COMP 551 – Applied Machine Learning Lecture 2: Linear regression

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Today's Quiz (informal)

Write down the 3 most useful insights you gathered from the article:

"A Few Useful Things to Know About Machine Learning".

Supervised learning

- Given a set of <u>training examples</u>: $x_i = \langle x_{i1}, x_{i2}, x_{i3}, \dots, x_{in}, y_i \rangle$
 - x_{ii} is the *j*th feature of the *i*th example

 y_i is the desired **<u>output</u>** (or <u>target</u>) for the *i*th example.

 X_i denotes the *j*th feature.

• We want to learn a function $f: X_1 \times X_2 \times ... \times X_n \to Y$

which maps the input variables onto the output domain.

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	Ν	31
17.99	10.38	122.8	Ν	61
20.29	14.34	135.1	R	27

3

Supervised learning

- Given a dataset $X \times Y$, find a function: $f : X \to Y$ such that f(x) is a good predictor for the value of y.
- Formally, *f* is called the *hypothesis*.

- Output Y can have many types:
 - If $Y = \Re$, this problem is called <u>regression</u>.
 - If Y is a finite discrete set, the problem is called <u>classification</u>.
 - If Y has 2 elements, the problem is called **binary classification**.

Prediction problems

• The problem of predicting <u>tumour recurrence</u> is called:

classification

• The problem of predicting the <u>time of recurrence</u> is called:

regression

• Treat them as two separate supervised learning problems.

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	N	31
17.99	10.38	122.8	N	61
20.29	14.34	135.1	R	27

Variable types

- **Quantitative**, often real number measurements.
 - Assumes that similar measurements are similar in nature.
- **Qualitative**, from a set (categorical, discrete).
 - E.g. {Spam, Not-spam}
- **Ordinal**, also from a discrete set, without metric relation, but that allows ranking.
 - E.g. {first, second, third}

The i.i.d. assumption

• In supervised learning, the examples x_i in the training set are assumed to be independently and identically distributed.

- Independently: Every x_i is freshly sampled according to some probability distribution *D* over the data domain *X*.

– Identically: The distribution *D* is the same for all examples.

• Why?

Empirical risk minimization

For a given function class *F* and training sample *S*,

• Define a notion of error (*left intentionally vague for now*):

 $L_{S}(f) = #$ mistakes made on the sample S

• Define the Empirical Risk Minimization (ERM):

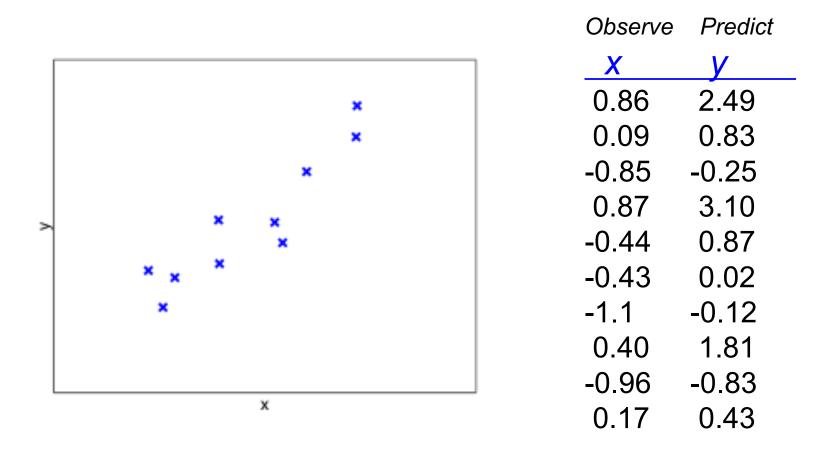
 $ERM_{F}(S) = argmin_{f in F} L_{S}(f)$

where *argmin* returns the function *f* (or set of functions) that achieves the minimum loss on the training sample.

• Easier to minimize the error with i.i.d. assumption.

A regression problem

What <u>hypothesis class</u> should we pick?



COMP-551: Applied Machine Learning

Linear hypothesis

• Suppose Y is a **linear function** of X:

$$f_{W}(X) = w_{0} + w_{1} x_{1} + \dots + w_{m} x_{m}$$
$$= w_{0} + \sum_{j=1:m} w_{j} x_{j}$$

- The *w_i* are called **parameters** or **weights**.
- To simplify notation, we add an attribute $x_0=1$ to the *m* other attributes (also called **bias term** or **intercept**).

How should we pick the *weights*?

Least-squares solution method

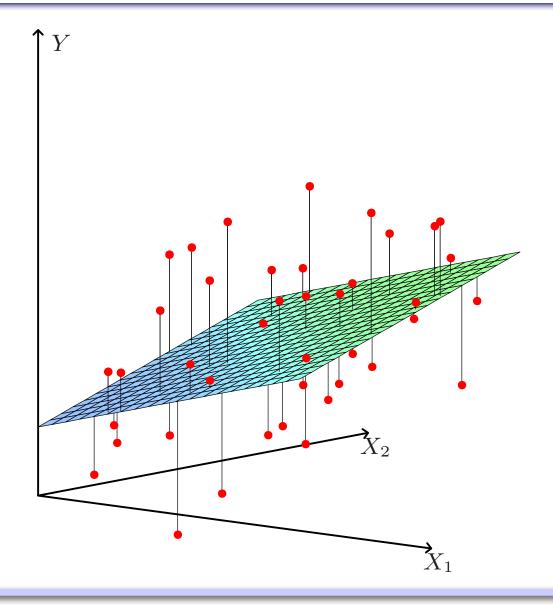
• The linear regression problem: $f_w(X) = w_0 + \sum_{j=1:m} w_j x_j$ where *m* = the dimension of observation space, i.e. number of features.

- Goal: Find the best linear model given the data.
- Many different possible **evaluation** criteria!
- Most common choice is to find the **w** that minimizes:

 $Err(w) = \sum_{i=1:n} (y_i - w^T x_i)^2$

(A note on notation: Here w and x are column vectors of size m+1.)

Least-squares solution for $X \in \Re^2$



Least-squares solution method

• Re-write in matrix notation: $f_w(X) = Xw$

 $Err(\mathbf{w}) = (Y - X\mathbf{w})^T (Y - X\mathbf{w})$

where X is the n x m matrix of input data,
Y is the n x 1 vector of output data,
w is the m x 1 vector of weights.

• To minimize, take the derivative w.r.t. w:

 $\partial Err(\mathbf{w})/\partial \mathbf{w} = -2 X^{T} (Y - X \mathbf{w})$

– You get a system of *m* equations with *m* unknowns.

• Set these equations to 0:

 $X^{T}(Y - Xw) = 0$

Least-squares solution method

- We want to solve for w: $X^{T}(Y Xw) = 0$
- Try a little algebra:

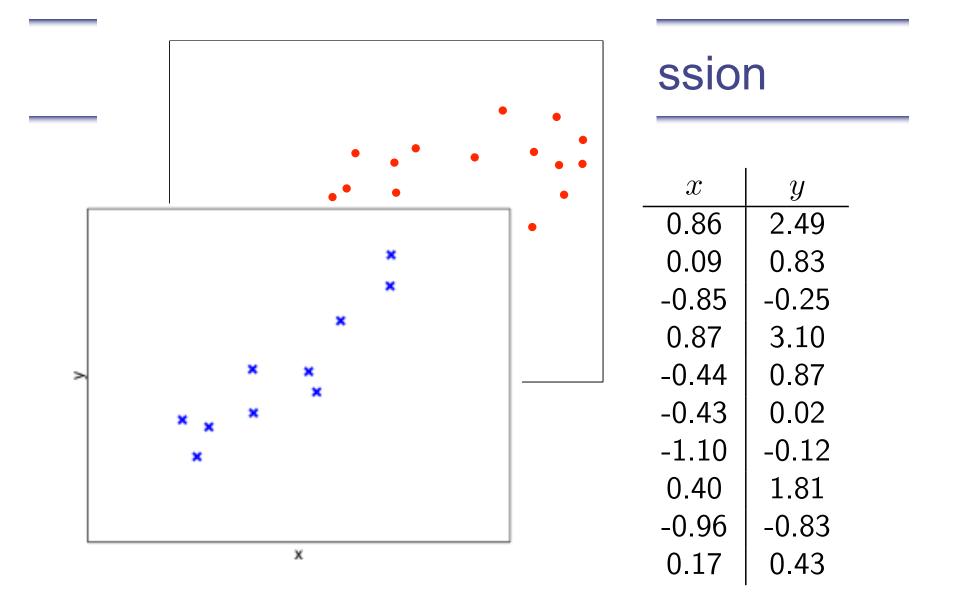
 $X^{T} Y = X^{T} X w$

 $\hat{\boldsymbol{w}} = (\boldsymbol{X}^{T}\boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}$

(ŵ denotes the estimated weights)

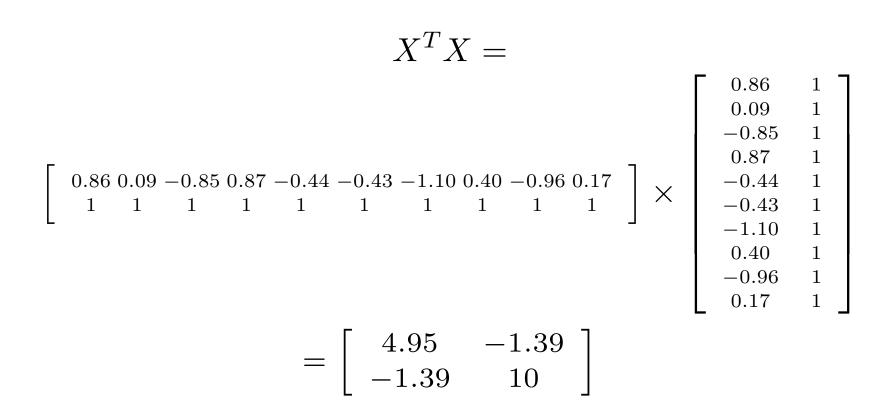
- The fitted data: $\hat{Y} = X\hat{w} = X (X^T X)^{-1} X^T Y$
- To predict new data $X' \rightarrow Y'$: $Y' = X'\hat{w} = X' (X^T X)^{-1} X^T Y$

COMP-551: Applied Machine Learning



What is a plausible estimate of **w**? **Try it!**

Data matrices



Data matrices

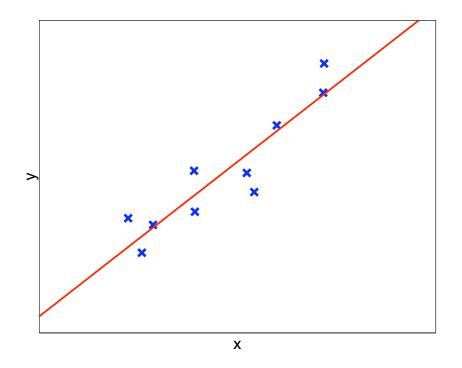


Solving the problem

COMP-652, Lecture 1 - September 6, 2012

$$\mathbf{w} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 4.95 & -1.39 \\ -1.39 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 1.60 \\ 1.05 \end{bmatrix}$$

So the best fit line is y = 1.60x + 1.05.



COMP-551: Applied Machine Learning

Interpreting the solution

- Linear fit for a prostate cancer dataset
 - Features X = {lcavol, lweight, age, lbph, svi, lcp, gleason, pgg45}
 - Output y = level of PSA (an enzyme which is elevated with cancer).
 - High coefficient weight (in absolute value) = important for prediction.

Te	erm	Coefficient	Std. Error
Interc	ept	$w_0 = 2.46$	0.09
lca	vol	0.68	0.13
lwei	ght	0.26	0.10
	age	-0.14	0.10
1	bph	0.21	0.10
	svi	0.31	0.12
	lcp	-0.29	0.15
glea	son	-0.02	0.15
pg	g45	0.27	0.15

Computational cost of linear regression

- What operations are necessary?
 - Overall: 1 matrix inversion + 3 matrix multiplications
 - $X^T X$ (other matrix multiplications require fewer operations.)
 - X^{T} is *mxn* and *X* is *nxm*, so we need *nm*² operations.
 - $(X^T X)^{-1}$
 - $X^T X$ is *mxm*, so we need m^3 operations.

• We can do linear regression in polynomial time, but handling large datasets (many examples, many features) can be problematic.

An alternative for minimizing mean-squared error (MSE)

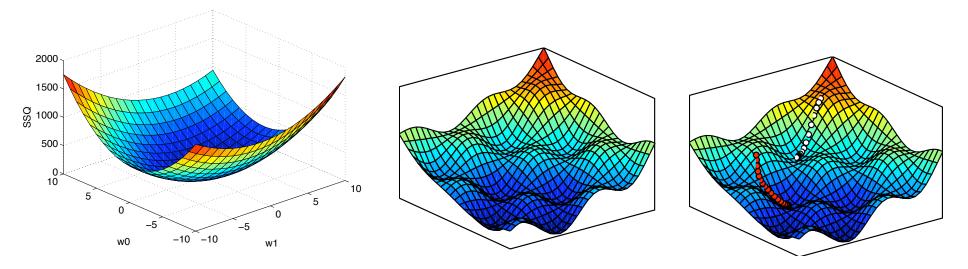
- Recall the least-square solution: $\hat{w} = (X^T X)^{-1} X^T Y$
- What if X is too big to compute this explicitly (e.g. $m \sim 10^6$)?

• Go back to the gradient step: $Err(w) = (Y - Xw)^T(Y - Xw)$

$$\frac{\partial Err(\mathbf{w})}{\partial \mathbf{w}} = -2 X^{\mathsf{T}} (Y - X\mathbf{w})$$
$$\frac{\partial Err(\mathbf{w})}{\partial \mathbf{w}} = 2(X^{\mathsf{T}} X \mathbf{w} - X^{\mathsf{T}} Y)$$

Gradient-descent solution for MSE

• Consider the error function:



- The gradient of the error is a vector indicating the direction to the minimum point.
- Instead of directly finding that minimum (using the closed-form equation), we can take small steps towards the minimum.

Gradient-descent solution for MSE

• We want to produce a sequence of weight solutions, w_0 , w_1 , w_2 ..., such that: $Err(w_0) > Err(w_1) > Err(w_2) > ...$

• The algorithm:

Given an initial weight vector \mathbf{w}_0 , Do for k=1, 2, ... $\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \frac{\partial Err(\mathbf{w}_k)}{\partial \mathbf{w}_k}$ End when $|\mathbf{w}_{k+1} - \mathbf{w}_k| < \varepsilon$

• Parameter $\alpha_k > 0$ is the step-size (or <u>learning rate</u>) for iteration k.

Convergence

• Convergence depends in part on the α_k .

- If steps are too large: the w_k may oscillate forever.
 - This suggests that $\alpha_k \rightarrow 0$ as $k \rightarrow \infty$.

 If steps are too small: the w_k may not move far enough to reach a local minimum.

Robbins-Monroe conditions

• The α_k are a Robbins-Monroe sequence if:

$$\sum_{k=0:\infty} \alpha_k = \infty$$
$$\sum_{k=0:\infty} \alpha_k^2 < \infty$$

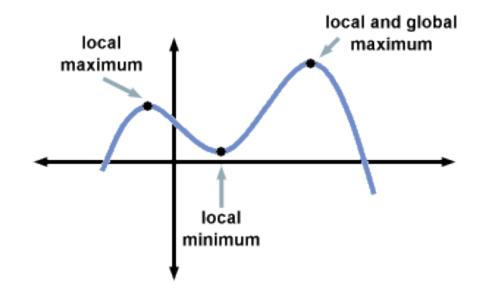
• These conditions are sufficient to ensure convergence of the w_k to a **local minimum** of the error function.

E.g. $\alpha_k = 1 / (k + 1)$ (averaging) E.g. $\alpha_k = 1/2$ for k = 1, ..., T $\alpha_k = 1/2^2$ for k = T+1, ..., (T+1)+2Tetc.

COMP-551: Applied Machine Learning

Local minima

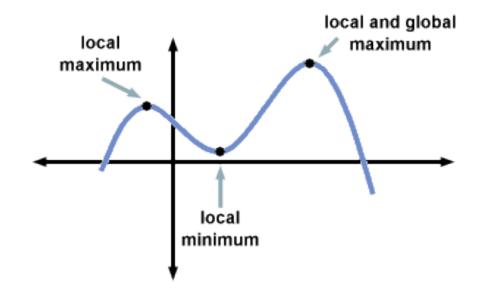
• Convergence is **<u>NOT</u>** to a global minimum, only to local minimum.



 The blue line represents the error function. There is <u>no guarantee</u> regarding the amount of error of the weight vector found by gradient descent, compared to the globally optimal solution.

Local minima

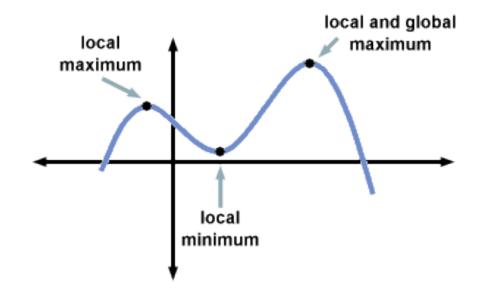
• Convergence is **NOT** to a global minimum, only to local minimum.



- For linear function approximations using Least-Mean Squares (LMS) error, this is not an issue: only ONE global minimum!
 - Local minima affects many other function approximators.

Local minima

• Convergence is **NOT** to a global minimum, only to local minimum.



- For linear function approximations using Least-Mean Squares (LMS) error, this is not an issue: only ONE global minimum!
 - Local minima affects many other function approximators.
- Repeated random restarts can help (in all cases of gradient search).

A 3rd optimization method: QR decomposition (optional)

 $X^{T}(Y - Xw) = 0$

 $(QR)^T Y = (QR)^T (QR) w$

 $R^{T}Q^{T}Y = R^{T}Q^{T}QRw$

- Consider the usual criteria:
- Assume X can be decomposed: X = QR where Q is an nxm <u>orthogonal</u> matrix (i.e. Q^TQ=I), and R is an mxm upper triangular matrix.
- Replace X in equation above:
- Distribute the transpose:
- Let $Q^T Q = I$ and multiply by $(R^T)^{-1}$ $Q^T Y = R w$
- Solution: $\hat{w} = R^{-1}Q^TY$ The fitted outputs are: $\hat{Y} = QQ^TY$
- This method is more numerically stable than others, and R⁻¹ is fast to compute because upper triangular.
- Alternately, we can use **singular value decomposition**.

What you should know

- Definition and characteristics of a supervised learning problem.
- Linear regression (hypothesis class, cost function, algorithm).
- Closed-form least-squares solution method (algorithm, computational complexity, stability issues).
- Gradient descent method (algorithm, properties).

To-do

- Reproduce the linear regression example (slides 15-18), solving it using the software of your choice.
- Suggested complementary readings:
 - Ch.2 (Sec. 2.1-2.4, 2.9) of Hastie et al.
 - Ch.3 of Bishop.
 - Ch.9 of Shalev-Schwartz et al.
- Write down midterm date in agenda: Nov. 22, 6-8pm, Leacock 132.
- Tutorial times (appearing soon): www.cs.mcgill.ca/~jpineau/comp551/schedule.html
- Office hours (confirmed): www.cs.mcgill.ca/~jpineau/comp551/syllabus.html