
COMP9322
Service Oriented Architectures

Introduction

Helen Paik
School of Computer Science and Engineering

University of New South Wales
Week 1

Who’s Who in COMP9322

Lecturer-in-Charge

Helen Paik (hpaik@cse)

Office: K17 401A, Ext: 54095

Consultation times: see Course Homepage

Course Homepage:

http://www.cse.unsw.edu.au/~cs9322

http://www.cse.unsw.edu.au/~cs9322

Course Aims
from building a web site (cs9321) to building web services (cs9322) ...

context: “global/distributed/complex” business applications

you should be able to:

understand the concept of services and business processes

articulate the motivation behind web service-based technologies

apply the knowledge in practical situations

This course aims to provide students with a deep understanding of
SOA, service-orientation paradigm, business processes and Web
services as an implementation technology

Business Partner
A

Business Partner
B

Business Partner
C

What are we learning? - course context

complex/distributed/
global information
systems in
enterprises

Pick any sizeable
organisation: it has
many departments
performing different
functionality - in silos,
often supported by
software systems

A Typical Purchase Order Process

In reality: communication/coordination between the silos needed

An example of (real) Purchase Order Process

The problem at a glance:
How do we make this easy …

1

MTAT.03.229

Enterprise System Integration

Lecture 1: Introduction

Marlon Dumas

marlon.dumas ät ut.ee

Part I

Organizational Issues

3

Course Objective

The objective of this course is to introduce the principles

and methods of software architecture in an enterprise

environment, with an emphasis on the design,

management and integration of large-scale information

and software systems.

The course will introduce modern approaches to

enterprise system integration, including service-oriented

architectures. In addition to technical aspects, the course

will also cover organizational aspects of enterprise

system integration, including architecture governance

and Business-IT alignment.

4

The Problem at a Glance

SupplierPurchaser

Order

Order Response

Change Order

Change Confirmation

Shipment Notice

Invoice

Procurement

Supplier

Relationship

Management

Financial

Approval

Accounts Payable

Inventory

Planning

Inventory

Management

Logistics

Customer

Relationships

Management

Invoicing

Order

tracking

5

But if it’s working, why should I fix it?

Information

Technology

Change and

innovation

Yields

Yields

Business

Value

Index Group (1982)

Enables

6

Structure of the Course

• Lectures (Mondays, weeks 1-15)

• Labs (Wednesdays, weeks 1-15)

– Some labs on Java (using NetBeans & Glassfish)

– Others on .Net (Sandstorm server)

• Project (weeks 8-15, presentation on 15 Dec.)

• Readings (weeks 1-14) – Examinable!

• See details on the Wiki pages:

– http://courses.cs.ut.ee/2008/esi

• Make sure you register to the course mailing list

– aine.mtat.03.229@lists.ut.ee

So, what are we learning, again …?

What do we do when we have a complex problem? — we abstract:

... we need a model

... and methodology for model design

... and implementation/execution platform for realising the model

Service-orientation or Service Oriented Architecture is such an approach.

An analogy:

OO allows us to model/implement software components as objects,

SO allows us to model/implement software systems in terms of services

The evolution of programming
abstractions

Lines of code vs. Services - consider software building exercise as
‘building services’, ‘discovering services’ and ‘combining services’

Functions,
Procedures Objects Modules Services Components

Evolution of Programming Abstractions: Dr Marcello La Rosa, QUT,
Introduction to Web Services

9

The evolution of programming
abstractions

In SOA, we talk about software as a service ... That is, SOA is about
building software systems composed of a collection of (software)
services

A software service:

A software asset that is deployed at an endpoint and is continuously
maintained by a provider for user by one or multiple clients

Services have explicit contracts that establish their purpose and
how they should be used

Software services are (supposed to be) reusable (“compose-able”)

So, what are we learning again …?

Simplified view of

Service
Orientation:

Service-orientation - a way of integrating your business as a set of
linked services. If you can define the services, you can begin to link the
services to realise more complicated 'services'

Learning Outcomes
At the end of this course, you will know (hopefully!)

How to describe the problem area and motivation behind SO
paradigm.

How to design and implement services

How to design and implement business processes using services **

Also: you should know different 'flavours' of services (WS-*, RESTful,
Data Service)

**: Generally speaking, we identify a repeatable task within a business
process as a service … the tasks are services and the business process
is a composition of services.

Weekly Schedule … Assessment

Weekly Schedule: http://www.cse.unsw.edu.au/~cs9322

Assessment:

55% formal written exam: individual assessment.

35% on assignment work: group assessment (group
of 1 or 2 only). Two assignments.

10% on three to 4-5 online quizzes (WebCMS-
based quiz system, ‘open’ test)

Final Mark = quizzes + assignments + exam

Labs and Assignments
Labs:

A self-guided lab exercise is released (roughly) every two weeks from Week 2

You can do them in your own time.

You are encouraged to use lab consultation times, messageboard if help is
needed.

Every week, after the lecture, there is a lab consultation at Piano (6-7.30pm)

Assignments:

Two assignments (35 marks total ...)

The assignments are group-based (group of 1 or 2 only).

Exact assessment methods/marking criteria to be announced in each
assignment

Supplementary Exam Policy

Supp Exam is only available to students who:

DID NOT attend the final exam

Have a good excuse for not attending

Have documentation for the excuse

Submit special consideration within 72 hours

Everybody gets exactly one chance to pass the final exam. For
CSE supplementary assessment policy, follow the link in the
course outline.

Plagiarism

UNSW (and CSE) considers plagiarism as a serious offence. A
student who plagiarises will be dealt with by the school and
possibly by the university.

More information about the school policy on this can be found at:

www.cse.unsw.edu.au/~studentoffice/policies, follow the link
“Originality of Assignment Submissions”

UNSW’s learning centre also provides an online-resource
containing information about plagiarism which you should be
familiar with already

http://www.cse.unsw.edu.au/~student

Course Reference Books
The course content is based on a number of books. They are
listed here as recommended textbooks.

(Alonso Book) Web Services by G Alonso, F Casati H Kuno
and V Machiraju, Springer

(Webber Book) Developing Enterprise Web Services: An
Architect’s Guide by S Chatterjee and J Webber, Prentice Hall

(Blue Erl Book) Service-Oriented Architecture: Concepts,
Technology, and Design by Thomas Erl, Prentice Hall

(Mike Book) Web Services: Principles and Technology by
Michael Papazoglou, Prentice Hall

A Few Other Things …
Use course homepage

Read the course notice board

Participate in the MessageBoard discussions

Collaborative, helping-each-other-out environment

Questions on Assignments/Labs -> USE Messageboard

Use of laptops during lectures (?)

Use of mobile phones during lectures (!)

Introduction to SOA
Backgrounds

Week 1 Objectives
Motivation

Web services are a form of distributed information system

Considering how distributed information system evolved help us
understand the background of the technology

Learning Outcomes (Week 1)

Identify different conceptual layers in distributed information systems

Describe different architecture of distributed information systems

Explain the communication patterns in distributed information
systems

Reference: (Alonso Book) Chapters 1-3

The problem at a glance:
how do we make this easy

How do we make this easy …

1

MTAT.03.229

Enterprise System Integration

Lecture 1: Introduction

Marlon Dumas

marlon.dumas ät ut.ee

Part I

Organizational Issues

3

Course Objective

The objective of this course is to introduce the principles

and methods of software architecture in an enterprise

environment, with an emphasis on the design,

management and integration of large-scale information

and software systems.

The course will introduce modern approaches to

enterprise system integration, including service-oriented

architectures. In addition to technical aspects, the course

will also cover organizational aspects of enterprise

system integration, including architecture governance

and Business-IT alignment.

4

The Problem at a Glance

SupplierPurchaser

Order

Order Response

Change Order

Change Confirmation

Shipment Notice

Invoice

Procurement

Supplier

Relationship

Management

Financial

Approval

Accounts Payable

Inventory

Planning

Inventory

Management

Logistics

Customer

Relationships

Management

Invoicing

Order

tracking

5

But if it’s working, why should I fix it?

Information

Technology

Change and

innovation

Yields

Yields

Business

Value

Index Group (1982)

Enables

6

Structure of the Course

• Lectures (Mondays, weeks 1-15)

• Labs (Wednesdays, weeks 1-15)

– Some labs on Java (using NetBeans & Glassfish)

– Others on .Net (Sandstorm server)

• Project (weeks 8-15, presentation on 15 Dec.)

• Readings (weeks 1-14) – Examinable!

• See details on the Wiki pages:

– http://courses.cs.ut.ee/2008/esi

• Make sure you register to the course mailing list

– aine.mtat.03.229@lists.ut.ee

Enterprise Application Integration (EAI)

Motivations: Streamlining business operations, globalisation, competition,
mergers and acquisition, new business models, technology development (e-
commerce), etc.

EAI definition by Hewlett Packard: A set of services and solutions for brining
together disparate application and business processes as needed to meet
the diverse information requirements of your customers, partners, suppliers
and employees.

Problems: systems to be integrated are not homogeneous.

they are individually developed (ad-hoc) systems overtime

some are “off-the-shelf” packages

different execution platforms, technologies and business rules

An example of (real) Purchase Order Process

Conceptual Design of Information
Systems: Layers/Tiers

PL: formatting, presenting
information to clients (e.g., JSP)

AL: determines what the system
actually does, enforcing the
business rules and processes
(e.g., a program that implements
customer registration)

RM: storage, indexing, and
retrieval of the data necessary to
support the application logic layer
(e.g, RDBMS)

Information System Design: Top-down Design

Information System Design: Top-down Design

Characteristics of Top-down Design

goals: Focus first on the high-level goals, then proceed to define
everything required to achieve those goals

tightly coupled: To simplify system development/maintenance,
distributed nodes are usually created to run on homogeneous
computing environments. Functionality of one component
depends on the functionality of other components.

more control: easy to address both functional and non-
functional (e.g., performance) issues

from-scratch-development: few information systems nowadays
can be developed this way

Information System Design: Legacy Systems

Legacy systems: a system that is
to be used for purpose or context
other than the one originally
intended

The functionality provided by
legacy systems is predefined and
cannot be modified

The design is driven by
characteristics of the lower layers

Information System Design: Bottom-Up Design

Information System Design: Bottom-Up Design

Characteristics of Bottom-Up
Design

legacy systems: In a bottom up design, many of the basic
components already exist. These are stand-alone systems
which need to be integrated into a new system.

loosely coupled: The components do not necessarily
cease to work as stand-alone components. Often old
applications continue running at the same time as new
applications.

wider usage: This approach is used widely because legacy
systems exist and typically cannot be easily replaced.

Information System Design
Two approaches: Top-down, Bottom-
up

Note for SOA (web services):

Nearly without exception, most
distributed information systems
these days are the result of a
bottom-up design

The advantage of SOA lies in their
ability to make bottom-up design
simpler to implement and maintain

SOA

Architecture of an Information System

users/programs access the system
through “dumb” terminals, whose
display is controlled by the information
system (e.g., mainframes).

(+) simple, highly optimised,
centralised, no deployment or
portability issue

(-) no entry point except the client
terminals (hard to be integrated into
other systems)

When the conceptual layers are implemented, they can be combined or
distributed in different layers - forming ‘Tiers’

1-Tier

Users/programs access the
system through terminals
but what is displayed and
how it appears is controlled
by the server.

http://www.theaustralian.com.au/business/technology/westpacs-mainframe-move-a-winner/story-fna12gpc-1226487607256

Architecture of an Information System

client can have more sophisticated
presentation layers while also
saving computer resources on the
server.

The resource manager still only
sees one client: the application
logic. This helps with performance
since there are no client
connections/sessions

thin or fat clients, depending on the
range of functionality client handles

on the back of increasing client computing power (eg., PC),
development of Local Area Network, etc.

2-Tier:
client/
server

Key developments in distributed
systems by 2-Tier

the notion of “service” (i.e., the
client invokes a service
implemented by the server)

the notion of public service
interface (how the client can
invoke a given service)

The concept of API -> can
support diverse clients,
change/evolve the server
without affecting the clients.

Problems with 2-Tier (in terms of integration)

For a client to be integrated to
different servers, it needs to
understand the API of each server

Since the underlying servers do
not know each other, the client
must combine data from both
servers, deal with exceptions and
failures of the servers, coordinate
the access to the servers and so
on ...

Client gets bigger and bigger and
bigger ...

Architecture of an Information System

Added - application logic layer (aka
middleware)

introduces an additional layer of business
logic encompassing all underlying systems

By doing this, a middleware system:

simplifies the design of the clients by
reducing the number of interfaces,

provides transparent access to the
underlying systems,

takes care of locating resources,
accessing them, and gathering results.

3-Tier:middleware

The Middleware in 3-Tier

It enables transparent access to the underlying systems, the
integration of systems built using other architectures

Architecture of an Information System

created by either connecting
several 3-tier systems and/or by
adding a Web layer

normally, web layer is incorporated
into a presentation layer that
resides on the server side (part of
the middleware infrastructure)

The addition of the Web layer led to
the notion of “application servers”
which was used to refer to
middleware platforms supporting
Web access

N-Tier

Application servers: a middleware platform that provides
support for Web access.

App Server eg., J2EE

N-Tier Systems …
Typically consist of a large collection of networks, gateways,
individual computers, clusters of computers and links between
systems ...

Game of Boxes and Arrow

There is no problem in
system design that
cannot be solved by
adding a level of
indirection. There is no
performance problem
that cannot be solved by
removing a level of
indirection

Each box represents a part of the system. Each
arrow represents a connection between two parts of
the system.

The more boxes, the more modular the system:
more opportunities for distribution and parallelism.
This allows encapsulation, component based
design, reuse.

The more boxes, the more arrows: more sessions
(connections) need to be maintained, more
coordination is necessary. The system becomes
more complex to monitor and manage.

The more boxes, the greater the number of context
switches and intermediate steps to go through
before one gets to the data. Performance suffers
considerably.

Architecture of an Information System
Four different architecture: 1, 2, 3 and N-Tier

2-Tier: introduced key developments in software design concepts (such as
API, server-side services)

3-Tier: all about middleware (often refer to as “integration layer”)

N-Tier: could be 3-Tier plus Web-enablement layer or integration of many 3-
Tier systems (modern application servers)

Something to note for Web services:

More tiers, more boxes and more arrows -> increased complexity

Web services aim to reduce the complexity in 3-Tier/N-Tier architectures.

Web services add a new tier to middleware (integration layer) which is
commonly understood by all parties (i.e., major standardisation effort)

Communication in a Information System

When we separate layers and tiers in an information
system, we assume that there is some form of
communication between all these elements.

There are two communication patterns widely used:
synchronous and asynchronous.

synchronous: blocking interaction

asynchronous: non blocking interaction

Communication in an Information System

blocking calls (client waits while server processes a
request)

Characteristics of Blocking Calls
(+) simple to understand and implement

logically easier to understand as the code follow natural organisation of
procedures or method calls

easier to debug (e.g., strong correlation between the code that makes the call
and the code that deals with the response)

common and widely used in traditional middleware

typical request-response type interactions

(-) expensive and waste of resources

connection overhead (new connection for each request)

calling thread *must* wait

synchronous interaction requires both parties to be “on-line” -> higher
probability of failures,

not suitable if the number of tiers increases

Overhead of Synchronisation …
Synchronous invocations require to maintain a
session between the caller and the receiver.

Maintaining sessions is expensive and consumes
CPU resources. For this reason, client/server
systems often resort to connection pooling to
optimise resource utilisation

have a pool of open connections

associate a thread with each connection

allocate connections as needed

Synchronous interaction requires a context for
each call and a context management system for all
incoming calls. The context needs to be passed
around with each call as it identifies the session,
the client, and the nature of the interaction

What to do when it fails …?
If the client or the server fail, the context is lost and
resynchronisation might be difficult.

failure occurred before 1, nothing has happened

failure occurs after 1 but before 2 (receiver
crashes), then the request is lost

failure happens after 2 but before 3, side effects
may cause inconsistencies

failure occurs after 3 but before 4, the response
is lost but the action has been performed (do it
again?)

Who is responsible for finding out what happened?

Finding out when the failure took place may not be
easy. Worse still, if there is a chain of invocations
(e.g., a client calls a server that calls another server)
the failure can occur anywhere along the chain.

Two solutions ….
Client/Server systems and middleware platforms provide a
number of mechanisms to deal with the problems created by
synchronous interaction:

Transactional interaction: to enforce exactly once execution
semantics and enable more complex interactions with some
execution guarantees

Service replication and load balancing: to prevent the service
from becoming unavailable when there is a failure (however,
the recovery at the client side is still a problem of the client)

Asynchronous interaction ….

Communication in an Information System

non blocking calls (queues) allow the caller to continue working
while the request is processed.

Characteristics of Non Blocking Calls
a call to the server returns immediately

client can continue to run and occasionally check with server to see if a
response is ready

typically implemented via message queues

(-) adds complexity to client architecture

(+) more modular (less dependancy between communicating parties),

more natural way to implement complex interactions between
heterogeneous systems

more suitable for non request-response type communications (e.g.,
multicast, publish/subscribe)

Summary

Can you name two approaches to information system
design?

Can you identify the layers in information system?

When implemented, the conceptual layers are combined/
distributed in many ways and form (……)?

Can you name a key concept born out of 2-Tier architecture?

Where is middleware in the 3-Tier architecture?

Can you give me an example of non blocking communication
pattern?

From Next Week …
Let’s have a look at the course schedule

again.

