adding or removing the Framing
Information.

Data Link Layer
As the EtherCAT frame data passes through, the Data Link Layer extracts data from it or
inserts data into it. It also checks the EtherCAT frame for completeness. In so doing, the
Data Link Layer complies with the rules that are saved in the Data Link Layer parameters.
The data is made available in the respective memory sections of the EtherCAT slave, either
as mailbox data or as process data (see chap. 3.2, p. 12).

Application Layer
The Application Layer contains all the services and objects necessary for communication
between the Data Layer and the drive. The services are configured based on CANopen (see
chap. 3.2, p. 12).

Application
The application part contains drive functions corresponding to CiA 402. The drive functions
read parameters from the object dictionary, obtain the set-points from the object diction-
ary and return actual values. The parameters from the object dictionary determine the
behavior of the drive.

Application

CANopen over EtherCAT

Object Dictionary

SDO

AL

DL

Mailbox

Slave

Address

EtherCAT Data Link Layer

Physical Layer

DL Control/

DL Status

Layer

Management

Process Data

S
la

v
e

 I
n

fo
rm

a
ti
o

n

FMMU n

AL Control/

AL Status

Sync Mngr

Settings

PDO Mapping
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
8

Overview
2.2 FAULHABER Motion Manager
We recommend that the first commissioning of a FAULHABER drive is performed using the
“FAULHABER Motion Manager“ software via the USB port or the serial COM port of the
Motion Controller (depending on which port is available).

The FAULHABER Motion Manager enables simple access to the settings and parameters of
the connected motor controllers. The graphical user interface allows configurations to be
read, changed and reloaded. Individual commands or complete parameter sets and pro-
gram sequences can be input and loaded to the controller.

Wizard functions support the user when commissioning the drive controllers. The wizard
functions are arranged on the user interface in the sequence they are normally used:

 Connection wizard: Supports the user in setting up the connection to the connected
controller

 Motor wizard: Supports the user in adapting an external controller to the connected
motor by selecting the respective FAULHABER motor

 Controller setting wizard: Supports the user in optimizing the controller parameters.

The software can be downloaded free of charge from the FAULHABER website.

The FAULHABER Motion Manager is described in the separate "Motion Manager 6" man-
ual. The contents of the manual are also available as context-sensitive online help within
the FAULHABER Motion Manager.

No further details of the application part are given in this document. The communica-
tion with the drive and the associated operating modes are described in the separate
“Drives Functions” manual.

If multiple interfaces are used simultaneously, impermissible transitional states may
arise.

Before starting configuration of the FAULHABER drive via the USB port or RS232 port,
disconnect the Motion Controller from the EtherCAT network.

We recommend always using the latest version of the FAULHABER Motion Manager.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
9

Overview
2.3 Pre-conditions for communication (Physical Layer)

1. Connect the controller to a power supply (supply at least for the electronics).

2. Connect the EtherCAT IN port to the master side port (see Fig. 2).

3. If multiple controllers are in use, connect each EtherCAT OUT port to the EtherCAT IN
port of the next controller.

 The EtherCAT OUT port of the last controller (slave) in the chain remains free. A tel-
egram coming from the master passes through all the slaves and is then sent back
to the master using the same cable.

4. Switch on the power.

5. Establish a connection via the configuration application (see chap. 2.2, p. 9).

6. Provide EtherCAT slave information (see chap. 2.4, p. 11).

Fig. 2: Connection to the EtherCAT network

After switching on and initializing, the Motion Controller is at first in the Init. state. In
order to be able to perform drive functions, the Motion Controller must be brought into
the Operational state.

Ethernet patch cables or crossover cables of category 5e (Cat5e to EN 50288) or higher
up to a maximum length of 100 m can be used as network connection cables.

Never use EtherCAT and standard Ethernet alongside each other in a physical network.
Such use can impair communications.

If multiple interfaces are used simultaneously, impermissible transitional states may
arise.

Before connecting the Motion Controller into the EtherCAT network, make sure that
no other interfaces (such as USB, RS232) are connected.

SPS

OUT IN OUT IN OUT IN
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
10

Overview
2.4 ESI file
The ESI file (EtherCAT Slave Information) contains information about the connected drive
and its behavior. This information is required to enable the EtherCAT master to communi-
cate with the slave.

The ESI file for the FAULHABER Motion Controller is held at the following places:

 As an XML file, which is stored in a subdirectory of the Motion Manager installation
directory

 In a slightly simplified form on the EtherCAT EEPROM of the Motion Controller (Slave
Information Interface, see chap. 3.8.2, p. 25)

The appropriately configured EtherCAT master can read the information from the ESI file.

The master compares the drives found in the network with the ESI files available to it. If the
manufacturer’s number (0147), the product code and where applicable the revision number
match, the ESI file for the drive has been found, and the master can configure the drive
with the settings saved in the ESI file. Multiple revision numbers can be entered into an ESI
file, to cater for multiple versions of the firmware.

Cycle time
The ESI file also contains the Cycle Time entry with the AdaptAutomatically attribute, which
operates according to ETG2000 so that the EtherCAT master enters the cycle time at this
point.

If despite this setting the EtherCAT master fails to enter the cycle time automatically, the
entry must be modified manually. To do this, the default value 0 must be replaced with the
cycle time of the master in nanoseconds. For a cycle time of 4 ms the value 4000000 must
therefore be entered.

2.5 Identification of a slave
The EtherCAT master on a network has the following capabilities for identification of a
slave:

 Identification via the position number:

Due to its position within the logical Ethernet segment, each slave has a number by
which it can be identified. The numbering is in ascending order starting with the
EtherCAT master (the 1st slave after the EtherCAT master has the number 1, the slave
that follows has the number 2, and so on).

 Identification via the Explicit Device ID:

During the configuration phase, the user sets the content of object 2400.08 (Explicit
Device ID) to any value and saves it with the SAVE command in the application EEPROM
(see chap. 3.11, p. 31). During operation, the EtherCAT master reads this ID by means of
EtherCAT mechanisms and compares it with a previously saved version. This ensures that
swapped-out devices or incorrectly connected cables are detected.

The FAULHABER Motion Manager offers a user-friendly facility for inputting and sav-
ing the Explicit Device ID.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
11

EtherCAT communication
3 EtherCAT communication

3.1 Introduction
EtherCAT
EtherCAT is an Ethernet-based communication technology. An EtherCAT master is required
for communication using EtherCAT. The EtherCAT master controls the network and the
communication with the connected EtherCAT slaves. More than 65,000 devices in a segment
can be addressed within an EtherCAT network. Since EtherCAT uses the full-duplex process,
transmission speeds of up to 100 MBit/s can be achieved.

EtherCAT specifications
The ETG specifications that are important for the FAULHABER drives define the following
aspects:

 ETG1000 series: EtherCAT technology and communications structure

 ETG2000 series: Specification of the EtherCAT Slave Information (ESI)

 ETG6010: Implementation of the CiA 402 drive profiles

CANopen device profiles have been defined for a wide range of device classes, such as:

 CiA 402 for drives

 CiA 401 for input and output devices

3.2 Data Link Layer

Fig. 3: Data Link Layer

The Data Link Layer connects the Physical Layer to the Application Layer. The Data Link
Layer contains essentially the following control and communication services:

 Interface management to the Physical Layer (see chap. 3.2.1, p. 13)

 Interface management to the Application Layer (see chap. 3.2.4, p. 15)

 Access to the EtherCAT EEPROM

 ESC configuration

 Distributed clock (see chap. 3.7.1, p. 22)

 Addressing the EtherCAT slave (see chap. 3.2.3, p. 15)

 SyncManager management (see chap. 3.2.2, p. 14)

Mailbox

DL
Info

Slave
Address

EtherCAT Data Link Layer
DL Control/
DL Status

Process Data

FMMU n
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
12

EtherCAT communication
3.2.1 EtherCAT frames and datagrams

Frame structure
An EtherCAT frame consists of up to 1 518 bytes and can contain up to 1 450 bytes of user
data.

Fig. 4: Frame structure

An EtherCAT frame consists of the following data areas:

 Ethernet header: The Ethernet header contains the source and destination address of
the frame, and the type of protocol used.

 Datagram(s): one or more datagrams (see below).

 Frame Check Sequence: This data is used to check the freedom from errors (see
chap. 3.10.2, p. 27).

Each datagram consists of the following data areas:

 Datagram header: The datagram header contains information about the type of com-
munication, memory access rights, addresses and length of the user data.

 User data: The user data are structured differently for mailbox and process data com-
munication. They contain the service data objects (SDOs) or process data objects (PDOs)
used for CANopen.

 Working Counter: The working counter is used to detect data exchange errors (see
chap. 3.10.2, p. 27).

The process data size per EtherCAT slave can be almost any size and if necessary can be seg-
mented into several datagrams. Setup of the process data can be different for every cycle.

Ether CAT

frame
Destination

1st EtherCAT Datagram

Datag. Header

Cmd

05

(Example)

(Example)

(Example)

FF FF FF FF FF FF 03 01 01 01 01 01 88 A4 00 00 00 0028 10

0A 01 10 00 18 00 02 00 00 0A 00 00 00 00 23 00 20 2F 60 60 00 01 00 00 00 03 00

Idx Address Len Interrupt

Cmd

0C 01 00 00 00 00 0C 80 00 00 07 00 00 00 00 00 31 46 23 eb 00 00

Idx Address Len Interrupt Process image

Len Addr Prio Type

Protocol
Standard CANopen SDO

Type CoE

SDO-Request Data C

03 00

C

Object directory

index and subindex

Data C
max. 1486 Byte

2nd ... nth EtherCAT Datagram...

Source EtherType Header Datagrams
48 -1498 Byte

FCS

Logical

process

image

Datagram

Mailbox

Process

data
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
13

EtherCAT communication
The path of an EtherCAT frame
On one pair of wires, the EtherCAT master sends the EtherCAT frame to the first EtherCAT
slave. The slave processes the frame and forwards it to the next EtherCAT slave. In this way,
the message is sent through the entire network and passes through every EtherCAT slave.
The EtherCAT slave controllers (ESC) take data from the EtherCAT frame as it passes
through, and add this data to their data. The last EtherCAT slave in the network uses the
second of the pair of wires to send the EtherCAT frame back to the EtherCAT master.

3.2.2 SyncManager management

Data transmission through the SyncManager
The PDOs and SDOs are read out from the EtherCAT frame by the SyncManager (Receive
Parameter) or are incorporated in the EtherCAT frame (Transmit Parameter). Four Sync
channels are available for data transmission:

The SyncManager objects 0x1C12 and 0x1C13 are available for process data transmission
(see chap. 5.1, p. 39).

Monitoring the read/write access
The SyncManager protects the data exchange memory against simultaneous access by the
EtherCAT master and EtherCAT slave. This prevents another memory area from being over-
written while a memory area is being read, thereby ensuring that the data being read out
are consistent.

2 types of memory are available for data exchange:

SyncManager chan-
nel

Function

0 Transmission of the service data from the EtherCAT frame into the mailbox (Receive SDO)

1 Transmission of the service data from the mailbox into the EtherCAT frame (Transmit SDO)

2 Transmission of the process data from the EtherCAT frame (Receive PDO 1/2/3/4)

3 Transmission of the process data into the EtherCAT frame (Transmit PDO 1/2/3/4)

Memory type Description

Mailbox memory The mailbox memory consists of a single memory area.

The SyncManager performs the following functions:

 Reading of the memory is prevented while the memory is being written to.
 Writing to the memory is prevented while the memory is being read.
 The memory is protected against overflow.

This type of memory is unsuitable for real-time data and is therefore used only for service
data.

Buffer memory
for process data

The buffer memory is split into in 3 buffer areas.

The SyncManager performs the following functions:

 A buffer area that is not currently being read is selected for writing. While writing is being
performed, read access to the memory is blocked.

 Once a buffer area has been written to, it is released for reading. While reading is being
performed, write access is blocked.

The following buffer areas are thus available at all times:

 Buffer area 1, which is currently being written to
 Buffer area 2, which is currently being read
 Buffer area 3, which has been written to and is ready for reading (in the event that the

read operation in buffer area 2 is completed before the write operation to buffer area 1 is
complete)

If the write operation to buffer area 1 is completed before the read operation in buffer
area 2 is completed, the data in buffer area 1 is released for reading and the data in buffer
area 3 is discarded.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
14

EtherCAT communication
3.2.3 Addressing

The EtherCAT protocol permits the following addressing procedures:

 Position addressing: The physical positions of the EtherCAT slaves in the network serve
as addresses. In each EtherCAT slave, a specific memory area is reserved for the address.

 Node addressing: Configured node addresses which the EtherCAT master assigned to
the EtherCAT slaves during commissioning, serve as addresses. In each EtherCAT slave, a
specific memory area is reserved for the address.

 Logical addressing: The entire memory area of the network, i.e. the memory areas of
the EtherCAT master and all EtherCAT slaves, is reproduced in a logical memory which
can be addressed using a parameter. The assignment of the physical addresses of the
EtherCAT slaves to the logical addresses is stored in the EtherCAT master. During the
start phase, it is transferred to the Field Bus Memory Management Units (FMMU) of the
Data Link Layer. The FMMU converts the logical addresses into physical addresses.

3.2.4 Interfaces to the Application Layer

Tab. 1: Data Link interfaces to the Application Layer
Interface Description

Mailbox The mailbox is used exclusively for data that are not time-critical. This includes service data.

Service data are transmitted using service data object frames (SDO frames) based on CANopen
(CiA 301) (see chap. 3.5, p. 18). Transmission of service data is performed acyclically.

Process data Process data are real-time data. This means that the latest saved data can always be accessed.
Data that is not processed (such as cycle times, for which the data cannot be processed suffi-
ciently quickly by the EtherCAT slave) is discarded.

Process data are transmitted using process data object frames (PDO frames) based on CANopen
(CiA 301) (see chap. 3.4, p. 17). Transmission of process data is performed cyclically.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
15

EtherCAT communication
3.3 Application Layer

Fig. 5: Application Layer

CANopen over EtherCAT
FAULHABER Motion Controllers support the CANopen over EtherCAT (CoE) protocol with
the CANopen communication profile acc. to CiA 301:

 4 transmit PDOs (TxPDOs)

 4 receipt PDOs (RxPDOs)

 2 SDOs

CANopen telegrams can be up to 250 bytes long and thus have more capacity than the orig-
inal CAN telegrams with only 8 bytes.

The CANopen drive profiles acc. to CiA 402 can be used unchanged for EtherCAT (see the
Functional Manual).

Object dictionary
The object dictionary contains parameters, set-points and actual values of a drive. The
object dictionary is the link between the application (drive functions) and the communica-
tion services. All objects in the object dictionary can be addressed by a 16-bit index number
(0x1000 to 0x6FFF) and an 8-bit subindex (0x00 to 0xFF).

The values of the parameters can be changed by the communication side or by the drive
side.

The communication part contains communication services as specified in CiA 301.

The data assignment of the PDOs is pre-set to the "PDO set for servo drive" as specified in
CiA 402.

Index Assignment of the objects

0x1000 to 0x1FFF Communication objects

0x2000 to 0x5FFF Manufacturer-specific objects

0x6000 to 0x6FFF Objects of the drive profile acc. to CiA 402

CANopen over EtherCAT

Object Dictionary

SDO PDO Mapping
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
16

EtherCAT communication
3.4 PDO (Process Data Object)
PDOs contain process data for controlling and monitoring the behavior of the device. The
drive makes the distinction between receipt PDOs and transmission PDOs.

 Receipt PDOs (RxPDO): are received by a drive and typically contain control data

 Transmission PDOs (TxPDO): are sent by a drive and typically contain monitoring data

PDOs are evaluated or transmitted only when the device is in the NMT Operational state
(see chap. 3.8.1, p. 24).

3.4.1 PDO configuration

 A maximum of 4 parameters can be mapped in one PDO.

 The data assignment of PDOs can be changed via the objects 0x1600 to 0x1603 and
0x1A00 to 0x1A03. The mapping procedure necessary for this is described in CiA 301. A
suitable tool (such as FAULHABER Motion Manager or System Manager for the PLC con-
troller used) is necessary for the mapping procedure.

3.4.2 PDO mapping in the standard configuration

RxPDO1: Controlword

The RxPDO1 contains the 16-bit Controlword to CiA DSP402. The Controlword controls the
state machine of the drive unit and points to the object index 0x6040 in the object diction-
ary. The bit distribution is described in the documentation for the drive functions.

TxPDO1: Statusword

The TxPDO1 contains the 16-bit Statusword to CiA 402. The Statusword indicates the status
of the drive unit an and points to the object index 0x6041 in the object dictionary. The bit
distribution is described in the documentation for the drive functions.

RxPDO2: Controlword, Target Position (PP and CSP)

The RxPDO2 contains the 16-bit Controlword and the 32-bit value of the target position
(object 0x607A) for the Profile Position mode (PP).

TxPDO2: Statusword, Position Actual Value

The TxPDO2 contains the 16-bit Statusword and the 32-bit value of the actual position
(object 0x6064).

2 bytes user data

LB HB

2 bytes user data

LB HB

6 bytes user data

LB HB LLB LHB HLB HHB

6 bytes user data

LB HB LLB LHB HLB HHB
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
17

EtherCAT communication
RxPDO3: Controlword, Target Velocity (PV and CSV)

The RxPDO3 contains the 16-bit controlword and the 32-bit value of the target speed
(object 0x60FF) for the Profile Velocity mode (PV).

TxPDO3: Statusword, Velocity Actual Value

The TxPDO3 contains the 16-bit statusword and the 32-bit value of the actual speed (object
0x606C).

RxPDO4: Controlword, Target Torque (PV and CSV)

The RxPDO4 contains the 16-bit controlword and the 16-bit value of the target torque
(object 0x6071) for Cyclic Torque mode (CST).

TxPDO4: Statusword, Torque Actual Value

The RxPDO4 contains the 16-bit statusword and the 16-bit value of the actual torque
(object 0x6077) for Cyclic Torque mode (CST).

3.5 SDO (Service Data Object)
The SDO reads and writes parameters in the OD (object dictionary). The SDO accesses the
object dictionary via the 16-bit index and the 8-bit subindex. At the request of the master
(PC, PLC) the Motion Controller makes data available (upload) or receives data from the
master (download).

Tab. 2: General structuring of the SDO user data

Tab. 3: Distribution of the SDO transfer types

The transfer types are described in CiA 301.

6 bytes user data

LB HB LLB LHB HLB HHB

6 bytes user data

LB HB LLB LHB HLB HHB

6 bytes user data

LB HB LLB LHB HLB HHB

6 bytes user data

LB HB LLB LHB HLB HHB

Byte 0 Byte 1 to 2 Byte 3 Byte 4 to 7

Command specifier 16-bit index 8-bit subindex 4-byte parameter data

Transfer type Number of bytes Purpose

Expedited transfer Maximum 250 bytes –

Segmented Transfer Any size Transmission of data blocks (such as
the trace buffer)
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
18

EtherCAT communication
3.5.1 SDO error description

If the SDO protocol cannot be processed, an SDO abort telegram is sent. The error types are
coded as follows (see Tab. 2):

 Byte 4 + 5: Additional error code LB + HB

 Byte 6: Error code

 Byte 7: Error class

Error class Error code Additional
code

Description

0x05 0x03 0x0000 The toggle bit is not changed

0x05 0x04 0x0001 SDO command specifier invalid or unknown

0x06 0x01 0x0000 Access to this object is not supported

0x06 0x01 0x0001 Attempt to read a write-only parameter

0x06 0x01 0x0002 Attempt to write to a read-only parameter

0x06 0x02 0x0000 Object not present in the object dictionary

0x06 0x04 0x0041 Object cannot be mapped in a PDO

0x06 0x04 0x0042 Number and/or length of the mapped objects exceed the PDO length

0x06 0x04 0x0043 General parameter incompatibility

0x06 0x04 0x0047 General internal incompatibility error in the device

0x06 0x07 0x0010 Data type or parameter length do not match or are unknown

0x06 0x07 0x0012 Data types do not match, parameter length too long

0x06 0x07 0x0013 Data types do not match, parameter length too short

0x06 0x09 0x0011 Subindex not present

0x06 0x09 0x0030 General value range error

0x06 0x09 0x0031 Value range error: Parameter value too high

0x06 0x09 0x0032 Value range error: Parameter value too low

0x06 0x09 0x0036 Value range error: Maximum value smaller than minimum value

0x08 0x00 0x0000 General SDO error

0x08 0x00 0x0020 Cannot be accessed

0x08 0x00 0x0022 Cannot be accessed at current device status
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
19

EtherCAT communication
3.6 Emergency object (error message)
Emergency messages are not sent out by the slave at its own initiative as they are under
CANopen, instead the EtherCAT master must request them via the mailbox protocol. Since
this is an extremely slow procedure, we advise against the use of emergency. A better pro-
cedure is to map the error register 1001h or the Faulhaber error register 2320h to a PDO.
This ensures that the master receives error information in the shortest possible time.

The emergency object is always 8 bytes in size:

Assignment of user data:

 Error0(LB)/Error1(HB): 16-bit error code

 Error-Reg: Error register (contents of object 0x1001, see chap. 5.2, p. 47)

 FE0(LB)/FE1(HB): 16-bit FAULHABER error register (contents of object 0x2320, see Tab. 7)

 Bytes 5 to 7: unused (0)

The error register identifies the error type. The individual error types are bit-coded and are
assigned to the respective error codes. The object 0x1001 contains the last value of the error
register.

A maximum of 3 emergencies can be saved. If the EtherCAT master does not request any
emergencies, the 3 oldest are saved and those that are registered later are discarded. This
allows errors to be detected that led to subsequent errors.

Tab. 4 lists all the errors that have been reported by emergency messages, provided that the
respective error is included in the emergency mask for the FAULHABER error register
(Tab. 8).

Tab. 4: Emergency error codes

8 bytes user data

Error0(LB) Error1(HB) Error-Reg FE0 (LB) FE1 (HB) 0 0 0

Emergency message FAULHABER error register 0x2320 Error register 0x1001

Error
Code

Designation Error
mask
0x2321

Bit Designation Bit Designation

0x0000 No error (is sent out
when an error is no
longer present or has
been acknowledged)

– – – – –

– – – – 0 Generic error

(is set if one of the error bits 1
to 7 is set)

0x3210 Overvoltage 0x0004 2 OverVoltageError 2 Voltage error

0x3220 Undervoltage 0x0008 3 UnderVoltageError 2 Voltage error

0x43F0 Temperature Warning 0x0010 4 TempWarning 1 Current error a)

0x4310 Temperature Error 0x0020 5 TempError 3 Temperature error

0x5410 Output stages 0x0080 7 IntHWError 7 Manufacturer-specific error
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
20

EtherCAT communication
Example
An emergency message with the user data assignment in Tab. 5 is sent in the following
event:

 In the Error Mask 0x2321, bit 1 (following error) is set under subindex 1 (emergency
mask) (see Tab. 9).

 The control deviation corridor set in object 0x6065.00 for the position controller has
been exceeded for an extended period as defined by the value set for the error delay
time in object 0x6066.00 (see the documentation of the drive functions).

Tab. 5: Example of user data assignment to an emergency message

0x5530 EEPROM fault 0x0400 10 MemError – –

0x6100 Software error 0x1000 12 CalcError 7 Manufacturer-specific error

0x7200 Measurement Circuit:
Current Measurement

0x0200 9 CurrentMeasError 7 Manufacturer-specific error

0x7300 Sensor Fault (Encoder) 0x0040 6 EncoderError 7 Manufacturer-specific error

0x7400 Computation circuit:
module fault

0x0100 8 ModuleError 7 Manufacturer-specific error

0x8110

0x8130

0x8140

0x8310

CAN overrun

CAN guarding failed

CAN recovered from bus
off

RS232 overrun

0x0800 11 ComError 4 Communication error

0x84F0 Deviation error (velocity
controller)

0x0001 0 SpeedDeviationError 5 Drive-specific error

0x84FF Max speed error 0x2000 13 DynamicError 7 Manufacturer-specific error

0x8611 Following error (posi-
tion controller)

0x0002 1 FollowingError 5 Drive-specific error

a) The current controller keeps the motor current below the specified limit at all times. The overcurrent error bit
is set if the warning temperature is exceeded. The permissible motor current is then reduced from the peak
current value to the continuous current value.

8 bytes user data

0x11 0x86 0x20 0x02 0x00 0x00 0x00 0x00

Emergency message FAULHABER error register 0x2320 Error register 0x1001

Error
Code

Designation Error
mask
0x2321

Bit Designation Bit Designation
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
21

EtherCAT communication
3.7 Synchronization
FAULHABER Motion Controller supports synchronization by means of distributed clocks and
via a SyncManager event. The type of synchronization is selected using the object
0x1C32.01 for receipt PDOs and the object 0x1C33.01 for transmit PDOs. The values are as
follows:

 0: No synchronization (FreeRun), the EtherCAT slave operates independently according
to its own clock, which is set by the cycle time 0x1C32.02

 1 or 34: Synchronization via a SyncManager event (see chap. 3.7.2, p. 23)

 2: Synchronization via Distributed Clocks (see chap. 3.7.1, p. 22)

Only the following combinations are permitted for this:

The cycle time generated by the master must always be a multiple of 500 μs. A minimum
cycle time of 1 ms is specified in SM-synchronous mode and in FreeRun mode. In DC-syn-
chronous mode the minimum cycle time is 500 μs.

To simplify configuration of the SyncManager, the ESI file contains two Slots. This informs
the master that the Motion Controller contains both the operating modes DC-synchronous
and SM-synchronous as options. Only one of the options can be active at a time. If the
master supports the Slots concept, the choice of the desired Slots allows the right SM-con-
figuration to be generated easily and without errors.

3.7.1 Synchronization via distributed clocks (DC-Sync)

Each EtherCAT slave has its own clock which is managed by the ESC. The time at the first
EtherCAT slave (reference slave) serves as the reference time for the entire network. The
clocks of all other EtherCAT slaves and of the EtherCAT master take their time from this ref-
erence time.

For synchronization of the clocks, at frequent intervals the EtherCAT master sends a special
datagram into which the EtherCAT slave with the reference clock enters its current time. All
other EtherCAT slaves and the EtherCAT master read this time from the datagram. Since the
EtherCAT participants in a network are arranged in a logical ring structure, the first
EtherCAT slave after the EtherCAT master is the reference slave.

Each reference time read in by the EtherCAT participants is corrected by the time taken for
the datagram to travel from the reference clock to the corresponding EtherCAT participant.
In order to determine these travel times, the EtherCAT master sends a special datagram to
the EtherCAT slaves. When the ESCs receive the datagram they write the receipt time into a
datagram. The EtherCAT master reads these receipt times and performs the appropriate cal-
culation.

The ESC of the drive has an internal master clock that is synchronized to the master clock of
the reference slave. The synchronization allows for the telegram travel time. The internal
master clock generates a Sync0 signal which starts the local cycle of the drive.

The local cycle requires process data from an EtherCAT telegram which was received earlier
and temporarily saved. If the local cycle is started by the Sync0 signal, it reads the saved

0x1C32.01 SM2 0x1C33.01 SM3 Process data receipt

0x00 FreeRun 0x00 FreeRun No checking of the cycle time

0x01 SM synchro-
nized

0x22 SM synchronized with
SM2

The cycle time is monitored if it is entered with
a value > 0

0x02 DC Sync0 0x02 DC Sync0 The cycle time is monitored
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
22

EtherCAT communication
data and executes the control loop. Finally it writes the input data back to the process data
so that the input data is available to the master.

The master should send telegrams with the same cycle as the cycle time of the slave so that
the slave always processes the latest data. If due to a jitter in the cycle of the master a
packet is sent out too late, it can no longer be processed in the current control cycle,
instead it must be held back for processing in the next control cycle. In this case, the current
control cycle uses the data from the previous telegram.

The DC cycle time is not set by the object 0x1C32.02, instead the master sets it directly in the
ESC registers. The DC cycle time must be at least 500 μs or a multiple thereof.

3.7.2 Synchronization via a SyncManager event (SM-Sync)

The local cycle of the EtherCAT slave is started when a process data telegram is received
(SyncManager event). If the RxPDOs are transmitted cyclically, the EtherCAT slave is synchro-
nized at the SyncManager2 event (SM2 event). If only TxPDOs are transmitted, the
EtherCAT slave is synchronized at the SyncManager3 event (SM3 event).

The parameter for synchronization via a SyncManager event are set via the objects 0x1C32
(SM2) and 0x1C33 (SM3) in the Pre-Operational state (see chap. 5.1, p. 39).

Monitoring of the process data entry
The purpose of the entry in 0x1C32.02 (cycle time) is to monitor the telegrams sent by the
master. The process data must arrive in the slave within the specified timescale. If a fault
(such as a broken wire) occurs and no data arrives at the slave and the slave is appropriately
configured, it will output an emergency message and switch into an error state. If the cycle
time is set to zero, this monitoring mechanism is deactivated.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
23

EtherCAT communication
3.8 Layer management
The layer management provides the following services:

 Controlling the EtherCAT state machine (chap. 3.8.1, p. 24)

 Reading and writing at the Slave Information Interface (see chap. 3.8.2, p. 25)

The EtherCAT master communicates directly with the ESC in order to perform these services.

3.8.1 Controlling the EtherCAT state machine

After switching on and initializing, the Motion Controller is automatically set to the Pre-
Operational state. In the Pre-Operational state the Motion Controller can communicate
with the device only using mailbox communication.

Fig. 6: EtherCAT state machine

Tab. 6: Changes of state
Transfer Actions

Power on The initialization state is achieved automatically on switching on.
 Neither mailbox communication nor process data communication are available.
 The EtherCAT master initializes the SyncManager channels for mailbox communication.

IP The EtherCAT master synchronizes the EtherCAT field bus.
 The EtherCAT master initializes the SyncManager channels for process data communication,

the FMMU channels and the SyncManager-PDO assignment.
 Mailbox communication is established between the EtherCAT master and EtherCAT slaves.
 Settings for process data transmission are transmitted.

PS The EtherCAT slave checks that the SyncManager channels for process data communication and
the settings for the Distributed Clocks are correct.

 The EtherCAT slave copies the current input data in the memory areas of the ESC.
 Mailbox and process data communication are now available. The outputs of the EtherCAT slave

remain in a safe state and are not output. The input data are updated cyclically.

SO The EtherCAT master transmits valid output data to the EtherCAT slave.
 The EtherCAT master switches the EtherCAT slave into the Operational state.
 In the Operational state, the EtherCAT slave copies the input data to its outputs.
 Mailbox and process data communication are now available.

SI

Initialisation

Pre-Operational No Error

Error

Power on

Power on or Hardware Reset

Operational

Safe-Operational

IP PI

OP

PS SP

SO OS

OI
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
24

EtherCAT communication
The ESI file for the FAULHABER Motion Controller contains the default configuration for all
objects (see chap. 2.4, p. 11). In most cases no further parametrization is necessary at system
start.

Any necessary parameter settings can be performed by the FAULHABER Motion Manager
using the USB interface and saved permanently in the EEPROM (see chap. 3.11, p. 31).
Settings in the EEPROM are immediately available at system start.

Switching into the Pre-Operational state takes just a few milliseconds. The master must
enquire on the AL register (130h) and wait until the state has been successfully switched.
No SDO communication is possible beforehand.

3.8.2 Slave Information Interface (SII)

The Slave Information Interface contains data specific to the EtherCAT slave and the con-
nected drive (e.g. values of object 0x1018) as well as the mailbox SyncManager configura-
tion.

This data is saved in the EtherCAT EEPROM, which is read out when the network is commis-
sioned (see chap. 2.4, p. 11).

3.9 Entries in the object dictionary
The object dictionary manages the configuration parameters. The object dictionary is
divided into three areas. Each object can be referenced by its index and subindex (SDO pro-
tocol).

 Communication parameters (index 0x1000 to 0x1FFF) contains communications objects
to CiA 301, see chap. 5.1, p. 39)

 Manufacturer-specific area (index 0x2000 to 0x5FFF) contains manufacturer-specific
objects, see chap. 5.2, p. 47)

 The standardized device profiles area (0x6000 to 0x9FFF) contains objects supported by
the Motion Controller (see the documentation of the drive functions)

In the Init state, all values of the drive are reset to the switch-on values. Values previ-
ously set by the user in another state are overwritten if they have not been saved by a
“Save” command 1010h. If this behavior is not intended, the drive should not be
switched into the Init state, instead it should at least remain in the Pre-Operational
state.

The drive is controlled by objects of the drive profile (controlword, statusword). The
communication with the drive and the associated operating modes are described in the
separate “Functions Manual”.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
25

EtherCAT communication
3.10 Error handling

3.10.1 Device faults

Tab. 7: FAULHABER error register (0x2320)

The FAULHABER error register contains the most recent errors in bit-coded form. The errors
can be masked by selection of the desired types of error via the Error Mask (0x2321) object.

Tab. 8: Error coding

All of these errors correspond to an Emergency Error Code. (see chap. 3.6, p. 20).

Index Subindex Name Type Attr. Default value Meaning

0x2320 0x00 Fault Register U16 ro – FAULHABER error register

Error bit Error message Description

0x0001 SpeedDeviationError Speed deviation too big

0x0002 FollowingError Following error

0x0004 OverVoltageError Overvoltage detected

0x0008 UnderVoltageError Undervoltage detected

0x0010 TempWarning Temperature exceeds that at which a warning is output

0x0020 TempError Temperature exceeds that at which an error message is output

0x0040 EncoderError Error detected at the encoder

0x0080 IntHWError Internal hardware error

0x0100 ModuleError Error at the external module

0x0200 CurrentMeasError Current measurement error

0x0400 MemError Memory error (EEPROM)

0x0800 ComError Communication error

0x1000 CalcError Internal software error

0x2000 DynamicError The current velocity is higher than the maximum speed set for the motor.

0x4000 – Not used, value = 0

0x8000 – Not used, value = 0
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
26

EtherCAT communication
The error mask describes the handling of internal errors depending on the error coding (see
Tab. 8).

Tab. 9: Error Mask (0x2321)

Examples:
 When the fault mask (subindex 2) of object 0x2321 is set to 0x0001 the drive is switched

off due to overcurrent and its state machine is set to a Fault Reaction Active state.

 When the subindex 3 of object 0x2321 is set to 0, the error output (fault pin) indicates
no error. When the subindex 3 of object 0x2321 is set to 0xFFFF, the error output (fault
pin) indicates all errors.

3.10.2 Communication error

The network is monitored for communications data errors and also for missing data. If an
error occurs, this procedure allows the drives to be brought into a safe state and error
messages displayed. Network traffic analysis must then be performed in order to localize
and remedy the error.

3.10.2.1 Checking EtherCAT frame entries for errors
Since the EtherCAT slave cannot communicate directly with the EtherCAT master, the moni-
toring for defective data is performed via entries in the EtherCAT frame.

 Frame Check Sequence (FCS): The ESC uses a check sum to check the EtherCAT frame for
errors as is passes through. The information from the EtherCAT frame is used only if the
result of the check is positive. If the result of the check is negative, the EtherCAT frame
is flagged as defective by incrementing the count value for the subsequent EtherCAT
slaves and the EtherCAT master.

 Working counter: The working counter is part of the datagram. After a successful data
exchange, the EtherCAT slave increments the count value by 1. The EtherCAT master
compares the count value of the returned EtherCAT datagram with the expected count
value, and thereby can detect any errors in the data exchange.

Index Subindex Name Type Attr. Default value Meaning

0x2321 0x00 Number of Entries U8 ro 6 Number of object entries

0x01 Emergency Mask U16 rw 0xFFFF Errors for which an error message is sent

0x02 Fault Mask U16 rw 0x0000 Errors for which the state machine of the
drive switches into Fault Reaction Active
state

0x03 Error Out Mask U16 rw 0x0000 Errors for which the error output pin is
set

0x04 Disable Voltage
Mask

U16 ro 0x4024 Errors which switch off the drive (not
configurable)

0x05 Disable Voltage
User Mask

U16 rw 0x0000 Errors which switch off the drive (config-
urable)

0x06 Quick Stop Mask U16 rw 0x0000 Errors for which the state machine of the
drive switches into Quick Stop Active
state
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
27

EtherCAT communication
3.10.2.2 Error response
The drive must receive the output data from the EtherCAT master at the right time and
must be able to send its state regularly to the EtherCAT master. For this purpose, the
EtherCAT slave must receive process data at regular intervals. Variations during data recep-
tion must remain within certain limits.

The exchange of the process image is monitored by two mechanisms in the drive which
operate on different principles:

Fig. 7: Mechanisms of error monitoring

* The objects of the drive profile to CiA402 are described in detail in the documentation
of the drive functions

Monitoring the arrival time of the process data
When the process data arrive at the drive a check is made whether the arrival time matches
the expected time. If on multiple occasions the deviation is too large, the EtherCAT state
machine switches into the states Safe Operational and Error. Depending on the error
response set in object 0x6007, the drive brakes to a standstill (see documentation of the
drive functions).

This type of monitoring has different names depending on the type of synchronization:

 DC synchronization: SYNC0 monitoring

 SM synchronization: SyncManager monitoring

DC-Synchronous
Mode

error count > 10 cycle time fluctuating

Process Data Watchdog

no process data within 100 ms

NMT

Safe Operational + Fault

AL-Status Code:
(Register 0x0134)

guarding error

FAULHABER fault register
0x2320.00 Bit 11 is set
communication error

0x2321.05
Bit 11
is set?

No reaction

CiA 402 drive
state machine*

fault reaction active

switch on disabled

quick stop

0x2321.06
Bit 11
is set?

0x2321.02
Bit 11
is set?

nono

yesyesyes

disable voltage
Drive*

0x
60

07
 =

 0

0x
60

07
 =

 3

0x
60

07
 =

 2

0x
60

07
 =

 1

0x1A 0x1B0x34

SM-Synchronous
Mode
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
28

EtherCAT communication
Monitoring receipt of the process data
If no process data is received by the drive (e. g. because of a break in the cable), the moni-
toring of the arrival time is not activated. If for a period longer than 100 ms no process data
has been received, the process data watchdog triggers an error response. The error
response depends on the state of bit 11 in the FAULHABER error register 0x2320.00:

 Bit 11 not set:

The EtherCAT state machine changes to the states Safe Operational and Error. Depend-
ing on the error response set in object 0x6007, the drive brakes to a standstill (see docu-
mentation of the drive functions).

 Bit 11 set:

The drive stops as defined in the objects 0x2321.02, 0x2321.04, 0x2321.05 and 0x2321.06
(see chap. 5.2, p. 47).

3.10.2.3 Analysis of the network traffic
The network traffic can be analyzed using software tools (such as Wireshark). The software
tool can be installed either on a separate PC connected to the network or directly on the
EtherCAT master. The analysis of the network traffic consists of reading and comparing the
frame sent by the EtherCAT master and the frame received by the EtherCAT master. Particu-
larly distinctive points for the error analysis are the EtherCAT frame entries (FCS, Working
Counter) mentioned above.

3.10.2.4 EtherCAT AL status codes and troubleshooting
If a communications error occurs, an error code is loaded to the AL status code register
(0x0134). The table below describes the available codes and lists the actions for trouble-
shooting.

AL status code Description Troubleshooting

0x0001 EtherCAT system (hardware or software)
did not initialize.

Inform FAULHABER support.

0x0002 No memory is available for an internal
buffer of a SyncManager (mapping or
buffering).

Inform FAULHABER support.

0x0011 Requested target state is not reachable /
requested transition is not allowed.

Only switch the AL state machine in valid steps.

Invalid are, for example:

 Init → Safe-Operational
 Init → Operational
 Pre-Operational → Operational

0x0012 Requested target state does not exist. Use valid AL state codes.

Valid codes are:

 Init: 1
 Pre-Operational: 2
 Safe-Operational: 4
 Operational: 8

0x0013 The Boot State is not implemented in
this product.

Do not change to boot state.

0x0015 When changing to boot state, an error
was detected in the mailbox configura-
tion (SDO communication).

See 0x0016.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
29

EtherCAT communication
0x0016 When the system was switched to Pre-
Operational state an error in the config-
uration of the mailbox (SDO communica-
tion) was detected.

Check configuration:

 SM0 and SM1 must be switched on
 The control bytes of the SM must be correct
 The physical and configured addresses of the SM

must be correct
 The length of the SM must be within the permit-

ted limits.

0x0017 An error was detected while mapping an
SM.

Check configuration:

 Length of all mapped objects must not exceed
SM's length

 A maximum of 8 SM can be used
 SMs may not overlap

0x001A Synchronization error:

The fault threshold is > 0 and the inter-
nal error counter has exceeded this
threshold because the process data was
sent too fast.

Only in SM synchronous mode.

Send process data slower.

or:

Check the cycle time that is set in 0x1C32.02. It must
match the actual cycle time.

0x001B Synchronization error:

SM watchdog reported a communication
fault, since there was no process data at
all for more than 100 ms.

Send process data.

0x001D Faulty configuration of an output SM. Correctly configure SM:

 SM with zero length must be disabled, all others
must be enabled

 The control byte of the SM must be correct
 Physical and configured addresses of the SM must

match
 The length of the SM must be within the permit-

ted limits
 SMs may not overlap

0x001E Faulty configuration of an input SM. Correctly configure SM:

 SM with zero length must be disabled, all others
must be enabled

 The control byte of the SM must be correct
 Physical and configured addresses of the SM must

match
 The length of the SM must be within the permit-

ted limits
 SMs may not overlap

0x0026 Inconsistent Settings for SyncManager. Check settings.

Only the following combinations are valid:

 SM0 = 0x00 & SM1 = 0x00 (Freerun)
 SM0 = 0x01 & SM1 = 0x22 & ADO 0981 (SyncOut

Unit) Bits [3,1,0] = 000 (SYNC0 deactivated)
 SM0 = 0x02 & SM1 = 0x02 & ADO 0981 (SyncOut

Unit) Bits [3,1,0] = 011 (SYNC0 activated)

0x002C SYNC0 signal no longer received in DC. Check configuration of SYNC0:

 SM: cycle time at least 1 ms
 DC: cycle time at least 500 μs

0x002E Cycle time too small. In Freerun and SM synchronous minimum cycle time
is 1 ms.

0x0030 Faulty configuration of DC. Check configuration of DC:

 SM0 = 0x02
 SM1 = 0x02
 ADO 0981 (SyncOut Unit) Bits [3,1,0] = 011

(SYNC0 activated)

AL status code Description Troubleshooting
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
30

EtherCAT communication
3.11 Saving and restoring parameters
So that changed parameters in the OD remain active in the controller when it is switched
on again, the “Save” command must be executed to save them permanently in the non-vol-
atile memory (EEPROM application) (see chap. 5.1, p. 39). When the motor is switched on,
the parameters are loaded automatically from the non-volatile memory into RAM.

Fig. 8: Saving and restoring parameters

The following parameters can be loaded using the “Restore” command (see chap. 5.1,
p. 39):

 Factory settings

 Parameters saved using the “Save” command

3.11.1 Save parameters

The current parameter settings can be saved in the internal EEPROM (SAVE) (see Tab. 14),
either completely or for individual ranges.

 Write the "save" signature to the subindex 01 to 05 of the object 0x1010 (see Tab. 15).

0x0034 Before process data can be processed,
the slave must receive it. The master had
failed to send this data in time too often.

Only in DC mode.

Send a process image at the right time, so that it can
be used in response to the SYNC0 pulse.

0x0036 DC time is too small. Minimum DC time is 500 μs.

0xB001 No PDOs were found for the
SyncManager channel.

Inform FAULHABER support.

0xB003 PDO mapping does not exist. Inform FAULHABER support.

0xB004 PDO index not within the necessary
range.

Inform FAULHABER support.

0xB007 PDO entry does not exist in the object
dictionary.

Inform FAULHABER support.

AL status code Description Troubleshooting

RAM EEPROM

Save command

Power Supply ON
or

Restore command

Device
control

Communication
command
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
31

EtherCAT communication
3.11.2 Restoring settings

Factory settings or last saved parameter settings can be loaded from the internal EEPROM
at any time, completely or for specific ranges (RESTORE) (see Tab. 16).

1. Write the “Load” signature to the subindex 01 to 06 of the object 0x1011 (see Tab. 17).

 After Restore Factory (01), Restore Communication (02) and Restore Application
(03), the drive must be reset. Only then are the parameters updated.

2. Application parameters (04), together with record 1 and record 2 of the special applica-
tion parameters (05/06) can be updated with the “Reload” command.

 The “Reload” command overwrites the values last saved as application parameters.

3.11.3 Changing the parameter set

The repository for the application parameters (motor data, I/O configuration, controller
parameters, operating mode, etc.) includes a common basic set of parameters (App) as well
as a storage area for parameters which often need to be adapted to variations in the load
situation (App1/App2):

Speed controller and filter

Position controller

When the drive is switched on, the saved parameters are loaded automatically.

If it is desired that the values currently loaded remain available after a “Restore”, these
must be saved to the PC using a suitable program (such as FAULHABER Motion
Manager).

Index Subindex Name Type Attr. Meaning

0x2344 0x01 Gain KP U32 rw Controller gain [As 1e-6]

0x02 Integral time TN U16 rw Controller reset time [100 μs]

0x2346 0x01 Set Point Velocity Filter Time T_F U16 rw Filter time T_F [100 μs]

0x02 Setpoint Filter Enable U8 rw 0: inactive

1: Active

0x2347 0x01 Gain Factor U8 rw Gain factor (used by the speed control in
PP mode on the KP)

0: The gain factor of the speed controller
is reduced to 0 at the target

128: no variable gain

255: The gain factor of the speed control-
ler is doubled at the target

Index Subindex Name Type Attr. Meaning

0x2348 0x00 Number of entries U8 ro Number of object entries

0x01 Kv [1/s] U8 rw Range: 1-250
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
32

EtherCAT communication
Pre-controls

General settings

These parameters are stored twice. During operation, the system can switch quickly
between these different presets.

Index Subindex Name Type Attr. Meaning

0x2349 0x01 Torque/force feed forward factor U8 rw Factor for the torque or force control

0: 0% activation of the feedforward
value

128: 100% feedforward control

0x02 Torque/Force feed forward delay U8 rw Set-point delay:

0: undelayed activation

1: Activation delayed by one sampling

0x234A 0x01 Velocity feed forward factor U8 rw Factor for the torque or force control

0: 0% feedforward control

128: 100% feedforward control

0x02 Velocity feed forward delay U8 rw Set-point delay:

0: undelayed activation

1: Activation delayed by one sampling

Index Subindex Name Type Attr. Meaning

0x6060 0x00 Modes of Operation S8 rw Select the operating mode

–4: ATC

–3: AVC

–2: APC

–1: Voltage mode

0: Controller not activated

1: PP

3: PV

6: Homing

8: CSP

9: CSV

10: CST

0x6081 0x00 Profile Velocity U32 rw Profile velocity in user-defined units

0x6083 0x00 Profile acceleration U32 rw Profile acceleration [1/s2]

0x6084 0x00 Profile deceleration U32 rw Profile deceleration [1/s2]

0x6086 0x00 Motion Profile Type S16 rw Speed profile type:

0: Linear profile

1: Sin2 speed

0x60E0 0x00 Positive torque limit value U16 rw Value of the upper limit value [in relative
scaling]

0x60E1 0x00 Negative torque limit value U16 rw Value of the lower limit value [in relative
scaling]
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
33

EtherCAT communication
Create an application set
 Save application parameters 1: Write the "save" signature to subindex 04 of object

0x1010.

 The current data is saved as the application parameter set 1.

 Save application parameters 2: Write the "save" signature to subindex 05 of object
0x1010.

 The current data is saved as the application parameter set 2.

Activate an application set
 Reload application parameters 1: Write the "load" signature to subindex 05 of object

0x1011.

 Current data from the application parameter set 1 is activated directly.

 Reload application parameters 2: Write the "load" signature to subindex 06 of object
0x1011.

 Current data from the application parameter set 2 is activated directly.
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
34

Trace recorder
4 Trace recorder
The trace recorder allows up to 4 parameters of the controller to be recorded. For this pur-
pose, one trigger source and a maximum of 4 signal sources are selected in the object dic-
tionary. The parameter values are written to an internal buffer and can then be read out
(see chap. 4.2, p. 37). The advantage compared to the cyclical transmission of process data is
the higher speed. The trace recorder can record values at a controller sampling time of 100
μs. By comparison, process data cannot be transmitted faster than every 500 μs.

The configuration and reading of data with the trace recorder is performed via SDO.

The trace recorder is configured using the object 0x2370 in the OD.

The recorded data are read using the segmented SDO upload protocol. The object 0x2371 is
available in the OD for this purpose (see chap. 4.2, p. 37).

4.1 Trace settings
Object 0x2370 is available for configuration of the trace recorder. The data sources to be
recorded, the buffer size, the resolution and the trigger conditions can be set here.

Tab. 10: Trace Configuration (0x2370)

Trigger Source (0x2370.01), trace source 1 to 4 (0x2370.07 to 0A)
The parameters to be recorded, trace source 1 to trace source 4, must be entered in objects
0x2370.07 to 0x2370.0A as pointers to a corresponding object entry (index and subindex of
the desired parameter). The trigger source must be entered in object 0x2370.01 as a pointer
to a corresponding object entry (index and subindex of the desired parameter).

The FAULHABER Motion Manager provides a user-friendly means of setting and evalu-
ating the trace functions.

Index Subindex Name Type Attr. Default value Meaning

0x2370 0x00 Number of
Entries

U8 ro 10 Number of object entries

0x01 Trigger Source U32 wo 0 Trigger source

0x02 Trigger
Threshold

S32 rw 0 Trigger threshold

0x03 Trigger Delay
Offset

S16 rw 0 Trigger delay

0x04 Trigger Mode U16 rw 0 Trigger mode

0x05 Buffer Length U16 rw 100 Buffer length

0x06 Sample Time U8 rw 1 Recording sampling rate

1: in every sampling step

0x07 Trace Source of
Channel 1

U32 wo 0 Trace source of channel 1

0x08 Trace Source of
Channel 2

U32 wo 0 Trace source of channel 2

0x09 Trace Source of
Channel 3

U32 wo 0 Trace source of channel 3

0x0A Trace Source of
Channel 4

U32 wo 0 Trace source of channel 4
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
35

Trace recorder
Example

Object 0x6064.00 (position actual value) must be recorded as the first data source: The
value 0x606400 must be entered in object 0x2370.07.

Trigger Threshold (0x2370.02)
The trigger threshold is entered in object 0x2370.02.

Depending on the settings of bits 1 to 3 in trigger type object 0x2370.04, recording is
started when the threshold set here is exceeded or undershot.

Trigger Delay Offset (0x2370.03)
The trigger delay is stated in object 0x2370.03 as a multiple of the sample time set in object
0x2370.06.

 Delay > 0: After the trigger, the start of recording is delayed by the set multiples of the
sample time.

 Delay < 0: Negative delays are possible up to the length of the buffer. Recording ends at
the point in the ring buffer where the recording would have had to start before the
actual trigger. This ensures that the values recorded before the trigger are retained.

Trigger Mode (0x2370.04)
The trigger type and the type of data sources are set using object 0x2370.04. Bit 0 activates
the trigger and thus, providing the trigger conditions are satisfied, starts the recording.

Tab. 11: Trigger Mode (0x2370.04)

Buffer Length (0x2370.05)
The length of the buffer (number of values) available for recording is set in object
0x2370.05. The permissible length depends on the data type and the number of parameters
to be recorded. In total, a maximum of 8 kBytes (2 kBytes per channel) of buffer are availa-
ble.

Sample Time (0x2370.06)
The sampling rate is stated in object 0x2370.06 as a multiple of the controller sampling
time.

Bit Entry Description

0 (LSB) EN 0: No trigger active
 1: Trigger active. Is automatically reset in trigger modes 1 and 3

1

2

3

Edge 0

Edge 1

Edge 2

 0: rising flank or trigger > threshold
 1: falling flank or trigger < threshold

4 to 5 Reserved –

6

7

Mode 0

Mode 1

 0: No trigger
 1: Single Shot
 2: Repeating

8 to 10 Reserved –

11

12

13

14

15 (MSB)

Source Type 1

Source Type 2

Source Type 3

Source Type 4

Trigger Type

 0: An object dictionary entry is used as the source
 1: Not currently supported
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
36

Trace recorder
4.2 Reading the trace buffer
The recorded data buffer can be read using the object 0x2371.

Tab. 12: Trace Buffer (0x2371)

The user data length of the individual data sources is dependent on the data length of the
parameter to be transmitted (according to the OD entry) and the set buffer size. A memory
area the size of the data length times the buffer size must therefore be provided for each
data source , for reading the recorded values.

Trace State (0x2371.01)

Tab. 13: Trace State (0x2371.01)

Before the recorded data are read, the Triggerstatus 0x2371.01 must be checked. If bit 0
and bit 1 are set (status = 3), recording is completed and the contents of the buffer can be
read using the objects 0x2371.02 to 0x2371.05 via Segmented SDO-Upload Protokoll.

Index Subindex Name Type Attr. Default value Meaning

0x2371 0x00 Number of Entries U8 ro 5 Number of object entries

0x01 Trace State U16 ro 0 Trigger status

0x02 Trace Value of
Channel 1

Vis
string

ro – Signal buffer, channel 1

0x03 Trace Value of
Channel 2

Vis
string

ro – Signal buffer, channel 2

0x04 Trace Value of
Channel 3

Vis
string

ro – Signal buffer, channel 3

0x05 Trace Value of
Channel 4

Vis
string

ro – Signal buffer, channel 4

The individual data points can be recorded to the highest resolution of the recorder.

Bit Entry Description

0 (LSB)

1

Status 0

Status 1

 0: No trigger active
 1: Trigger not yet reached
 2: Recording not yet completed
 3: Recording completed, data are available

2 to 7 Not used –

8 to 15 (MSB) Start index First value in the buffer after triggering
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
37

Trace recorder
4.3 Typical execution of the trace function
1. Set the trigger type and the type of the data sources (2370.04).

2. Set the trigger source and the signals to be recorded (2370.01, 07 to 0A).

3. Set the recording length (2370.05).

4. If necessary, set the sampling rate (2370.06).

5. Set the threshold value (2370.02) for the trigger.

6. Set the flank for the trigger and activate recording (2370.04).

 The settings for the trace recorder are complete.

7. Check the trigger status (2371.01) for the value 3.

8. Read the recorded buffer content (2371.02 to 05).
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
38

Parameter description
5 Parameter description

5.1 Communication objects acc. to CiA 301
Device Type

Contains information on the device type, coded in two 16-bit fields:

 Byte MSB (Most Significant Byte): Additional Information = 0x42 (Servo drive, type spe-
cific PDO mapping)

 Byte LSB (Least Significant Byte): Device Profile Number = 0x192 (402d)

Error Register

The error register contains the last error types that occurred in bit-coded form.

This parameter can be mapped in a PDO.

Predefined Error Field (error log)

The error log contains the coding of the last errors that occurred.

 Byte MSB: Error Register

 Byte LSB: Error Code

The meaning of the error codes is described in chap. 3.6, p. 20.

Writing a 0 to the subindex 0 clears down the error log.

Manufacturer Device Name

Manufacturer Hardware Version

Manufacturer Software Version

Index Subindex Name Type Attr. Default value Meaning

0x1000 0x00 Device Type U32 ro 0x00420192 Indication of the device type

Index Subindex Name Type Attr. Default value Meaning

0x1001 0x00 Error Register U8 ro yes Error register

Index Subindex Name Type Attr. Default value Meaning

0x1003 0x00 Number of Errors U8 rw – Number of saved errors

0x01–
0x08

Standard Error
Field

U32 ro – Error codes that have occurred most
recently

Index Subindex Name Type Attr. Default value Meaning

0x1008 0x00 Manufacturer
Device Name

Vis
string

const – Device name

Index Subindex Name Type Attr. Default value Meaning

0x1009 0x00 Manufacturer Hard-
ware Version

Vis
string

const – Hardware version

Index Subindex Name Type Attr. Default value Meaning

0x100A 0x00 Manufacturer Soft-
ware Version

Vis
string

const – Software version
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
39

Parameter description
Store Parameters

Tab. 14: Save parameters

The Store Parameters object saves the configuration parameters into the flash memory.
Read access supplies information about the save options. Writing the “Save” signature to
the respective subindex initiates the save procedure.

Tab. 15: Signature “save”

NOTICE!
The flash memory is designed to accommodate 10,000 write cycles. If this command is exe-
cuted more than 10,000 times, the correct operation of the flash memory can no longer be
guaranteed.

 Avoid performing frequent saves.

 After 10,000 save cycles, replace the device.

Restore Default Parameters

Tab. 16: Restoring parameters

Index Subindex Name Type Attr. Default value Meaning

0x1010 0x00 Number of Entries U8 ro 9 Number of object entries

0x01 Save All Parameters U32 rw 1 Saves all parameters

0x02 Save Comm Param-
eters

U32 rw 1 Save communication parameters (object
dictionary entries 0x0000 to 0x1FFF)

0x03 Save App Parame-
ters

U32 rw 1 Save application parameters (object dic-
tionary entries 0x2000 to 0x6FFF)

0x04 Save App
Parameters 1

U32 rw 1 Save application parameters for immedi-
ate changes (set 1)

0x05 Save App
Parameters 2

U32 rw 1 Save application parameters for immedi-
ate changes (set 2)

Signature ISO 8 859 (“ASCII”) hex

MSB e 65h

v 76h

a 61h

LSB s 73h

Index Subindex Name Type Attr. Default value Meaning

0x1011 0x00 Number of Entries U8 ro 6 Number of object entries

0x01 Restore all Default
Parameters

U32 rw 1 Restore all factory settings

0x02 Restore Comm
Default Parameters

U32 rw 1 Restore all factory settings for communi-
cation parameters (0x0000 to 0x1FFF)

0x03 Restore App
Default Parameters

U32 rw 1 Restore all factory settings for applica-
tion parameters (from 0x2000)

0x04 Reload User Param-
eters

U32 rw 1 Restore the user's last saved application
parameters (from 0x2000)

0x05 Reload Application
Parameters 1

U32 rw 1 Application parameter set 1 for immedi-
ate changes

0x06 Reload Application
Parameters 2

U32 rw 1 Application parameter set 2 for immedi-
ate changes
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
40

Parameter description
The Restore Default Parameters object loads the standard configuration parameters. The
standard configuration parameters are either as delivered or as saved last. Read access sup-
plies information about the restore options. Writing the “Load” signature to the respective
subindex initiates the restore procedure:

Tab. 17: “Load” signature

Identity Object

Receive PDO1 Mapping

Signature ISO 8859 (“ASCII”) hex

MSB d 64h

a 61h

o 6Fh

LSB l 6Ch

The delivery state may be loaded only when the output stage is switched off.

To activate the parameters restored by Restore Factory Settings, the drive must be
switched off and on again.

Index Subindex Name Type Attr. Default value Meaning

0x1018 0x00 Number of Entries U8 ro 4 Number of object entries

0x01 Vendor ID U32 ro 327 Manufacturer’s code number

(FAULHABER: 327)

0x02 Product Code U32 ro 48 Product code number

0x03 Revision Number U32 ro – Version number

0x04 Serial Number U32 ro – Serial number

Index Subindex Name Typ
e

Attr. Default value Meaning

0x1600 0x00 Number of Mapped
Objects

U8 ro 1 Number of mapped objects

0x01 RxPDO1 Mapping
Entry 1

U32 rw 0x60400010 Pointer to the 16-bit Controlword
(0x6040)

0x02 RxPDO1 Mapping
Entry 2

U32 rw 0

0x03 RxPDO1 Mapping
Entry 3

U32 rw 0

0x04 RxPDO1 Mapping
Entry 4

U32 rw 0
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
41

Parameter description
Receive PDO2 Mapping

Receive PDO3 Mapping

Receive PDO4 Mapping

Index Subindex Name Typ
e

Attr. Default value Meaning

0x1601 0x00 Number of Mapped
Objects

U8 ro 2 Number of mapped objects

0x01 RxPDO2 Mapping
Entry 1

U32 rw 0x60400010 Pointer to the 16-bit Controlword
(0x6040)

0x02 RxPDO2 Mapping
Entry 2

U32 rw 0x607A0020 Pointer to the 32-bit Target Position
(0x607A)

0x03 RxPDO2 Mapping
Entry 3

U32 rw 0

0x04 RxPDO2 Mapping
Entry 4

U32 rw 0

Index Subindex Name Typ
e

Attr. Default value Meaning

0x1602 0x00 Number of Mapped
Objects

U8 ro 2 Number of mapped objects

0x01 RxPDO3 Mapping
Entry 1

U32 rw 0x60400010 Pointer to the 16-bit Controlword
(0x6040)

0x02 RxPDO3 Mapping
Entry 2

U32 rw 0x60FF0020 Pointer to the 32-bit Target Velocity
(0x60FF)

0x03 RxPDO3 Mapping
Entry 3

U32 rw 0

0x04 RxPDO3 Mapping
Entry 4

U32 rw 0

Index Subindex Name Typ
e

Attr. Default value Meaning

0x1603 0x00 Number of Mapped
Objects

U8 ro 2 Number of mapped objects

0x01 RxPDO4 Mapping
Entry 1

U32 rw 0x60400010 Pointer to the 16-bit Controlword
(0x6040)

0x02 RxPDO4 Mapping
Entry 2

U32 rw 0x60710010 Pointer to the 16-bit Target Torque
(0x6071)

0x03 RxPDO4 Mapping
Entry 3

U32 rw 0

0x04 RxPDO4 Mapping
Entry 4

U32 rw 0
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
42

Parameter description
Transmit PDO1 Mapping

Transmit PDO2 Mapping

Transmit PDO3 Mapping

Index Subindex Name Type Attr. Default value Meaning

0x1A00 0x00 Number of Mapped
Objects

U8 rw 1 Number of mapped objects

0x01 TxPDO1 Mapping
Entry 1

U32 rw 0x60410010 Pointer to the 16-bit Statusword
(0x6041)

0x02 TxPDO1 Mapping
Entry 2

U32 rw 0

0x03 TxPDO1 Mapping
Entry 3

U32 rw 0

0x04 TxPDO1 Mapping
Entry 4

U32 rw 0

Index Subindex Name Type Attr. Default value Meaning

0x1A01 0x00 Number of Mapped
Objects

U8 rw 2 Number of mapped objects

0x01 TxPDO2 Mapping
Entry 1

U32 rw 0x60410010 Pointer to the 16-bit Statusword
(0x6041)

0x02 TxPDO2 Mapping
Entry 2

U32 rw 0x60640020 Pointer to the 32-bit Position Actual
Value (0x6064)

0x03 TxPDO2 Mapping
Entry 3

U32 rw 0

0x04 TxPDO2 Mapping
Entry 4

U32 rw 0

Index Subindex Name Type Attr. Default value Meaning

0x1A02 0x00 Number of Mapped
Objects

U8 rw 2 Number of mapped objects

0x01 TxPDO3 Mapping
Entry 1

U32 rw 0x60410010 Pointer to the 16-bit Statusword
(0x6041)

0x02 TxPDO3 Mapping
Entry 2

U32 rw 0x606C0020 Pointer to the 32-bit Velocity Actual
Value (0x606C)

0x03 TxPDO3 Mapping
Entry 3

U32 rw 0

0x04 TxPDO3 Mapping
Entry 4

U32 rw 0
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
43

Parameter description
Transmit PDO4 Mapping

SyncManager Communication Type

SyncManager 2 (RxPDO, master to the drive): PDO Mapping

Index Subindex Name Type Attr. Default value Meaning

0x1A03 0x00 Number of Mapped
Objects

U8 rw 2 Number of mapped objects

0x01 TxPDO4 Mapping
Entry 1

U32 rw 0x60410010 Pointer to the 32-bit Position Actual
Value (0x6064)

0x02 TxPDO4 Mapping
Entry 2

U32 rw 0x60770010 Pointer to the 16-bit Torque Actual
Value (0x6077)

0x03 TxPDO4 Mapping
Entry 3

U32 rw 0

0x04 TxPDO4 Mapping
Entry 4

U32 rw 0

Index Subindex Name Type Attr. Default value Meaning

0x1C00 0x00 Number of Objects U8 ro 4 Number of objects

0x01 SM0 Communica-
tion Type

U8 ro 0 0: SyncManager not in use

1: mailbox receive (master to slave)

2: mailbox send (slave to master)

3: process data output (master to slave)

4: process data input (slave to master)

0x02 SM1 Communica-
tion Type

U8 ro 0

0x03 SM2 Communica-
tion Type

U8 ro 0

0x04 SM3 Communica-
tion Type

U8 ro 0

Index Subindex Name Type Attr. Default value Meaning

0x1C12 0x00 Number of Objects U8 rw 4 Number of objects

0x01 SM2: 1st RxPDO
Assignment

U16 rw 0x1600 Assignment of the SyncManager channel
2 to the receipt PDO 1

Possible values: 0x1600...0x1603

0x02 SM2: 2nd RxPDO
Assignment

U16 rw 0x1601 Assignment of the SyncManager channel
2 to the receipt PDO 2

Possible values: 0x1600...0x1603

0x03 SM2: 3rd RxPDO
Assignment

U16 rw 0x1602 Assignment of the SyncManager channel
2 to the receipt PDO 3

Possible values: 0x1600...0x1603

0x04 SM2: 4th RxPDO
Assignment

U16 rw 0x1603 Assignment of the SyncManager channel
2 to the transmit PDO 4

Possible values: 0x1600...0x1603
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
44

Parameter description
SyncManager 3 (TxPDO, master to the drive): PDO Mapping

SyncManager 2 (RxPDO, master to the drive): Parameter

Index Subindex Name Type Attr. Default value Meaning

0x1C13 0x00 Number of Objects U8 rw 4 Number of objects

0x01 SM3: 1st TxPDO
Assignment

U16 rw 0x1A00 Assignment of the SyncManager channel
3 to the transmit PDO 1

Possible values: 0x1A00...0x1A03

0x02 SM3: 2nd TxPDO
Assignment

U16 rw 0x1A01 Assignment of the SyncManager channel
3 to the transmit PDO 2

Possible values: 0x1A00...0x1A03

0x03 SM3: 3rd TxPDO
Assignment

U16 rw 0x1A02 Assignment of the SyncManager channel
3 to the transmit PDO 3

Possible values: 0x1A00...0x1A03

0x04 SM3: 4th TxPDO
Assignment

U16 rw 0x1A03 Assignment of the SyncManager channel
3 to the transmit PDO 4

Possible values: 0x1A00...0x1A03

Index Subindex Name Type Attr. Default value Meaning

0x1C32 0x00 Number of Objects U8 ro 12 SyncManager parameters for input PDOs

0x01 SM2: Synchron-
ization Type

U16 rw 1 Synchronization type:

 0: FreeRun
 1: SM-Sync
 2: DC-Sync

0x02 SM2: Cycle Time U32 rw 500000 Cycle time (value must be a multiple of
500000 ns)

0x04 SM2: Synchron-
ization Types
Supported

U16 ro 0 Synchronization types supported

0x05 SM2: Minimum
Cycle Time

U32 ro 0 Minimum cycle time (only in DC-Sync
mode)

0x06 SM2: Calc and Copy
Time

U32 ro 0 The earliest time in ns after which the
next SyncManager event can arrive (only
in DC-Sync mode)

0x09 SM2: Delay Time U32 ro 0 Hardware delay time until the outputs
are output (only in DC-Sync mode)

0x0B SM2: SM-Event
Missed Counter

U16 ro 0 Number of SyncManager events missed
(only in DC-Sync mode)

0x0C SM2: Cycle Time
Too Short Counter

U16 ro 0 Error counter that is incremented by 1 if
process input data is not updated before
the next SM2 event occurs (not in
FreeRun mode)
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
45

Parameter description
SyncManager 3 (TxPDO, drive to the master): Parameter

Index Subindex Name Type Attr. Default value Meaning

0x1C33 0x00 Sync Manager
3(TxPDO): Parame-
ter

U8 ro 12 SyncManager parameters for transmit
PDOs

0x01 SM3: Synchron-
ization Type

U16 rw 34 Synchronization type:

 0: FreeRun
 2: SM-Sync
 34: DC-Sync to SM2

0x02 SM3: Cycle Time U32 ro 0 Copy of the value of 0x1C32.02

1C33.02 must be set if no outputs are
defined but only inputs. In this case
1C32.02 cannot be set. Normally (i.e.
both inputs and outputs are defined),
1C32.02 and 1C33.02 are defined, but
both point internally to the same varia-
ble. This ensures that only identical times
can be used.

0x04 SM3: Synchron-
ization Types
Supported

U16 ro 0 Synchronization types supported

0x05 SM3: Minimum
Cycle Time

U32 ro 0 Minimum cycle time (only in DC-Sync
mode)

0x06 SM3: Calc and Copy
Time

U32 ro 0 Time in ns between reading the inputs
and availability of the inputs to the
master (only in DC-Sync mode)

0x0B SM3: SM-Event
Missed Counter

U16 ro 0 Number of SyncManager events missed
(only in DC-Sync mode)

0x0C SM3: Cycle Time
Too Short Counter

U16 ro 0 Error counter that is incremented by 1 if
process input data is not updated before
the next SM2 event occurs (not in
FreeRun mode)
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
46

Parameter description
5.2 Manufacturer-specific objects
FAULHABER error register (0x2320)

Error Mask (0x2321)

The states of the drive state machine are described in the documentation for the drive func-
tions.

Trace Configuration

Index Subindex Name Type Attr. Default value Meaning

0x2320 0x00 Fault Register U16 ro – FAULHABER error register

Index Subindex Name Type Attr. Default value Meaning

0x2321 0x00 Number of Entries U8 ro 6 Number of object entries

0x01 Emergency Mask U16 rw 0xFFFF Errors for which an error message is sent

0x02 Fault Mask U16 rw 0x0000 Errors for which the state machine of the
drive switches into Fault Reaction Active
state

0x03 Error Out Mask U16 rw 0x0000 Errors for which the error output pin is
set

0x04 Disable Voltage
Mask

U16 ro 0x4024 Errors which switch off the drive (not
configurable)

0x05 Disable Voltage
User Mask

U16 rw 0x0000 Errors which switch off the drive (config-
urable)

0x06 Quick Stop Mask U16 rw 0x0000 Errors for which the state machine of the
drive switches into Quick Stop Active
state

Index Subindex Name Type Attr. Default value Meaning

0x2370 0x00 Number of
Entries

U8 ro 10 Number of object entries

0x01 Trigger Source U32 wo 0 Trigger source

0x02 Trigger
Threshold

S32 rw 0 Trigger threshold

0x03 Trigger Delay
Offset

S16 rw 0 Trigger delay

0x04 Trigger Mode U16 rw 0 Trigger mode

0x05 Buffer Length U16 rw 100 Buffer length

0x06 Sample Time U8 rw 1 Recording sampling rate

1: in every sampling step

0x07 Trace Source of
Channel 1

U32 wo 0 Trace source of channel 1

0x08 Trace Source of
Channel 2

U32 wo 0 Trace source of channel 2

0x09 Trace Source of
Channel 3

U32 wo 0 Trace source of channel 3

0x0A Trace Source of
Channel 4

U32 wo 0 Trace source of channel 4
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
47

Parameter description
Trace Buffer

RS232 baud rate index and node number

Index Subindex Name Type Attr. Default value Meaning

0x2371 0x00 Number of Entries U8 ro 5 Number of object entries

0x01 Trace State U16 ro 0 Trigger status

0x02 Trace Value of
Channel 1

Vis
string

ro – Signal buffer, channel 1

0x03 Trace Value of
Channel 2

Vis
string

ro – Signal buffer, channel 2

0x04 Trace Value of
Channel 3

Vis
string

ro – Signal buffer, channel 3

0x05 Trace Value of
Channel 4

Vis
string

ro – Signal buffer, channel 4

Index Subindex Name Type Attr. Default value Meaning

0x2400 0x00 Number of Entries U8 ro 8 Number of object entries

0x02 RS232 Rate U8 rw 3 Baud rate index

0x03 Node ID U8 rw 1 Node number

0x08 Explicit Device ID U16 rw 0 Identification of the drive
6th edition, 30.08.2021 7000.05051, 6th edition, 30.08.20217000.05051
48

7000.05051, 6th edition, 30.08.2021
© Dr. Fritz Faulhaber GmbH & Co. KG

DR. FRITZ FAULHABER
GMBH & CO. KG
Antriebssysteme

Daimlerstraße 23 / 25
71101 Schönaich • Germany
Tel. +49(0)7031/638-0
Fax +49(0)7031/638-100
info@faulhaber.de
www.faulhaber.com

https://www.faulhaber.com

	1 About this document
	1.1 Validity of this document
	1.2 Associated documents
	1.3 Using this document
	1.4 List of abbreviations
	1.5 Symbols and designations

	2 Overview
	2.1 Basic structure of an EtherCAT device
	2.2 FAULHABER Motion Manager
	2.3 Pre-conditions for communication (Physical Layer)
	2.4 ESI file
	2.5 Identification of a slave

	3 EtherCAT communication
	3.1 Introduction
	3.2 Data Link Layer
	3.2.1 EtherCAT frames and datagrams
	3.2.2 SyncManager management
	3.2.3 Addressing
	3.2.4 Interfaces to the Application Layer

	3.3 Application Layer
	3.4 PDO (Process Data Object)
	3.4.1 PDO configuration
	3.4.2 PDO mapping in the standard configuration

	3.5 SDO (Service Data Object)
	3.5.1 SDO error description

	3.6 Emergency object (error message)
	3.7 Synchronization
	3.7.1 Synchronization via distributed clocks (DC-Sync)
	3.7.2 Synchronization via a SyncManager event (SM-Sync)

	3.8 Layer management
	3.8.1 Controlling the EtherCAT state machine
	3.8.2 Slave Information Interface (SII)

	3.9 Entries in the object dictionary
	3.10 Error handling
	3.10.1 Device faults
	3.10.2 Communication error
	3.10.2.1 Checking EtherCAT frame entries for errors
	3.10.2.2 Error response
	3.10.2.3 Analysis of the network traffic
	3.10.2.4 EtherCAT AL status codes and troubleshooting

	3.11 Saving and restoring parameters
	3.11.1 Save parameters
	3.11.2 Restoring settings
	3.11.3 Changing the parameter set

	4 Trace recorder
	4.1 Trace settings
	4.2 Reading the trace buffer
	4.3 Typical execution of the trace function

	5 Parameter description
	5.1 Communication objects acc. to CiA 301
	5.2 Manufacturer-specific objects

