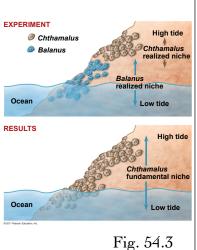


Chapter 54:Community Ecology

1

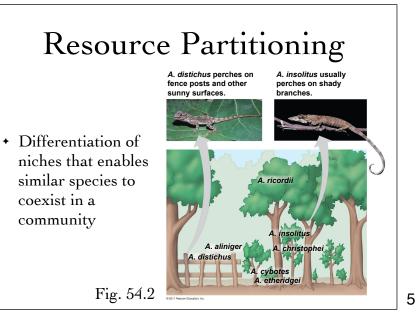
Community

- Community assemblage of populations of various species living close enough for potential interaction
- Interspecific Interactions interactions with other species in the community
 - competition
 - predation
 - herbivory
 - symbiosis
 - disease

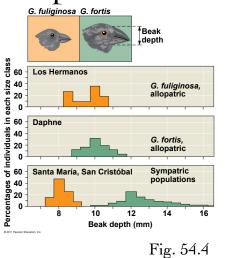

2

Competition

- Interspecific competition when species compete for a particular resource that is in short supply
- + competition is detrimental to both species
- (-/-) interaction
- + Can lead to competitive exclusion
- Competitive exclusion principle
 - Two species that are in direct competition for the same limiting resources can not coexist in the same place


Ecological Niches

- Sum total of a species' use of the biotic and abiotic
 resources in its environment
 - ecological role of the organism
- Redraft Competitive Exclusion Principle
 - Two species cannot coexist in a community if their niches are identical
- Fundamental niche vs. Realized niche


4

6

Character Displacement

- Understood by comparing closely related species that are sometimes allopatric and sometimes sympatric
- Character Displacement tendency for characteristics to be more divergent in sympatric populations than in allopatric populations

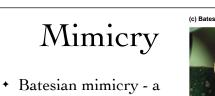
Predation

- one species (predator) kills and eats the other (prey)
- (+/-) interaction
- Many adaptations that allow predators to better catch prey (speed, agility, toxins, fangs, stingers)
- Prey have adaptations to avoid getting caught (hiding, fleeing, alarm calls)

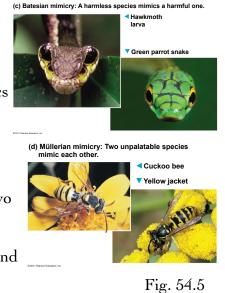
7

8

9


Morphological and Physiological Defense Adaptations

Canyon tree from


- Cryptic coloration camouflage
- Mechanical and chemical - quills, oder, toxins (either synthesized or accumulated)

 Aposematic coloration - bright warning coloration

- harmless species mimics an unpalatable or harmful model (ex. Hawkmoth larva and Green parrot snake)
- Müllerian mimicry two or more unpalatable species resemble each other (ex. Cukoo bee and Yellow jacket)

Herbivory

- herbivore eats parts of a plant or alga
- (+/-) interaction
- insects, snails, fish, mammals
- led to plants developing chemical (toxins) and mechanical (thorns) defense mechanisms

Fig. 54.6

10

Parasitism

- one organism (parasite) derives nourishment from another (host) which is harmed in the process
- (+/-) interaction
- endoparasites parasites that live in the body of the host (ex. tapeworm)
- ectoparasites parasites that feed on the external surface of the host (ex. lice, ticks)
- parasitoidism insects (often wasps) lay eggs on or in a living host
- Most parasite life cycles involve more than one host (ex. blood fluke)

11

Disease

- similar to parasites
- pathogens disease-causing agents
- (+/-) interaction
- + bacteria, viruses, protists, fungi, prions

Mutualism

- interspecific interaction that benefits both species
- (+/+) interaction
- nitrogen fixation
- cellulose digestion
- + fruit

Fig. 54.7 (b) Area cleared by ants at the base of an acacia tree

13

Commensalism

- benefits one of the species but neither harms nor helps the other
- (+/0) interaction
- rare interaction
- hitchhiking

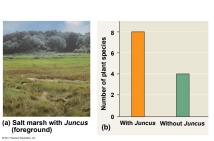
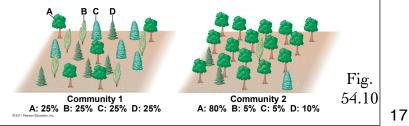


Fig. 54.8

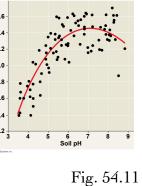
14

Facilitation

- Interaction in which one species has positive effects on another species without direct and intimate contact
- (+/+) or (0/+)
 interaction
- The black rush makes the soil more hospitable for other plant species


Coevolution

- reciprocal evolutionary adaptations of two interacting species
- + genetic change in one population is tied to genetic change in another population


16

Species Diversity

- Species diversity variety of different kinds of organisms that make up the community
- Two parts:
 - Species richness total number of different species in the + community
 - Relative abundance proportion each species represents of the ÷ total individuals in the community

Species Diversity + Two communities can have the same species richness but RESULTS different relative abundance 3.6 Diversity can be compared £ 3.4 diversity 3.0 0.2 using a diversity index + Shannon Diversity index (H) $H = -(p_A \ln p_A + p_B \ln p_B + p_C \ln p_C + ...)$ + 2.4 * where A, B, C ... are the 2.2 6 7 SoilpH 8 species, p is the relative abundance of each species, and ln is the natural logarithm

Diversity and Community Stability

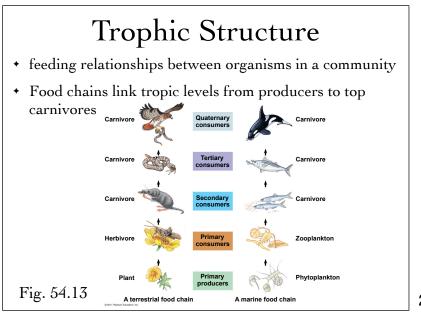
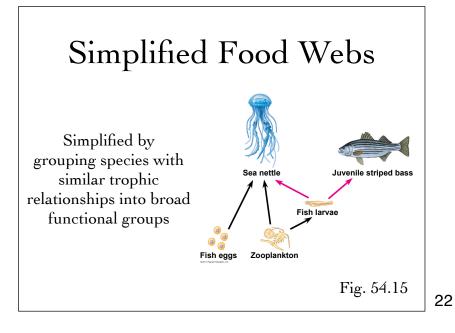
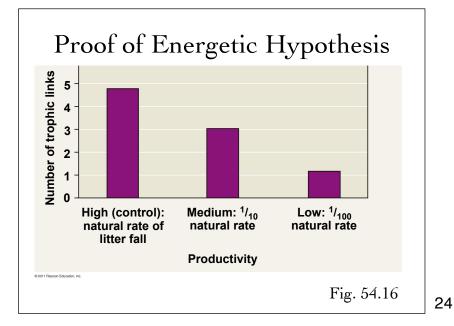

- Ecologists manipulate diversity in experimental communities to study the potential benefits of diversity
- Communities with higher diversity are
 - more productive and more stable in their productivity
 - better able to withstand and recover from environmental stresses

Fig. 54.12

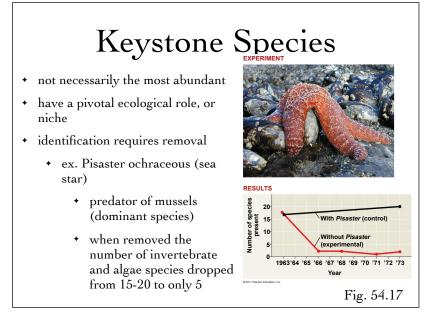

more resistant to invasive species

19


Humans Food Web Smaller toothed Baleen whales Sperm whales whale Elephant seals Crab-eater seals Diagrams the Leopard trophic relationships 8 of a community Fishes Birds Squids Species may play a role at more than Carnivorous plankton one trophic level Euphau-sids (krill) Cope-pods MARY Phyto-plankton Fig. 54.14

Limits on Food Chain Length

- Each food chain in a food web is usually only a few links long
- Energetic hypothesis food chain length is limited by inefficiency of energy transfer (only about 10% of energy is converted to organic matter at the next level)
- Dynamic stability hypothesis long food chains are less stable than short ones
 - Population changes at lover trophic levels are magnified at higher levels


23

Dominant Species

- species in a community that are most abundant or that have collectively the largest biomass
 - can exert powerful control over the occurrence and distribution of other species
- Invasive species species that are generally introduced by humans that take hold outside their native range
- + Ex. American chestnut

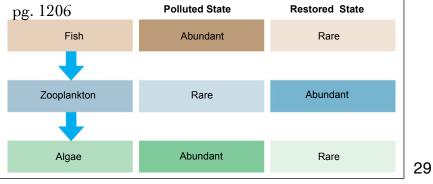
25

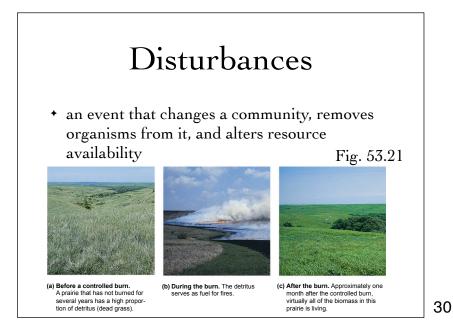
Foundation Species

- ecosystem "engineers"
- cause physical changes in the environment that affect the structure of the community
 - + ex. beavers
 - ex. black rush

Fig. 54.19

26


Controls


- Bottom-up model unidirectional influence from lower to higher tropic levels
 - dependent on presence or absence of abiotic nutrients
- Top-down model predation controls community organization
 - predators limit herbivores, which limits producers, which limit nutrient levels
- Intermediate model

28

Biomanipulation

 technique for restoring eutrophic lakes that reduces populations of algae by manipulating the higher-level consumers in the community rather than by changing nutrient levels or adding chemical treatments

Intermediate Disturbance Hypothesis

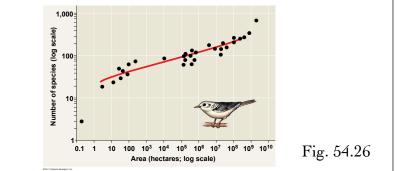
 suggests that moderate levels of disturbance can create conditions that foster greater species diversity than high levels of disturbance

Fig. 54.21

31

Ecological Succession

- transition in the species composition of a biological community often following an ecological disturbance
- Primary succession when the process begins in a virtually lifeless area
- Secondary succession existing community has been cleared by some disturbance that leaves the soil intact


32

Equatorial-Polar Gradients

- tropical habitats support more species than temperate and polar regions
 - + 6.6 ha in Malaysia contains 711 tree species
 - + 2 ha in Michigan contains 10-15 species
 - + only 7 tree species in all of Alaska
- + Two factors correlated with biodiversity are solar energy and water availability
 - can be measured together by examining evapotranspiration
 - evaporation of water from soil plus transpiration from plants

Area Effects

 Species-area curve - the larger the geographic area of a community the greater the number of species

34

Pathogens

- + Have dramatic effects on communities
- Zoonotic pathogens transferred from other animals to humans
 - Can be a direct transfer through an intermediate species (called a vector)

35