Commutativity of the Valdivia-Vogt structure table

Christian Bargetz

Department of Mathematics
University of Innsbruck

Workshop on Functional Analysis Valencia 2013

Preliminaries: Topological Tensor Products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F$... finest locally convex topology such that

is continuous.
$E \otimes, F \ldots$ finest locally convex topology such that

is partially continuous.
$E \widehat{\otimes}_{\pi} F$ and $E \widehat{\otimes}, F$ completion of $E \otimes_{\pi} F$ and $E \otimes_{l} F$, respectively.

Preliminaries: Topological Tensor Products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\iota} F \ldots$ finest locally convex topology such that

is partially continuous.
$E \widehat{\otimes}_{\pi} F$ and $E \widehat{Q}_{,} F$ completion of $E \otimes_{\pi} F$ and $E \otimes_{i} F$, respectively.

Preliminaries: Topological Tensor Products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
$E \widehat{\otimes}_{\pi} F$ and $E \widehat{\otimes}_{l} F$ completion of $E \otimes_{\pi} F$ and $E \otimes_{l} F$, respectively.

Preliminaries: Topological Tensor Products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
$E \widehat{\otimes}_{\pi} F$ and $E \widehat{\otimes}_{\iota} F$ completion of $E \otimes_{\pi} F$ and $E \otimes_{\iota} F$, respectively.

The Valdivia-Vogt structure table

$$
\mathcal{D} \subset \mathcal{S} \subset \mathcal{D}_{L^{p}} \subset \dot{\mathcal{B}} \subset \mathcal{D}_{L^{\infty}} \subset \mathcal{O}_{C} \subset \mathcal{O}_{M} \subset \mathcal{E}
$$

The Valdivia-Vogt structure table

$\mathcal{D} \subset \mathcal{S} \subset \mathcal{D}_{L^{p}} \subset \dot{\mathcal{B}} \subset \mathcal{D}_{L^{\infty}} \subset \mathcal{O}_{C} \subset \mathcal{O}_{M} \subset \mathcal{E}$

$$
\begin{aligned}
\mathcal{D} & =\mathcal{D}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) ; \operatorname{supp} f \text { compact }\right\} \\
s^{(\mathbb{N})} & =\left\{(x(j))_{j \in \mathbb{N}} \in s^{\mathbb{N}} ; \exists N \forall k \geq N: x(k)=0\right\} \\
& \cong \lim _{k \rightarrow}(s)^{k}=\lim _{k \rightarrow}\left(\mathbb{C}^{k} \widehat{\otimes} s\right)=\mathbb{C}^{(\mathbb{N})} \widehat{\otimes}_{l} s
\end{aligned}
$$

Representation: M. Valdivia (1978), D. Vogt (1983), B (2012)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& \mathcal{D} \subset \mathcal{S} \subset \mathcal{D}_{L^{p}} \subset \dot{\mathcal{B}} \subset \mathcal{D}_{L^{\infty}} \subset \mathcal{O}_{C} \subset \mathcal{O}_{M} \subset \mathcal{E} \\
& \text { IR } \\
& \mathbb{C}^{(\mathbb{N})} \widehat{\otimes}_{,} s \subset s \hat{\otimes}^{\mathbb{R}} s \\
& \mathcal{S}=\mathcal{S}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) ; \forall k \in \mathbb{N}_{0} \forall \alpha \in \mathbb{N}_{0}^{n}:\left(1+|x|^{2}\right)^{k / 2} \partial^{\alpha} f(x) \in \mathcal{C}_{0}\right\} \\
& s \widehat{\otimes} s=\left\{(x(i, j))_{(i, j) \in \mathbb{N}^{2}} ; \forall k \in \mathbb{N}_{0} \forall I \in \mathbb{N}_{0}: \sup _{i, j \in \mathbb{N}}\left|i^{k} j^{\prime} x(i, j)\right|<\infty\right\}
\end{aligned}
$$

Representation: A. Grothendieck (1955), L. Schwartz (1957), M. Valdivia (1982) and R. Meise and D. Vogt (1992)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& \mathcal{D} \quad \subset \underset{\|}{\mathcal{L}} \quad \subset \underset{\mathbb{D}^{p}}{\| R} \subset \dot{\mathcal{B}} \subset \mathcal{D}_{L^{\infty}} \subset \mathcal{O}_{C} \subset \mathcal{O}_{M} \subset \mathcal{E} \\
& \mathbb{C}^{(\mathbb{N})} \widehat{\otimes}_{\iota} s \subset s \widehat{\otimes} s \subset \ell^{p} \widehat{\otimes} s \\
& \mathcal{D}_{L^{p}}=\mathcal{D}_{L^{p}}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) ; \forall \alpha \in \mathbb{N}_{0}^{n}: \partial^{\alpha} f \in L^{p}\left(\mathbb{R}^{n}\right)\right\} \\
& \ell^{p} \widehat{\otimes} s=\left\{(x(i, j))_{(i, j) \in \mathbb{N}^{2}} ; \forall k \in \mathbb{N}_{0}: \sup _{j \in \mathbb{N}}\left(\sum_{i \in \mathbb{N}} j^{p k}|x(i, j)|^{p}\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

Representation: M. Valdivia (1981), D. Vogt (1983),
N. Ortner and P. Wagner (2013)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& c_{0} \widehat{\otimes} s=\left\{(x(i, j))_{(i, j) \in \mathbb{N}} ; \forall k \in \mathbb{N}: \lim _{i \rightarrow \infty} \sup _{j \in \mathbb{N}}\left|j^{k} x(i, j)\right|=0\right\}
\end{aligned}
$$

Representation: M. Valdivia (1982), D. Vogt (1983)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& \ell^{\infty} \widehat{\otimes} s=\left\{(x(i, j))_{(i, j) \in \mathbb{N}^{2}} ; \forall k \in \mathbb{N}_{0}: \sup _{i, j \in \mathbb{N}}\left\{\left|j^{k} x(i, j)\right|\right\}<\infty\right\}
\end{aligned}
$$

Representation: M. Valdivia (1981), D. Vogt (1983)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& s^{\prime} \widehat{\otimes}_{\Delta} s=\left\{(x(i, j))_{i, j \in \mathbb{N}} ; \exists k \in \mathbb{N}_{0} \forall I \in \mathbb{N}_{0}: \sup _{i, j \in \mathbb{N}}\left|i^{-k^{\prime}}\right| x(i, j) \mid<\infty\right\} \text {. }
\end{aligned}
$$

Representation: B (2012)

The Valdivia-Vogt structure table

$$
\begin{aligned}
& s^{\prime} \widehat{\otimes}_{\pi} s=\left\{(x(i, j))_{(i, j) \in \mathbb{N}^{2}} ; \forall I \in \mathbb{N}_{0} \exists k \in \mathbb{N}_{0}: \sup _{i, j \in \mathbb{N}}\left|i^{-k} j^{\prime} x(i, j)\right|<\infty\right\}
\end{aligned}
$$

Representation: M. Valdivia (1981)

The Valdivia-Vogt structure table

$$
\begin{aligned}
\mathcal{E} & =\mathcal{E}\left(\mathbb{R}^{n}\right)=\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \\
\mathbb{C}^{\mathbb{N}} \widehat{\otimes} s & =\left\{(x(i, j))_{(i, j) \in \mathbb{N}^{2}} ; \forall k \in \mathbb{N} \forall i \in \mathbb{N}: \sup _{j \in \mathbb{N}}\left|j^{k} x(i, j)\right|<\infty\right\}
\end{aligned}
$$

Representation: A. Grothendieck (1955), L. Schwartz (1957), M. Valdivia (1982), D. Vogt (1983)

The Valdivia-Vogt structure table

Question: Can the isomorphisms in this table be chosen in a way such that it becomes a commutative diagram?

The Valdivia-Vogt structure table

Question: Can the isomorphisms in this table be chosen in a way such that it becomes a commutative diagram?

Problem: The above isomorphisms (besides $\mathcal{D}_{L^{p}} \cong \ell^{p} \widehat{\otimes} s$ for $1<p<\infty$) are not known explicitly.

The Valdivia-Vogt structure table

Theorem

There is an isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ such that the isomorphisms above can be chosen as the restrictions of Φ, i.e., the Valdivia-Vogt structure table can be interpreted as a commutative diagram.

The main idea of the proof

Observations:

- Construction of an explicit isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ seems to be very hard.
e It holds $\mathbb{C} \mathbb{N} \widehat{\theta}_{s}=s^{N}$. Idea:
- Find a space of functions $\mathcal{E}_{0} \cong s$ and decompose functions in \mathcal{E} (uniquely) into sequences of functions in \mathcal{E}_{0}.

The main idea of the proof

Observations:

- Construction of an explicit isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ seems to be very hard.
- It holds $\mathbb{C}^{\mathbb{N}} \widehat{\otimes} s=s^{\mathbb{N}}$.
- Find a space of functions $\mathcal{E}_{0} \cong s$ and decompose functions in \mathcal{E} (uniquely) into sequences of functions in \mathcal{E}_{0}

The main idea of the proof

Observations:

- Construction of an explicit isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ seems to be very hard.
- It holds $\mathbb{C}^{\mathbb{N}} \widehat{\otimes} s=s^{\mathbb{N}}$.
- Find a space of functions $\mathcal{E}_{0} \cong s$ and decompose functions in \mathcal{E} (uniquely) into sequences of functions in \mathcal{E}_{0}.

The main idea of the proof

Observations:

- Construction of an explicit isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ seems to be very hard.
- It holds $\mathbb{C}^{\mathbb{N}} \widehat{\otimes} s=s^{\mathbb{N}}$.

Idea:

- Find a space of functions $\mathcal{E}_{0} \cong s$ and decompose functions in \mathcal{E} (uniquely) into sequences of functions in \mathcal{E}_{0}.

The main idea of the proof

Observations:

- Construction of an explicit isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s$ seems to be very hard.
- It holds $\mathbb{C}^{\mathbb{N}} \widehat{\otimes} s=s^{\mathbb{N}}$.

Idea:

- Find a space of functions $\mathcal{E}_{0} \cong s$ and decompose functions in \mathcal{E} (uniquely) into sequences of functions in \mathcal{E}_{0}.

Whitney functions and extension operators

Let $A \subset \mathbb{R}^{n}$, then we denote by $\mathcal{E}(A)$ the space of Whitney jets on A, which are by Whitney's extension theorem the jets arising from restrictions of all derivatives of smooth functions to A.

Whitney functions and extension operators

Let $A \subset \mathbb{R}^{n}$, then we denote by $\mathcal{E}(A)$ the space of Whitney jets on A, which are by Whitney's extension theorem the jets arising from restrictions of all derivatives of smooth functions to A.
If A is a convex compact set (or more general admits a fundamental system of compact sets consisting of convex sets), then $\mathcal{E}(A)$ carries the topology of uniform convergence of all partial derivatives (on compact subsets).

Whitney functions and extension operators

Let $A \subset \mathbb{R}^{n}$, then we denote by $\mathcal{E}(A)$ the space of Whitney jets on A, which are by Whitney's extension theorem the jets arising from restrictions of all derivatives of smooth functions to A.
If A is a convex compact set (or more general admits a fundamental system of compact sets consisting of convex sets), then $\mathcal{E}(A)$ carries the topology of uniform convergence of all partial derivatives (on compact subsets). We will only need the cases where $A=[0, \infty)^{n}$ or $A=[0,1]^{n}$.

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=1$ (for a half-space R. T. Seeley 1964):

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=1$ (for a half-space R. T. Seeley 1964):
Take sequences $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ such that $b_{k} \leq-1, b_{k} \rightarrow-\infty$ and for all $I \in \mathbb{N}_{0}$ it holds $\sum_{k=0}^{\infty} a_{k}\left(b_{k}\right)^{\prime}=1$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{\prime}<\infty$.
$\varphi(x)=1$ for $0 \leq x \leq \frac{1}{4}$

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=1$ (for a half-space R. T. Seeley 1964):
Take sequences $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ such that $b_{k} \leq-1, b_{k} \rightarrow-\infty$ and for all $I \in \mathbb{N}_{0}$ it holds $\sum_{k=0}^{\infty} a_{k}\left(b_{k}\right)^{\prime}=1$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{\prime}<\infty$. Moreover take $\varphi \in \mathcal{E}(\mathbb{R})$ with $0 \leq \varphi(x) \leq 1, \varphi(x)=0$ for $x>\frac{1}{2}$ and $\varphi(x)=1$ for $0 \leq x \leq \frac{1}{4}$.

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=1$ (for a half-space R. T. Seeley 1964):
Take sequences $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ such that $b_{k} \leq-1, b_{k} \rightarrow-\infty$ and for all $I \in \mathbb{N}_{0}$ it holds $\sum_{k=0}^{\infty} a_{k}\left(b_{k}\right)^{\prime}=1$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{\prime}<\infty$. Moreover take $\varphi \in \mathcal{E}(\mathbb{R})$ with $0 \leq \varphi(x) \leq 1, \varphi(x)=0$ for $x>\frac{1}{2}$ and $\varphi(x)=1$ for $0 \leq x \leq \frac{1}{4}$.
For $f \in \mathcal{E}([0, \infty))$, we define the operator E by

$$
(E f)(x)= \begin{cases}f(x) & x \geq 0 \\ \sum_{k=0}^{\infty} a_{k} \varphi\left(b_{k} x\right) f\left(b_{k} x\right) & x<0\end{cases}
$$

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=2$:
Take sequences $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ such that $b_{k} \leq-1, b_{k} \rightarrow-\infty$ and for all $I \in \mathbb{N}_{0}$ it holds $\sum_{k=0}^{\infty} a_{k}\left(b_{k}\right)^{\prime}=1$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{\prime}<\infty$. Moreover take $\varphi \in \mathcal{E}(\mathbb{R})$ with $0 \leq \varphi(x) \leq 1, \varphi(x)=0$ for $x>\frac{1}{2}$ and $\varphi(x)=1$ for $0 \leq x \leq \frac{1}{4}$.
For $f \in \mathcal{E}\left([0, \infty)^{2}\right)$, we define the operator E by

$$
(E f)(x, y)=\left\{\begin{array}{ll}
f(x, y) & \text { for } x, y \geq 0 \\
\sum_{k=0}^{\infty} a_{k} \varphi\left(b_{k} x\right) f\left(b_{k} x, y\right) & \text { for } x<0, y \geq 0 \\
\sum_{k=0}^{\infty} a_{k} \varphi\left(b_{k} y\right) f\left(x, b_{k} y\right) & \text { for } x \geq 0, y<0 \\
\sum_{k, l=0}^{\infty} a_{k} a_{l} \varphi\left(b_{k} x\right) \varphi\left(b_{l y} y\right) f\left(b_{k} x, b_{l y}\right) & \text { for } x<0, y<0
\end{array} .\right.
$$

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=2$:
Take sequences $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ such that $b_{k} \leq-1, b_{k} \rightarrow-\infty$ and for all $I \in \mathbb{N}_{0}$ it holds $\sum_{k=0}^{\infty} a_{k}\left(b_{k}\right)^{\prime}=1$ and $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{\prime}<\infty$. Moreover take $\varphi \in \mathcal{E}(\mathbb{R})$ with $0 \leq \varphi(x) \leq 1, \varphi(x)=0$ for $x>\frac{1}{2}$ and $\varphi(x)=1$ for $0 \leq x \leq \frac{1}{4}$.
For $f \in \mathcal{E}\left([0, \infty)^{2}\right)$, we define the operator E by

$$
(E f)(x, y)=\left\{\begin{array}{ll}
f(x, y) & \text { for } x, y \geq 0 \\
\sum_{k=0}^{\infty} a_{k} \varphi\left(b_{k} x\right) f\left(b_{k} x, y\right) & \text { for } x<0, y \geq 0 \\
\sum_{k=0}^{\infty} a_{k} \varphi\left(b_{k} y\right) f\left(x, b_{k} y\right) & \text { for } x \geq 0, y<0 \\
\sum_{k, l=0}^{\infty} a_{k} a_{l} \varphi\left(b_{k} x\right) \varphi\left(b_{l} y\right) f\left(b_{k} x, b_{l} y\right) & \text { for } x<0, y<0
\end{array} .\right.
$$

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=2$:

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=2$:

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n=2$:

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

The case $n>2$:
The operator is defined inductively by iterated extension (as indicated in the case $n=2$).

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

We set

$$
\mathbb{H}_{i,+}:=\left\{x \in \mathbb{R}^{n}, x_{i} \geq 0\right\}
$$

for $i=1, \ldots, n$ and denote by

$$
E_{i}: \mathcal{E}\left(\mathbb{H}_{i,+}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)
$$

the modified version of Seeley's extension operator.
Additionally, we define the operator

An extension operator $E: \mathcal{E}\left([0, \infty)^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$

We set

$$
\mathbb{H}_{i,+}:=\left\{x \in \mathbb{R}^{n}, x_{i} \geq 0\right\}
$$

for $i=1, \ldots, n$ and denote by

$$
E_{i}: \mathcal{E}\left(\mathbb{H}_{i,+}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)
$$

the modified version of Seeley's extension operator.
Additionally, we define the operator

$$
F_{i}: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right), f \mapsto E_{i}\left[\left.f\right|_{\mathbb{H}_{i,+}}\right]
$$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

We define $B_{1}=[0,1]^{n} \backslash[0,1)^{n}$ and

$$
\mathcal{E}_{0}=\left\{f \in \mathcal{E}\left([0,1]^{n}\right) ; \forall \alpha \in \mathbb{N}_{0}^{n}:\left.\left(\partial^{\alpha} f\right)\right|_{B_{1}}=0\right\} .
$$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

We define $B_{1}=[0,1]^{n} \backslash[0,1)^{n}$ and

$$
\mathcal{E}_{0}=\left\{f \in \mathcal{E}\left([0,1]^{n}\right) ; \forall \alpha \in \mathbb{N}_{0}^{n}:\left.\left(\partial^{\alpha} f\right)\right|_{B_{1}}=0\right\} .
$$

An example for $n=2$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

We define $B_{1}=[0,1]^{n} \backslash[0,1)^{n}$ and

$$
\mathcal{E}_{0}=\left\{f \in \mathcal{E}\left([0,1]^{n}\right) ; \forall \alpha \in \mathbb{N}_{0}^{n}:\left.\left(\partial^{\alpha} f\right)\right|_{B_{1}}=0\right\} .
$$

Proposition

The space \mathcal{E}_{0} is a nuclear Fréchet space, has the properties (Ω) and (DN) and is isomorphic to the space s of rapidly decreasing sequences, i.e., $\mathcal{E}_{0} \cong s$.

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$, we define

$$
f_{j}:=\left.\left(\tau_{-j} f\right)_{(n)}\right|_{[0,1]^{n}} \in \mathcal{E}_{0}
$$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]$				
for $1 \leq i \leq n-1$. Let $j=$	(
		0.5	1	

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\square$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\square \quad 3$ §

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$, we define

$$
f_{j}:=\left.\left(\tau_{-j} f\right)_{(n)}\right|_{[0,1]^{n}} \in \mathcal{E}_{0}
$$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$, we define

$$
f_{j}:=\left.\left(\tau_{-j} f\right)_{(n)}\right|_{[0,1]^{n}} \in \mathcal{E}_{0} .
$$

Finally we have

$$
\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}, f \mapsto\left(f_{j}\right)_{j \in \mathbb{Z}^{n}}
$$

The isomorphism $\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}$

Given $f \in \mathcal{E}\left(\mathbb{R}^{n}\right)$, we set $f_{0}=f$ and

$$
f_{(i+1)}=f_{(i)}-\tau_{e_{i+1}} F_{i+1}\left[\tau_{-e_{i+1}} f_{(i)}\right]
$$

for $1 \leq i \leq n-1$. Let $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$, we define

$$
f_{j}:=\left.\left(\tau_{-j} f\right)_{(n)}\right|_{[0,1]^{n}} \in \mathcal{E}_{0}
$$

Finally we have

$$
\Phi: \mathcal{E}\left(\mathbb{R}^{n}\right) \rightarrow\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}}, f \mapsto\left(f_{j}\right)_{j \in \mathbb{Z}^{n}}
$$

and

$$
\Phi^{-1}:\left(\mathcal{E}_{0}\right)^{\mathbb{Z}^{n}} \rightarrow \mathcal{E}\left(\mathbb{R}^{n}\right),\left(f_{j}\right)_{j \in \mathbb{Z}^{n}} \mapsto \sum_{j \in \mathbb{Z}^{n}} \tau_{j} E \tilde{f}_{j}
$$

A corollary

The dual Validivia-Vogt structure table

$$
\begin{gathered}
\mathcal{E}^{\prime} \subset \mathcal{O}_{M}^{\prime} \subset \mathcal{O}_{C}^{\prime} \subset \mathcal{D}_{L^{1}}^{\prime} \subset \mathcal{D}_{L^{p}}^{\prime} \subset \mathcal{D}_{L^{\infty}}^{\prime} \subset \mathcal{S}^{\prime} \subset \mathcal{D}^{\prime} \\
\|_{\| R}^{\| R} \\
\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime} \subset s \widehat{\otimes}_{l} s^{\prime} \subset s \widehat{\otimes}_{\pi} s^{\prime} \subset \ell^{1} \widehat{\otimes} s^{\prime} \subset \ell^{p} \widehat{\otimes} s^{\prime} \subset \ell^{\infty} \widehat{\otimes} s^{\prime} \subset s^{\prime} \widehat{\otimes} s^{\prime} \subset \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s^{\prime}
\end{gathered}
$$

> Corollary
> There is an isomorphism $\Psi: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C} \mathbb{N} \widehat{\otimes} s^{\prime}$ such that the isomorphisms above can be chosen as the restrictions of Ψ, i.e., the dual Valdivia-Vogt structure table can be interpreted as a commutative diagram.

A corollary

The dual Validivia-Vogt structure table

Corollary

There is an isomorphism $\Psi: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{\mathbb{N}} \widehat{\otimes} s^{\prime}$ such that the isomorphisms above can be chosen as the restrictions of Ψ, i.e., the dual Valdivia-Vogt structure table can be interpreted as a commutative diagram.

Application 1: Existence of a common Schauder basis

The sequence $\left(e_{i}\right) \otimes\left(e_{j}\right)$ (with proper ordering) is a common Schauder basis for most of the sequence-spaces in the structure table.

Application 1: Existence of a common Schauder basis

The sequence $\left(e_{i}\right) \otimes\left(e_{j}\right)$ (with proper ordering) is a common Schauder basis for most of the sequence-spaces in the structure table, i.e. for

Application 1: Existence of a common Schauder basis

The sequence $\left(e_{i}\right) \otimes\left(e_{j}\right)$ (with proper ordering) is a common Schauder basis for most of the sequence-spaces in the structure table.

We get: $\Phi^{-1}\left(e_{i} \otimes e_{j}\right) \in \mathcal{D}$ for all i, j and $\Phi^{-1}\left(\left(e_{i}\right) \otimes\left(e_{j}\right)\right)$ is a common Schauder basis for the corresponding spaces of smooth functions.

Application 1: Existence of a common Schauder basis

The sequence $\left(e_{i}\right) \otimes\left(e_{j}\right)$ (with proper ordering) is a common Schauder basis for most of the sequence-spaces in the structure table.

We get: $\Phi^{-1}\left(e_{i} \otimes e_{j}\right) \in \mathcal{D}$ for all i, j and $\Phi^{-1}\left(\left(e_{i}\right) \otimes\left(e_{j}\right)\right)$ is a common Schauder basis for the corresponding spaces of smooth functions.

Application 1: Existence of a common Schauder basis

The sequence $\left(e_{i}\right) \otimes\left(e_{j}\right)$ (with proper ordering) is a common Schauder basis for most of the sequence-spaces in the structure table.

We get: $\Phi^{-1}\left(e_{i} \otimes e_{j}\right) \in \mathcal{D}$ for all i, j and $\Phi^{-1}\left(\left(e_{i}\right) \otimes\left(e_{j}\right)\right)$ is a common Schauder basis for the corresponding spaces of smooth functions.

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

L. Schwartz defines the space $\dot{\mathcal{B}^{\prime}}$ of "distributions vanishing at infinity" using the following analogy to the space $\dot{\mathcal{B}}$ of smooth functions vanishing at infinity:
\mathcal{B} is the closure of \mathcal{D} in $\mathcal{D}_{L^{\infty}}$
Translate this situation the setting of distributions:
Define $\dot{\mathcal{B}}^{\prime}$ as the closure of \mathcal{E}^{\prime} in $\mathcal{D}_{L^{\infty}}^{\prime}$
Note: $\dot{B}^{\prime} \neq(\dot{B})^{\prime}$

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

L. Schwartz defines the space $\dot{\mathcal{B}}^{\prime}$ of "distributions vanishing at infinity" using the following analogy to the space $\dot{\mathcal{B}}$ of smooth functions vanishing at infinity:
$\dot{\mathcal{B}}$ is the closure of \mathcal{D} in $\mathcal{D}_{L^{\infty}}$
Translate this situation the setting of distributions:
Define $\dot{\mathcal{B}}^{\prime}$ as the closure of \mathcal{E}^{\prime} in $\mathcal{D}_{L^{\infty}}^{\prime}$.
Note: $\dot{\mathcal{B}}^{\prime} \neq(\dot{\mathcal{B}})^{\prime}$

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

L. Schwartz defines the space $\dot{\mathcal{B}}^{\prime}$ of "distributions vanishing at infinity" using the following analogy to the space $\dot{\mathcal{B}}$ of smooth functions vanishing at infinity:
$\dot{\mathcal{B}}$ is the closure of \mathcal{D} in $\mathcal{D}_{L^{\infty}}$
Translate this situation the setting of distributions:
Define $\dot{\mathcal{B}}^{\prime}$ as the closure of \mathcal{E}^{\prime} in $\mathcal{D}_{L^{\infty}}^{\prime}$.

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

L. Schwartz defines the space $\dot{\mathcal{B}}^{\prime}$ of "distributions vanishing at infinity" using the following analogy to the space $\dot{\mathcal{B}}$ of smooth functions vanishing at infinity:
$\dot{\mathcal{B}}$ is the closure of \mathcal{D} in $\mathcal{D}_{L^{\infty}}$
Translate this situation the setting of distributions:
Define $\dot{\mathcal{B}}^{\prime}$ as the closure of \mathcal{E}^{\prime} in $\mathcal{D}_{L^{\infty}}^{\prime}$.
Note: $\dot{\mathcal{B}}^{\prime} \neq(\dot{\mathcal{B}})^{\prime}$.

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

We can find a sequence-space representation in the following way: The isomorphism

$$
\left.\Psi\right|_{\mathcal{D}_{L \infty}^{\prime}}: \mathcal{D}_{L^{\infty}}^{\prime} \rightarrow \ell^{\infty} \widehat{\otimes} s^{\prime}
$$

maps \mathcal{E}^{\prime} into $\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime}$.
Therefore, we have the sequence space representation

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

We can find a sequence-space representation in the following way: The isomorphism

$$
\left.\Psi\right|_{\mathcal{D}_{L \infty}^{\prime}}: \mathcal{D}_{L^{\infty}}^{\prime} \rightarrow \ell^{\infty} \widehat{\otimes} s^{\prime}
$$

maps \mathcal{E}^{\prime} into $\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime}$.
The closure of $\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime}$ in $\ell^{\infty} \widehat{\otimes} s^{\prime}$ is $c_{0} \widehat{\otimes} s^{\prime}$.
Therefore, we have the sequence space representation

Application 2: A sequence-space representation of

 L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$We can find a sequence-space representation in the following way: The isomorphism

$$
\left.\Psi\right|_{\mathcal{D}_{L \infty}^{\prime}}: \mathcal{D}_{L^{\infty}}^{\prime} \rightarrow \ell^{\infty} \widehat{\otimes} s^{\prime}
$$

maps \mathcal{E}^{\prime} into $\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime}$.
The closure of $\mathbb{C}^{(\mathbb{N})} \widehat{\otimes} s^{\prime}$ in $\ell^{\infty} \widehat{\otimes} s^{\prime}$ is $c_{0} \widehat{\otimes} s^{\prime}$.
Therefore, we have the sequence space representation

$$
\dot{\mathcal{B}}^{\prime} \cong c_{0} \widehat{\otimes} s^{\prime}
$$

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

We can extend the dual Valdivia-Vogt structure table

Application 2: A sequence-space representation of L. Schwartz' space $\dot{\mathcal{B}}^{\prime}$

We can extend the dual Valdivia-Vogt structure table to

\mathcal{E}^{\prime} \|12	\subset	\subset	$\mathcal{D}_{L^{\prime}}^{\prime}$			\mathcal{D}_{L}^{\prime} $\\| R$		$\dot{\mathcal{B}}^{\prime \prime}$ 112	\subset	$\mathcal{D}_{\text {L\| }}^{\prime}$	${ }_{1 / 2}^{\prime \prime}$							\mathcal{D}^{\prime} 112
$\left.{ }^{\mathbb{N}}\right) \widehat{\otimes} s^{\prime}$		\subset	$\ell^{1} \widehat{\otimes}$						\subset	$\ell^{\infty} \widehat{\otimes}$	Q	\subset						,

References I

圊 Christian Bargetz.
Commutativity of the valdivia-vogt table of representations of function spaces.
Preprint. To appear in "Mathematische Nachrichten".
围 Norbert Ortner and Peter Wagner.
Explicit representations of L. Schwartz' spaces $\mathcal{D}_{L^{p}}$ and $\mathcal{D}_{L^{p}}^{\prime}$ by the sequence spaces $s \hat{\otimes} I^{p}$ and $s^{\prime} \hat{\otimes} I^{P}$, respectively, for $1<p<\infty$.
J. Math. Anal. Appl., 404:1-1, 2013.

R Manuel Valdivia.
On the space $\mathcal{D}_{L^{p}}$.
In Mathematical analysis and applications, Part B, volume 7 of Adv. in Math. Suppl. Stud., pages 759-767. ed. L. Nachbin, Academic Press, New York, 1981.

References II

雷 Manuel Valdivia.
A representation of the space \mathcal{O}_{M}.
Math. Z., 177(4):463-478, 1981.
目 Manuel Valdivia.
Topics in locally convex spaces, volume 67 of North-Holland Mathematics Studies.
North-Holland Publishing Co., Amsterdam, 1982.
Notas de Matemática [Mathematical Notes], 85.
Dietmar Vogt.
Sequence space representations of spaces of test functions and distributions.
In Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979), volume 83 of Lecture Notes in Pure and Appl. Math., pages 405-443. Dekker, New York, 1983.

