
COMP 551 – Applied Machine Learning
Lecture 6: Performance evaluation. Model 

assessment and selection. 

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Today’s quiz (on myCourses)

1. Name one advantage of LDA over Naive Bayes.

2. Name one disadvantage of LDA over Naive Bayes.

3. True or False: Generative learning typically requires learning 

more parameters than discriminative learning (assuming the 

same number of features and examples).

4. Why?
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Real-world classification tasks

COMP-551: Applied Machine Learning

http://www.di.ens.fr/willow/events/cvml2011/materials/practical-classification/
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Evaluating performance

• Different objectives:

– Selecting the right model for a problem.

– Testing performance of a new algorithm.

– Evaluating impact on a new application.

COMP-551: Applied Machine Learning
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Overfitting
• Adding more degrees of freedom (more features) always seems 

to improve the solution! 

COMP-551: Applied Machine Learning
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Minimizing the error
• Find the low point in the validation error:

COMP-551: Applied Machine Learning
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

Train error

Validation error
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Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification 
setting.

COMP-551: Applied Machine Learning
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Example 1

COMP-551: Applied Machine Learning
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Example 1

COMP-551: Applied Machine Learning

Accuracy = True positives + True Negatives / Total number of examples
Sensitivity = True positives / Total number of actual positives
Specificity =  True negatives / Total number of actual negatives
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Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification 
setting.
– E.g.  Consider the diagnostic of a disease. Two types of mis-diagnostics:

• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

COMP-551: Applied Machine Learning
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Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification 
setting.
– E.g.  Consider the diagnostic of a disease. Two types of mis-diagnostics:

• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).
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Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification 
setting.
– E.g.  Consider the diagnostic of a disease. Two types of mis-diagnostics:

• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).

• How many Type I errors are you willing to tolerate, for a reasonable 
rate of Type II errors ?

COMP-551: Applied Machine Learning
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Example 2
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Example 3
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Terminology

• Type of classification outputs:

– True positive (m11):  Example of class 1 predicted as class 1. 

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0. 

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

COMP-551: Applied Machine Learning
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Terminology

• Type of classification outputs:

– True positive (m11):  Example of class 1 predicted as class 1. 

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0. 

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

• Error rate:  (m01 + m10) / m
– If the classes are imbalanced (e.g. 10% from class 1, 90% from class 0), one 

can achieve low error (e.g. 10%) by classifying everything as coming from 
class 0!

COMP-551: Applied Machine Learning
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Confusion matrix

• Many software packages output this matrix.

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:


m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve

COMP-652, Lecture 12 - October 18, 2012 11
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Confusion matrix

• Many software packages output this matrix.

• Be careful!  Sometimes the format is slightly different
(E.g. http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29)

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:


m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve
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Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

COMP-551: Applied Machine Learning
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Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity =  True negatives / Total number of actual negatives

=  TN / (FP + TN)

COMP-551: Applied Machine Learning

Text
classification

Medicine
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Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity =  True negatives / Total number of actual negatives

=  TN / (FP + TN)

• False positive rate = FP / (FP + TN)
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Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity =  True negatives / Total number of actual negatives

=  TN / (FP + TN)

• False positive rate = FP / (FP + TN)

• F1 measure

COMP-551: Applied Machine Learning
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Trade-off

• Often have a trade-off between false positives and false negatives.

E.g. Consider 30 different classifiers trained on a class. Classify a new 
sample as positive if K classifiers output positive. Vary K between 0 and 30.

COMP-551: Applied Machine Learning

Example: Tree bagging

• 30 decision trees, classify an example as positive if K trees classify it as
positive

• Vary K between 0 and 30
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Precision-recall

• Similar concept to AUC curves, but used in retrieval tasks

• Precision is true positive / total number of documents retrieved

• Recall is true positives / all positives

• In medical applications we use instead sensitivity and selectivity, which
are the recall for the two classes
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Receiver-operator characteristic (ROC) curve

• Characterizes the performance of a binary classifier over a 
range of classification thresholds

COMP-551: Applied Machine Learning

Data from 4 prediction results: ROC curve:

Example from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Understanding the ROC curve
• Consider a classification problem where data is generated by 2 

Gaussians (blue = negative class; red = positive class).
• Consider the decision boundary (shown as a vertical line on the 

left figure), where you predict Negative on the left of the 
boundary and predict Positive on the right of the boundary.

• Changing that boundary defines the ROC curve on the right.

COMP-551: Applied Machine Learning

Predictive
positive

Predict
negative

Figures from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Building the ROC curve

• In many domains, the empirical ROC curve will be non-convex 

(red line).  Take the convex hull of the points (blue line).

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)

and the performance will interpolate between the two

• So we can always match any point on the convex hull of an empirical
ROC curve !"#$#%&'()$*+,,!"#$#%&'()$*+,,
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*+,,

"-./.&0,$!"#$
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Using the ROC curve
• To compare 2 algorithms over a range of classification 

thresholds, consider the Area Under the Curve (AUC).
– A perfect algorithm has AUC=1.

– A random algorithm has AUC=0.5.

– Higher AUC doesn’t mean all performance measures are better.

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)
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K-fold cross-validation

• Single test-train split:   Estimation test error with high variance.

• 4-fold test-train splits:  Better estimation of the test error, 

because it is averaged over four different test-train splits.

COMP-551: Applied Machine Learning
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K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

COMP-551: Applied Machine Learning
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K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

• K=N: Lowest variance estimate of Err(). Doesn’t waste data.

N times slower to compute than single train/validate split.

COMP-551: Applied Machine Learning
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Brief aside:  Bootstrapping
• Basic idea:  Given a dataset D with N examples.

– Randomly draw (with replacement) B datasets of size N from D.
– Estimate the measure of interest on each of the B datasets.
– Take the mean of the estimates.

Is this a good measure
for estimating the error?

COMP-551: Applied Machine Learning

True data distribution

D

D1 D2 DB…

Err1 Err2 ErrB
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Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem:  Some of the same samples are used for training the 
learning and validation.

COMP-551: Applied Machine Learning
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Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN ).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in
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Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem:  Some of the same samples are used for training the 
learning and validation.

• Better idea:  Include the error of a data sample i only over 
classifiers trained with those bootstrap sets b in which i isn’t 
included (denoted C-i).

(Note:  Bootstrapping is a very general ideal, which can be applied for 
empirically estimating many different quantities.)

COMP-551: Applied Machine Learning
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Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN ).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in
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each class, in which the predictors and class labels are in fact independent.
Then the true error rate is 0.5. But the contributions to the bootstrap
estimate Êrrboot will be zero unless the observation i does not appear in the
bootstrap sample b. In this latter case it will have the correct expectation
0.5. Now

Pr{observation i ∈ bootstrap sample b} = 1−
(
1− 1

N

)N

≈ 1− e−1

= 0.632. (7.55)

Hence the expectation of Êrrboot is about 0.5 × 0.368 = 0.184, far below
the correct error rate 0.5.

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-
strap samples not containing that observation. The leave-one-out bootstrap
estimate of prediction error is defined by

Êrr
(1)

=
1

N

N∑

i=1

1

|C−i|
∑

b∈C−i

L(yi, f̂
∗b(xi)). (7.56)

Here C−i is the set of indices of the bootstrap samples b that do not contain

observation i, and |C−i| is the number of such samples. In computing Êrr
(1)

,
we either have to choose B large enough to ensure that all of the |C−i| are
greater than zero, or we can just leave out the terms in (7.56) corresponding
to |C−i|’s that are zero.

The leave-one out bootstrap solves the overfitting problem suffered by
Êrrboot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632 ·N , so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The “.632 estimator” is designed to alleviate this bias. It is defined by

Êrr
(.632)

= .368 · err + .632 · Êrr
(1)

. (7.57)

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant .632 relates to (7.55).
The .632 estimator works well in “light fitting” situations, but can break

down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of
the class labels, and we apply a one-nearest neighbor rule. Then err = 0,



Joelle Pineau34

Strategy #1

Strategy 1:
1. Check for correlation between each feature (individually) and the output.  

Keep a small set of features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step 

2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and 

measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of 

the error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features, 
greater than the number of examples (m>>n).  Consider the 
following strategies to avoid over-fitting in such a problem.
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Strategy #2

Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with 

the output.
3. Using the features and examples from k-1 groups from step 1, build a 

classifier.
4. Use this classifier to predict the output for the examples in group k and 

measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the 

error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features, 
greater than the number of examples (m>>n).  Consider the 
following strategies to avoid over-fitting in such a problem.
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Strategy #3

Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation 

with the outptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset 

that are not in n’ and measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the 

error. 

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features, 
greater than the number of examples (m>>n).  Consider the 
following strategies to avoid over-fitting in such a problem.
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Summary of 3 strategies
Strategy 1:
1. Check for correlation between each feature (individually) and the output.  Keep a small set of 

features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step 2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of the error.
Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with the output.
3. Using the features and examples from k-1 groups from step 1, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the error.
Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation with the ouptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset that are not in n’ and 

measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the error. 

COMP-551: Applied Machine Learning
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Discussion

• Strategy 1 is prone to overfitting, because the full dataset is 
considered in step 1, to select the features.  Thus we do not get 
an unbiased estimate of the generalization error in step 5.

• Strategy 2 is closest to standard k-fold cross-validation.  One 
can view the joint procedure of selecting the features and 
building the classifier as the training step, to be applied 
(separately) on each training fold.

• Strategy 3 is closer to a bootstrap estimate.  It can give a good 
estimate of the generalization error, but the estimate will 
possibly have higher variance than the one obtained using 
Strategy 2.

COMP-551: Applied Machine Learning
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A word of caution

• Intensive use of cross-validation can overfit!

• E.g.  Given a dataset with 50 examples and 1000 features.

– Consider 1000 linear regression models, each built with a single 
feature.

– The best of those 1000 will look very good!

– But it would have looked good even if the output was random!

What should we do about this?

COMP-551: Applied Machine Learning
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To avoid overfitting to the validation set

• When you need to optimize many parameters of your model or 

learning algorithm.

• Use three datasets:

– The training set is used to estimate the parameters of the model.

– The validation set is used to estimate the prediction error for the 
given model.

– The test set is used to estimate the generalization error once the 
model is fixed. 

COMP-551: Applied Machine Learning
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The “−2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the
expected test error for a model. Typically our model will have a tuning
parameter or parameters α and so we can write our predictions as f̂α(x).
The tuning parameter varies the complexity of our model, and we wish to
find the value of α that minimizes error, that is, produces the minimum of
the average test error curve in Figure 7.1. Having said this, for brevity we
will often suppress the dependence of f̂(x) on α.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the best one.

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

TestTrain Validation TestTrain Validation TestValidationTrain Validation TestTrain

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.
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Kaggle

COMP-551: Applied Machine Learning

http://www.kaggle.com/competitions
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Lessons for evaluating ML algorithms

• Always compare to a simple baseline:

– In classification:
• Classify all samples as the majority class.
• Classify with a threshold on a single variable.

– In regression:
• Predict the average of the output for all samples.
• Compare to a simple linear regression.

• Use K-fold cross validation to properly estimate the error.  If 

necessary, use a validation set to estimate hyper-parameters.

• Consider appropriate measures for fully characterizing the 

performance: Accuracy, Precision, Recall, F1, AUC.

COMP-551: Applied Machine Learning
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What you should know

• Understand the concepts of loss, error function, bias, variance.

• Commit to correctly applying cross-validation.

• Understand the common measures of performance.

• Know how to produce and read ROC curves.

• Understand the use of bootstrapping.

• Be concerned about good practices for machine learning!

Read this paper today! 

K. Wagstaff, “Machine Learning that Matters”, ICML 2012.

http://www.wkiri.com/research/papers/wagstaff-MLmatters-12.pdf


