
COMP 551 – Applied Machine Learning
Lecture 2: Linear regression

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Today’s Quiz (informal)

Write down the 3 most useful insights you gathered from 

the article:

“A Few Useful Things to Know About Machine Learning”.

COMP-551: Applied Machine Learning
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Supervised learning

• Given a set of training examples: xi = < xi1, xi2, xi3, …, xin, yi >

xij is the jth feature of the ith example

yi is the desired output (or target) for the ith example.

Xj denotes the jth feature.

• We want to learn a function f : X1 ´ X2 ´ … ´ Xn ® Y
which maps the input variables onto the output domain.
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Supervised learning

• Given a dataset X ´ Y, find a function: f : X ® Y such that f(x) is 

a good predictor for the value of y.

• Formally, f is called the hypothesis.

• Output Y can have many types:

– If Y = Â, this problem is called regression.

– If Y is a finite discrete set, the problem is called classification.

– If Y has 2 elements, the problem is called binary classification.
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Prediction problems
• The problem of predicting tumour recurrence is called:

classification

• The problem of predicting the time of recurrence is called:

regression

• Treat them as two separate supervised learning problems.
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Variable types

• Quantitative, often real number measurements.

– Assumes that similar measurements are similar in nature.

• Qualitative, from a set (categorical, discrete).

– E.g. {Spam, Not-spam}

• Ordinal, also from a discrete set, without metric relation, but that 

allows ranking.

– E.g. {first, second, third}

COMP-551: Applied Machine Learning
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The i.i.d. assumption

• In supervised learning, the examples xi in the training set are 

assumed to be independently and identically distributed.

– Independently:  Every xi is freshly sampled according to some 
probability distribution D over the data domain X.

– Identically:  The distribution D is the same for all examples.

• Why?

COMP-551: Applied Machine Learning
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Empirical risk minimization

For a given function class F and training sample S,

• Define a notion of error (left intentionally vague for now):

LS(f) = # mistakes made on the sample S

• Define the Empirical Risk Minimization (ERM):

ERMF(S) = argminf in F LS(f)

where argmin returns the function f (or set of functions) that achieves 
the minimum loss on the training sample.

• Easier to minimize the error with i.i.d. assumption.

COMP-551: Applied Machine Learning
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A regression problem

• What hypothesis class should we pick?
Observe    Predict

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.1 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43
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Linear hypothesis

• Suppose Y is a linear function of X:

fW(X) =   w0 + w1 x1 + … + wm xm

=   w0 + ∑j=1:mwj xj

• The wj are called parameters or weights.

• To simplify notation, we add an attribute x0=1 to the m other attributes 

(also called bias term or intercept).

How should we pick the weights?
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Least-squares solution method

• The linear regression problem: fw(X) =   w0 + ∑j=1:mwj xj

where m = the dimension of observation space, i.e. number of features.

• Goal:   Find the best linear model given the data.

• Many different possible evaluation criteria!

• Most common choice is to find the w that minimizes:

Err(w) = ∑i=1:n ( yi - wTxi)2

(A note on notation:  Here w and x are column vectors of size m+1.)

COMP-551: Applied Machine Learning
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Least-squares solution for X ∊ ℜ2
3.2 Linear Regression Models and Least Squares 45
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XTX
is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XTX)−1XTy. (3.6)

COMP-551: Applied Machine Learning
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Least-squares solution method

• Re-write in matrix notation: fw (X) =   Xw

Err(w) = ( Y – Xw)T( Y – Xw)

where X is the n x m matrix of input data,
Y is the n x 1 vector of output data,
w is the m x 1 vector of weights.

• To minimize, take the derivative w.r.t. w:

∂Err(w)/∂w = -2 XT (Y–Xw)

– You get a system of m equations with m unknowns.

• Set these equations to 0: XT ( Y – Xw ) = 0

COMP-551: Applied Machine Learning
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Least-squares solution method

• We want to solve for w:  XT ( Y – Xw) = 0 

• Try a little algebra: XT Y = XT X w

ŵ = (XTX)-1 XT Y

(ŵ denotes the estimated weights)

• The fitted data: Ŷ = Xŵ = X (XTX)-1 XT Y

• To predict new data X’ ® Y’ : Y’ = X’ŵ = X’ (XTX)-1 XT Y

COMP-551: Applied Machine Learning
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Example of linear regression

COMP-551: Applied Machine Learning

Example: What hypothesis class should we pick?

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43

COMP-652, Lecture 1 - September 6, 2012 26

Linear hypothesis

• Suppose y was a linear function of x:

h
w

(x) = w0 + w1x1(+ · · · )

• wi are called parameters or weights

• To simplify notation, we can add an attribute x0 = 1 to the other n
attributes (also called bias term or intercept term):

h
w

(x) =
nX

i=0

wixi = w

T
x

where w and x are vectors of size n+ 1.

How should we pick w?

COMP-652, Lecture 1 - September 6, 2012 27

What is a plausible estimate of w ? Try it!
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Data matrices
XTX

XTX =

h
0.86 0.09 �0.85 0.87 �0.44 �0.43 �1.10 0.40 �0.96 0.17
1 1 1 1 1 1 1 1 1 1

i
⇥

2

6666664

0.86 1
0.09 1
�0.85 1
0.87 1
�0.44 1
�0.43 1
�1.10 1
0.40 1
�0.96 1
0.17 1

3

7777775

=


4.95 �1.39
�1.39 10

�

COMP-652, Lecture 1 - September 6, 2012 36

XTY

XTY =

h
0.86 0.09 �0.85 0.87 �0.44 �0.43 �1.10 0.40 �0.96 0.17
1 1 1 1 1 1 1 1 1 1

i
⇥

2

6666664

2.49
0.83
�0.25
3.10
0.87
0.02
�0.12
1.81
�0.83
0.43

3

7777775

=


6.49
8.34

�

COMP-652, Lecture 1 - September 6, 2012 37
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Data matrices

XTX

XTX =

h
0.86 0.09 �0.85 0.87 �0.44 �0.43 �1.10 0.40 �0.96 0.17
1 1 1 1 1 1 1 1 1 1

i
⇥

2

6666664

0.86 1
0.09 1
�0.85 1
0.87 1
�0.44 1
�0.43 1
�1.10 1
0.40 1
�0.96 1
0.17 1

3

7777775

=


4.95 �1.39
�1.39 10

�
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XTY

XTY =

h
0.86 0.09 �0.85 0.87 �0.44 �0.43 �1.10 0.40 �0.96 0.17
1 1 1 1 1 1 1 1 1 1

i
⇥

2

6666664

2.49
0.83
�0.25
3.10
0.87
0.02
�0.12
1.81
�0.83
0.43

3

7777775

=


6.49
8.34

�
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Solving the problemSolving for w

w = (XTX)�1XTY =


4.95 �1.39
�1.39 10

��1 
6.49
8.34

�
=


1.60
1.05

�

So the best fit line is y = 1.60x+ 1.05.

COMP-652, Lecture 1 - September 6, 2012 38

Data and line y = 1.60x+ 1.05

x

y
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Interpreting the solution

• Linear fit for a prostate cancer dataset

– Features X = {lcavol , lweight, age, lbph, svi, lcp, gleason, pgg45}

– Output y = level of PSA (an enzyme which is elevated with cancer).

– High coefficient weight (in absolute value) = important for prediction.

COMP-551: Applied Machine Learning

50 3. Linear Methods for Regression

TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol lweight age lbph svi lcp gleason

lweight 0.300
age 0.286 0.317
lbph 0.063 0.437 0.287
svi 0.593 0.181 0.129 −0.139
lcp 0.692 0.157 0.173 −0.089 0.671

gleason 0.426 0.024 0.366 0.033 0.307 0.476
pgg45 0.483 0.074 0.276 −0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score
Intercept 2.46 0.09 27.60

lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75

age −0.14 0.10 −1.40
lbph 0.21 0.10 2.06
svi 0.31 0.12 2.47
lcp −0.29 0.15 −1.87

gleason −0.02 0.15 −0.15
pgg45 0.27 0.15 1.74

example, that both lcavol and lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostate-specific antigen, lpsa, after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 67 and a test set of size 30. We ap-
plied least squares estimation to the training set, producing the estimates,
standard errors and Z-scores shown in Table 3.2. The Z-scores are defined
in (3.12), and measure the effect of dropping that variable from the model.
A Z-score greater than 2 in absolute value is approximately significant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the t67−9 distribution are ±2.002!) The predictor lcavol shows
the strongest effect, with lweight and svi also strong. Notice that lcp is
not significant, once lcavol is in the model (when used in a model without
lcavol, lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F -statistic (3.13). For example, we
consider dropping all the non-significant terms in Table 3.2, namely age,

w0 =
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Computational cost of linear regression

• What operations are necessary?

– Overall:  1 matrix inversion + 3 matrix multiplications

– XTX (other matrix multiplications require fewer operations.)
• XT is mxn and X is nxm, so we need nm2 operations.

– (XTX)-1

• XTX is mxm, so we need m3 operations.

• We can do linear regression in polynomial time, but handling large 

datasets (many examples, many features) can be problematic.

COMP-551: Applied Machine Learning
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An alternative for minimizing mean-squared error (MSE)

• Recall the least-square solution:  ŵ = (XTX)-1 XT Y

• What if X is too big to compute this explicitly (e.g. m ~ 106)?

• Go back to the gradient step: Err(w) = ( Y – Xw)T( Y – Xw)

∂Err(w)/∂w = -2 XT (Y–Xw)

∂Err(w)/∂w = 2(XTXw – XTY)

COMP-551: Applied Machine Learning
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Gradient-descent solution for MSE

• Consider the error function:

• The gradient of the error is a vector indicating the direction to 

the minimum point.

• Instead of directly finding that minimum (using the closed-form 

equation), we can take small steps towards the minimum.

COMP-551: Applied Machine Learning

Alternatives for minimizing the mean-squared error

• Recall: we want to find the weight vector w⇤ = argminw JD(w), where:

JD(w) =
1

2

mX

i=1

(hw(xi)� yi)
2 =

1

2
(�w � y)T (�w � y)

• Compute the gradient and set it to 0:

⌥wJD(w) =
1

2
⌥w(w

T�T�w�wT�Ty�yT�w+yTy) = �T�w��Ty = 0

• Solve for w:
w = (�T�)�1�Ty

• What if � is too big to compute this explicitly?

COMP-652, Lecture 2 - September 11, 2012 39

Gradient descent

• The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill”.
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• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient

COMP-652, Lecture 2 - September 11, 2012 40

Example gradient descent traces

• For more general hypothesis classes, there may be may local optima

• In this case, the final solution may depend on the initial parameters

COMP-652, Lecture 2 - September 11, 2012 41

Gradient descent algorithm

• The basic algorithm assumes that ⌥J is easily computed

• We want to produce a sequence of vectors w1,w2,w3, . . . with the goal
that:

– J(w1) > J(w2) > J(w3) > . . .
– limi!1wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi � �i⌥J(wi) ,

where �i > 0 is the step size or learning rate for iteration i.

COMP-652, Lecture 2 - September 11, 2012 42
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Gradient-descent solution for MSE

• We want to produce a sequence of weight solutions, w0, w1, w2…, 

such that:  Err(w0) > Err(w1) > Err(w2) > …

• The algorithm: Given an initial weight vector w0,
Do for k=1, 2, ...

wk+1 = wk – αk ∂Err(wk)/∂wk
End when |wk+1-wk| < ε

• Parameter αk>0 is the step-size (or learning rate) for iteration k.

COMP-551: Applied Machine Learning
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Convergence

• Convergence depends in part on the ak.

• If steps are too large: the wk may oscillate forever.

– This suggests that ak ® 0 as k ® ∞ .

• If steps are too small:  the wk may not move far enough to reach 

a local minimum.

COMP-551: Applied Machine Learning
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Robbins-Monroe conditions

• The ak are a Robbins-Monroe sequence if:

∑k=0:∞ ak = ∞

∑k=0:∞ ak
2 < ∞

• These conditions are sufficient to ensure convergence of the wk to a 

local minimum of the error function.

E.g. ak = 1 / (k + 1) (averaging)

E.g. ak = 1/2 for k = 1, …, T

ak = 1/22 for k = T+1, …, (T+1)+2T

etc. 

COMP-551: Applied Machine Learning
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Local minima

• Convergence is NOT to a global minimum, only to local minimum.

• The blue line represents the error function.  There is no guarantee

regarding the amount of error of the weight vector found by gradient 

descent, compared to the globally optimal solution.

COMP-551: Applied Machine Learning
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Local minima

• Convergence is NOT to a global minimum, only to local minimum.

• For linear function approximations using Least-Mean Squares (LMS) 

error, this is not an issue: only ONE global minimum!

– Local minima affects many other function approximators.

COMP-551: Applied Machine Learning



Joelle Pineau28

Local minima

• Convergence is NOT to a global minimum, only to local minimum.

• For linear function approximations using Least-Mean Squares (LMS) 

error, this is not an issue: only ONE global minimum!

– Local minima affects many other function approximators.

• Repeated random restarts can help (in all cases of gradient search).

COMP-551: Applied Machine Learning
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A 3rd optimization method: QR decomposition (optional)

• Consider the usual criteria:  XT(Y – Xw)=0

• Assume X can be decomposed: X = QR

where Q is an nxm orthogonal matrix (i.e. QTQ=I), and R is an mxm

upper triangular matrix.

• Replace X in equation above: (QR)TY = (QR)T(QR)w

• Distribute the transpose: RTQTY = RTQTQRw

• Let QTQ=I and multiply by (RT)-1 QTY = Rw

• Solution:  ŵ = R-1QTY The fitted outputs are: Ŷ = QQTY

• This method is more numerically stable than others, and R-1 is fast 
to compute because upper triangular.

• Alternately, we can use singular value decomposition.

COMP-551: Applied Machine Learning
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What you should know

COMP-551: Applied Machine Learning

• Definition and characteristics of a supervised learning problem.

• Linear regression (hypothesis class, cost function, algorithm).

• Closed-form least-squares solution method (algorithm, 

computational complexity, stability issues).

• Gradient descent method (algorithm, properties).
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To-do

COMP-551: Applied Machine Learning

• Reproduce the linear regression example (slides 15-18), solving it 

using the software of your choice.

• Suggested complementary readings:

– Ch.2 (Sec. 2.1-2.4, 2.9) of Hastie et al.

– Ch.3 of Bishop.

– Ch.9 of Shalev-Schwartz et al. 

• Write down midterm date in agenda:  Nov. 22, 6-8pm, Leacock 132.

• Tutorial times (appearing soon): www.cs.mcgill.ca/~jpineau/comp551/schedule.html

• Office hours (confirmed): www.cs.mcgill.ca/~jpineau/comp551/syllabus.html


