
Vivek Sarkar

Department of Computer Science
Rice University

vsarkar@rice.edu

COMP 422, Lecture 4:
Decomposition Techniques for

Parallel Algorithms
(Sections 3.1 & 3.2 of textbook)

COMP 422 Lecture 4 17 January 2008

2 COMP 422, Spring 2008 (V.Sarkar)

Recap of Lecture 3

• Interconnection Networks
—Static (direct) vs. Dynamic (indirect) networks
—Metrics: diameter, bisection width, arc connectivity, cost
—Dynamic networks: Crossbar, Omega, (Fat) Tree
—Static networks: Mesh, Torus, Hypercube

• Cache Coherence
—Invalidate vs. Update protocols
—Bus Snooping vs. Directory-based
—False sharing

• Communication Costs
—Store-and-forward vs. Cut-through

3 COMP 422, Spring 2008 (V.Sarkar)

Lecture 3 Review Question

• Consider the following parallel computation
— CPU 0: Update even-numbered rows

for (j = 0 ; j < N ; j += 2)
for (k = 0 ; k < N ; k++)

A[j,k] = f(j,k);
— CPU 1: Update odd-numbered rows

for (j = 1 ; j < N ; j += 2)
for (k = 0 ; k < N ; k++)

A[j,k] = g(j,k);

• Assume that a cache line size of 32B, an invalidate protocol,
an element size of 8B for A, and that A’s first element is
aligned on a cache line boundary. What is the maximum
number of invalidate messages that will be sent between CPU
0 and 1 as a function of N?

4 COMP 422, Spring 2008 (V.Sarkar)

Acknowledgments for today’s lecture

• Cilk lecture by Charles Leiserson and Bradley Kuszmaul
(Lecture 1, Scheduling Theory)
— http://supertech.csail.mit.edu/cilk/lecture-1.pdf

• Slides accompanying course textbook
—http://www-users.cs.umn.edu/~karypis/parbook/

5 COMP 422, Spring 2008 (V.Sarkar)

Outline of Today’s Lecture

• Tasks, Dependence Graphs, Scheduling Theory

• Data and Computation Decompositions

6 COMP 422, Spring 2008 (V.Sarkar)

Tasks and Dependency Graphs

• The first step in developing a parallel algorithm is to
decompose the problem into tasks that are candidates for
parallel execution

• Task = indivisible sequential unit of computation

• A decomposition can be illustrated in the form of a directed
graph with nodes corresponding to tasks and edges
indicating that the result of one task is required for
processing the next. Such a graph is called a task
dependency graph.

7 COMP 422, Spring 2008 (V.Sarkar)

Example: Database Query Processing
Consider the execution of the query:
MODEL = ``CIVIC'' AND YEAR = 2001 AND

(COLOR = ``GREEN'' OR COLOR = ``WHITE)

on the following database:

8 COMP 422, Spring 2008 (V.Sarkar)

Example: Database Query Processing
The execution of the query can be divided into subtasks in various ways.
Each task can be thought of as generating an intermediate table of entries
that satisfy a particular clause.

9 COMP 422, Spring 2008 (V.Sarkar)

An Alternate Task Decomposition and
Dependency Graph

Note that the same problem can be decomposed into
subtasks in other ways as well.

10 COMP 422, Spring 2008 (V.Sarkar)

Critical Path Length

• A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the other.

• The longest such path determines the shortest time in which
the program can be executed in parallel.

• The length of the longest path in a task dependency graph is
called the critical path length.

• The ratio of the total amount of work to the critical path length
is the average degree of concurrency.

11 COMP 422, Spring 2008 (V.Sarkar)

Examples of Critical Path Length

Consider the task dependency graphs of the two
database query decompositions:

Total work = 63
Crit. path length = 27

Avg. concurrency ~ 2.3

Total work = 64
Crit. path length = 34

Avg. concurrency ~ 1.9

12 COMP 422, Spring 2008 (V.Sarkar)

Algorithmic Complexity Measures
(Ignoring Communication Overhead)

13 COMP 422, Spring 2008 (V.Sarkar)

Upper Bounds on TP

* Greedy scheduler ==> no unenforced idleness

*

14 COMP 422, Spring 2008 (V.Sarkar)

Performance Bound for Greedy Algorithm

NOTE: performance bound approaches 1 (optimal) when one of the max terms dominates the other

15 COMP 422, Spring 2008 (V.Sarkar)

Case Study: Cilk Chess Programs

● Socrates placed 3rd in the 1994 International Computer Chess
Championship running on NCSA’s 512-node Connection Machine
CM5.

● Socrates 2.0 took 2nd place in the 1995 World Computer Chess
Championship running on Sandia National Labs’ 1824-node Intel
Paragon.

● Cilkchess placed 1st in the 1996 Dutch Open running on a 12-
processor Sun Enterprise 5000. It placed 2nd in 1997 and 1998
running on Boston University’s 64-processor SGI Origin 2000.

● Cilkchess tied for 3rd in the 1999 WCCC running on NASA’s 256-node
SGI Origin 2000.

16 COMP 422, Spring 2008 (V.Sarkar)

Socrates Normalized Speedup

T1/TP
T1/T∞

P
T1/T∞

TP = T1/P + T∞

measured speedup
0.01

0.1

1

0.01 0.1 1

TP = T∞

T P
 = T 1/P

17 COMP 422, Spring 2008 (V.Sarkar)

Developing Socrates
• For the competition, Socrates was to run on a 512-

processor Connection Machine Model CM5 supercomputer at
the University of Illinois.

• The developers had easy access to a similar 32-processor
CM5 at MIT.

• One of the developers proposed a change to the program that
produced a speedup of over 20% on the MIT machine.

• After a back-of-the-envelope calculation, the proposed
“improvement” was rejected!

18 COMP 422, Spring 2008 (V.Sarkar)

T32 = 2048/32 + 1
 = 65 seconds = 40 seconds

T′32 = 1024/32 + 8

Socrates Speedup Paradox

TP ≈ T1/P + T∞

Original program Proposed program
T32 = 65 seconds T′32 = 40 seconds

T1 = 2048 seconds
T∞ = 1 second

T′1 = 1024 seconds
T′∞ = 8 seconds

T512 = 2048/512 + 1
 = 5 seconds

T′512= 1024/512 + 8
 = 10 seconds

19 COMP 422, Spring 2008 (V.Sarkar)

Outline of Today’s Lecture

• Tasks, Dependence Graphs, Scheduling Theory

• Data and Computation Decompositions

20 COMP 422, Spring 2008 (V.Sarkar)

Decomposition Techniques: Patterns for
Parallel Algorithms

So how does one decompose a task into various subtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used techniques that apply to
broad classes of problems. These include:

• recursive decomposition

• data decomposition

• exploratory decomposition

• speculative decomposition

21 COMP 422, Spring 2008 (V.Sarkar)

Recursive Decomposition

• Generally suited to problems that are solved using the divide-
and-conquer strategy.

• A given problem is first decomposed into a set of sub-
problems.

• These sub-problems are recursively decomposed further until
a desired granularity is reached.

22 COMP 422, Spring 2008 (V.Sarkar)

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on
which we can apply recursive decomposition is
Quicksort.

In this example, a task represents the work of partitioning a
(sub)array. Note that each subarray represents an independent
subtask. This can be repeated recursively.

23 COMP 422, Spring 2008 (V.Sarkar)

Data Decomposition

• Identify the data on which computations are performed.

• Partition data into sub-units

• Data can be input, output or intermediate for different
computations

• The data partitioning induces one or more decompositions of
the computation into tasks e.g., by using the owner computes
rule

24 COMP 422, Spring 2008 (V.Sarkar)

Output Data Decomposition: Example

Consider the problem of multiplying two n x n
matrices A and B to yield matrix C. The output matrix
C can be partitioned into four submatrices as follows:

25 COMP 422, Spring 2008 (V.Sarkar)

Output Data Decomposition: Example
A partitioning of output data does not result in a unique
decomposition into tasks. Here are two possible task
decompositions for the output data decomposition from the
previous slide:

26 COMP 422, Spring 2008 (V.Sarkar)

Output Data Decomposition: Example
Consider the problem of counting the instances of given itemsets in
a database of transactions. In this case, the output (itemset
frequencies) can be partitioned across tasks.

27 COMP 422, Spring 2008 (V.Sarkar)

Input Data Decomposition

• Generally applicable if each output can be naturally computed
as a function of the input.

• In many cases, this is the only natural decomposition because
the output is not clearly known a-priori (e.g., the problem of
finding the minimum in a list, sorting a given list, etc.).

• A task is associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subsequent processing combines these partial results.

28 COMP 422, Spring 2008 (V.Sarkar)

Input Data Decomposition: Example

In the database counting example, the input (i.e., the
transaction set) can be partitioned. This induces a task
decomposition in which each task generates partial
counts for all itemsets. These are combined
subsequently for aggregate counts.

29 COMP 422, Spring 2008 (V.Sarkar)

Output vs. Input Data Decompositions

From the previous example, the following observations can be
made:

• If only the output is decomposed and the database of
transactions is replicated across the processes, each task can
be independently accomplished with no communication.

• If the input database is also partitioned (for scalability), it
induces a computation mapping in which each task computes
partial counts, and additional tasks are used to aggregate the
counts.

30 COMP 422, Spring 2008 (V.Sarkar)

Combining Input and Output Data
Decompositions

Often input and output data decomposition can be combined for
a higher degree of concurrency. For the itemset counting
example, the transaction set (input) and itemset counts (output)
can both be decomposed as follows:

31 COMP 422, Spring 2008 (V.Sarkar)

Intermediate Data Decomposition

• Computation can often be viewed as a sequence of
transformation from the input to the output data.

• In these cases, it is sometimes beneficial to use one of the
intermediate stages as a basis for decomposition.

32 COMP 422, Spring 2008 (V.Sarkar)

Intermediate Data Partitioning: Example

Consider the intermediate submatrices that can be
created in dense matrix multiplication.

33 COMP 422, Spring 2008 (V.Sarkar)

Intermediate Data Partitioning: Example

34 COMP 422, Spring 2008 (V.Sarkar)

From Data Decompositions to Task Mappings:
Owner Computes Rule

• The Owner Computes Rule generally states that the process
assigned a particular data item is responsible for all
computation associated with it.

• In the case of input data decomposition, the owner computes
rule implies that all computations that use the input data are
performed by the process.

• In the case of output data decomposition, the owner
computes rule implies that the output is computed by the
process to which the output data is assigned.

• Likewise for intermediate data decompositions

35 COMP 422, Spring 2008 (V.Sarkar)

Exploratory Decomposition

• In many cases, the decomposition of the problem goes hand-
in-hand with its execution.

• These problems typically involve the exploration (search) of a
state space of solutions.

• Problems in this class include a variety of discrete
optimization problems (0/1 integer programming, QAP, etc.),
theorem proving, game playing, etc.

36 COMP 422, Spring 2008 (V.Sarkar)

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in
the solution to a 15 puzzle (a tile puzzle). We show a
sequence of three moves that transform a given initial
state (a) to desired final state (d).

Of course, the problem of computing the solution, in
general, is much more difficult than in this simple
example.

37 COMP 422, Spring 2008 (V.Sarkar)

Exploratory Decomposition: Example

The state space
can be explored
by generating
various successor
states of the
current state and
viewing them as
independent
tasks.

38 COMP 422, Spring 2008 (V.Sarkar)

Exploratory Decomposition:
Anomalous Speedups

• In many instances of parallel exploratory decomposition,
unfinished tasks can be terminated when the first
solution is found

• This can result in “anomalous” super- or sub-linear
speedups relative to serial execution.

39 COMP 422, Spring 2008 (V.Sarkar)

Speculative Decomposition

• In some applications, dependencies between tasks are not
known a-priori.

• For such applications, it is impossible to identify independent
tasks.

• There are generally two approaches to dealing with such
applications: conservative approaches, which identify
independent tasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule
tasks even when they may potentially be erroneous.

• Conservative approaches may yield little concurrency and
optimistic approaches may require roll-back mechanism in
the case of an error.

• Parallel Discrete Event Simulation (Example 3.8) is a
motivating example for optimistic approaches

40 COMP 422, Spring 2008 (V.Sarkar)

Hybrid Decompositions

Often, a mix of decomposition techniques is
necessary for decomposing a problem e.g.,

41 COMP 422, Spring 2008 (V.Sarkar)

Summary of Today’s Lecture

• Tasks, Dependence Graphs, Scheduling Theory

• Data and Computation Decompositions

Reading List for Next Lecture (Jan 22nd)

• Sections 7.1, 7.2, 7.3, 7.4 of textbook

• Pages 4 - 17 (Sections 2.1 - 2.5) of Cilk Reference Manual
—http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

