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Abstract

Farassat’s formulations provide an acoustic prediction at an observer location provided a source surface,
including motion and flow conditions. This paper presents compact forms for the monopole term of several
of Farassat’s formulations. When the physical surface is elongated, such as the case of a high aspect ratio
rotorcraft blade, compact forms can be derived which are shown to be a function of the blade cross sectional
area by reducing the computation from a surface integral to a line integral. The compact forms of all
formulations are applied to two example cases: a short span wing with constant airfoil cross section moving
at three forward flight Mach numbers and a rotor at two advance ratios. Acoustic pressure time histories
and power spectral densities of monopole noise predicted from the compact forms of all the formulations
at several observer positions are shown to compare very closely to the predictions from their non-compact
counterparts. A study on the influence of rotorcraft blade shape on the high frequency portion of the power
spectral density shows that there is a direct correlation between the aspect ratio of the airfoil and the error
incurred by using the compact form. Finally, a prediction of pressure gradient from the non-compact and
compact forms of the thickness term of Formulation G1A shows that using the compact forms results in
a 99.6% improvement in computation time, which will be critical when noise is incorporated into a design
environment.

Nomenclature

English:

c speed of sound

f integration surface defined by f = 0

f integration line (quarter chord)

Fi compact line dipole source term

J Jacobian transformation of surface

H(x) Heaviside function

K Jacobian transformation of line

Li surface dipole source term

M Mach number

ni outward directed unit normal vector

p′ acoustic pressure

pij compressive stress tensor

Q monopole source term

r radiation vector

t observer time

Tij quadrupole source term

u time-independent coordinate of line

u1, u2 time-independent coordinate of surface

ui, vi flow and surface velocity

Greek:

δ(x) Dirac delta function

δij Kronecker delta

Λ airfoil cross section

Φ acoustic velocity potential

Ψ volume enclosed by f = 0, Ψ = Λ ∗K
ρ fluid density

τ retarded time

Subscript:

m monopole term

M Mach direction

n unit normal direction

r radiation direction

∞ freestream quantity

Superscript:

˙ source time derivative
′ perturbation quantity

¯ generalized derivative

Symbol:

�2 wave operator, 1/c2∞∂2
/∂t2 − ∂2

/∂xi∂xj
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I. Introduction

Community noise has been an ongoing problem for aircraft and is projected to be a major concern in
the future due to increased air traffic.1 Both conventional and unconventional aircraft designs continue to
be evaluated,2,3 in which assessments are performed using aircraft noise prediction and measured data if
available. Aircraft designs increasingly include acoustics in the design process, and therefore require many
estimations of the noise without the fine detail that is required to do an in-depth acoustic assessment. This
leads to the requirement of lower-order noise predictions based on assumptions that provide not only an
estimation of the noise, but can include trends and error estimation as well, all with a quick turnaround
time.

NASA initiated the development of the Aircraft NOise Prediction Program (ANOPP)4,5 approximately
40 years ago to provide the U.S. Government with the ability to assess aircraft noise. The prediction
methodologies that have been implemented within ANOPP were developed as empirical or semi-empirical
models, using the best available experimental data sets and acoustic prediction methods. Recently, NASA
developed the second generation Aircraft NOise Prediction Program (ANOPP2).6 ANOPP2, while including
ANOPP’s capability and history, pushes the bounds of noise prediction by allowing for a mixed-fidelity noise
computation, one that allows for higher-order methods to be combined with lower-order methods in a unified
system, specifically for design. This mixed-fidelity design is beneficial when integrating acoustics into a multi-
disciplinary environment such as Phoenix Integration’s ModelCenterr or NASA’s OpenMDAO,7 and effort
has begun on that front. Meanwhile, methods can be implemented into ANOPP2 that can predict the noise
based on lower-order algorithms for certain types of applications. One such application is rotorcraft noise.

Rotorcraft noise can be estimated by several techniques, including those based on field measurements
and computations, and can be separated into two terms: the monopole (or thickness) term and the dipole
(or loading) term (the quadrupole term is not considered here). The monopole term is caused by the
displacement of the medium as the blade moves through the atmosphere, and the dipole term is caused by
the force that is exerted by the blade. The information required to predict the monopole term includes
the blade geometrical properties and its motion, while the information required to predict the dipole term
also includes the surface pressures on the blade. The blade surface pressures for rotorcraft are challenging
to predict due to the complex blade motions (including blade deformation), blade-wake interactions, high
tip speeds, and complicated near-field flow features due to the proximity of the rotorcraft body. Once the
pressure on the blades is determined, the noise can be predicted using Farassat’s Formulation 1A8 which
assumes a uniform stationary medium and applies a free-space Green’s function to propagate the noise from
the source to the observer. When using comprehensive codes, such as CAMRAD II,9 that provide a lifting
line coinciding with the rotor blade, a compact form of the dipole term can be used to predict the dipole
component of the noise. However, the same compact assumption technique cannot be directly applied to
the monopole term, and previous analyses include a non-compact monopole term combined with a compact
dipole term.10

Recently, there has been an effort to apply the compact assumption to the monopole term.11 This
compact assumption of the monopole term, called the dual-compact loading approach, relies on a formulation
by Isom12 and has been shown to be effective in understanding in-plane rotor noise and reducing computation
time compared to non-compact forms. However, the compact assumption presented in Ref. 11 is only applied
to Formulation 1A and is dependent on the placement of the dual compact lines, both of which require
computations, effectively doubling a single line computation such as in the compact dipole noise term.

This paper introduces compact forms of the monopole term of several of Farassat’s formulations based
on an identity introduced by Succi.13 Section II will show the derivation of the compact assumption when
applied to the monopole term of three types of formulations: acoustic pressure, pressure gradient, and
acoustic velocity. Section III will demonstrate the compact forms of the formulations by applying them to
two example cases: a short span wing segment undergoing constant forward flight and a rotorcraft at two
advance ratios. Section IV will explore the effect of blade shape on high frequency fall off rate and estimate
error incurred when utilizing the compact assumption. Finally, Section V demonstrates the computational
efficiency by applying the compact assumption to a rotor near a body.
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II. Compact Monopole Formulations

The derivation of the Ffowcs Williams and Hawkings (FW-H) equation14 uses generalized function the-
ory15 and Lighthill’s stress tensor16,17 to define the acoustic pressure caused by a noise-generating mechanism.
The FW-H equation, Eq. 1, includes two surface source terms and one volume source term. The surface
source terms are identified by the delta function, δ(x), and the volume source term is identified by the Heav-
iside function, H(x). The source terms on the right hand side of the FW-H equation often are called the
monopole, dipole, and quadrupole terms respectively. The surface f , shown in Fig. 1, can be impermeable,
such as a rotor blade surface, or permeable, such as a computational surface surrounding the entire rotor.
The general source terms are shown in Eq. 2, and the simplified source terms valid for impermeable surfaces
are shown in Eq 3. Both forms of the FW-H equation are used frequently with a Computational Fluid
Dynamics (CFD) solution which provides the flow properties. The CFD solution calculates the near-field
hydrodynamics, acoustic generation, and acoustic propagation inside the surface, and the FW-H equation
uses the information on the surface to propagate the noise to the observer. Integral solutions of the FW-H
equation, often assuming a free space Green’s function, represent the noise propagation from the surface to
an observer location in the near- or far-field. The CFD/FW-H approach has been applied to many different
types of geometries such as helicopter rotors, open rotors, landing gear, slats, flaps, trailing edges, jets, and
wind turbines.18–24

�̄2p′ =
∂

∂t
{Qδ(f)} − ∂

∂xi
{Liδ(f)}+

∂̄2

∂xi∂xj
{TijH(f)} (1)

Q = ρ∞vn + ρ(un − vn), Li = pijnj + ρui(un − vn), Tij = ρuiuj + pij − c2∞ρ′δij (2)

Q = ρ∞vn, Li = pijnj , Tij = ρuiuj + pij − c2∞ρ′δij (3)

Figure 1. Description of a surface in motion by f(x, t) = 0, n̄ = ∂f
∂x

, f(x, t) < 0 inside the surface, and f(x, t) > 0
outside the surface.

There are several solutions to the FW-H equation proposed by Farassat, including the most frequently
used Formulation 1A.8 During his time in the Aeroacoustics Branch at the NASA Langley Research Center,
Farassat25 proposed that any general solution to the FW-H equation satisfy the following requirements which
are taken verbatim from Ref. 25:

1. There must be no restrictions on the geometry of the noise generator (blades, airframe, etc.). This
means that results for a flat (infinitely thin) plate are not acceptable.

2. There must be no restrictions on the kinematics of the noise generator. This means that the motion
of the source cannot be restricted to lie on a straight line or a helicoidal surface.

3. The result must be valid in the near and far fields.

4. One should be able to calculate the noise for an observer that is stationary in the medium, or in motion
with the aircraft.

Once a derivation has been developed using the above assumptions, any deviation that violates one of
the assumptions is a subset of the more general solution. In the current analysis, the compact assumption is
applied to the monopole term of several formulations. The dipole is not addressed here, and the quadrupole
term is excluded from all of Farassat’s Formulations by definition. The compact assumption breaks the first
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and third constraint, and therefore, any solution presented here is a compact form of an existing formulation,
not a new formulation. Even though the compact form of the dipole term of Formulation 1A has been utilized
extensively, to the authors knowledge, the compact forms of the other Formulations have not been published.
For completeness, the dipole term of the compact form of each of the formulations included here is listed
in the Appendix. It is worth noting that the compact forms of the dipole term do not follow the same
derivation presented here, but only utilizes the compact assumption as it applies to the frequency of the
pressure fluctuations on the surface and the ratio of chord length to radiation distance.

Derivation

Following a derivation from Farassat,8 the noise from the monopole term is the solution of the following:

�̄2p′m(xi, t) =
∂

∂t

[
ρ∞vn|∇f |δ(f)

]
(4)

where f = 0 is the surface. The surface can be written as a volume of sources by recognizing that the rate
of change of the volume enclosed by the surface is relatable to the velocity of the surface, shown by Eq. 5.13

∂

∂t

[
1−H(f)

]
= vn|∇f |δ(f) (5)

Therefore, the monopole term is proportional to the second derivative with respect to time of the volume
encapsulated by the surface.

�̄2p′m(xi, t) = ρ∞
∂2

∂t2

[
1−H(f)

]
(6)

Using a free space Green’s function, the acoustic pressure at the observer location is a function of the
volume encapsulated by the retarded surface (Σ-surface) and the distance from the volume to the observer
location (r(xi, t; yi, τ) = |xi(t)− yi(τ)|). Assuming an elongated body, such as a rotor blade, and applying a
geometrically compact assumption (rmin � blade chord), the monopole term can be reduced to an integration
along a line of the cross sectional area (Λ), where dL is the differential length of the compact line placed at
the quarter chord defined by f = 0.

4πp′m(xi, t) = ρ∞
∂2

∂t2

∫
f<0

[
1

r|1−Mr|
dy

]
ret

≈ ρ∞
∂2

∂t2

∫
f=0

[
Λ

r|1−Mr|

]
ret

dL (7)

Equation 7 is the starting point for the compact forms of Farassat’s formulations derived in this paper. The
derivations are simplified by using a shorthand notation introduced by Lee26 and include deformation of the
source surface and compact line,27 outlined in Eq. 8.

R(n,m) = r−n(1−Mr)
−m dS = Jdu1du2 dL = Kdu (8)

Using the above shorthand notation, Eq. 7 is reformulated as

4π

ρ∞
p′m(xi, t) =

∂2

∂t2

∫
f=0

[
ΛKR(1, 1)

]
ret

du (9)

In the following sections, the compact and non-compact forms of the formulations implemented in
ANOPP26 are shown. These are broken down into three groups: pressure formulations, pressure gradi-
ent formulations, and velocity formulations. The pressure formulations include Formulation 1, 1A, and 2B.
The pressure gradient formulations include Formulation G0, G1, and G1A. And finally, the velocity formula-
tion is Formulation V1A. Each formulation is accompanied by a set of coefficients that simplify the equation.
These are denoted by subscript, for example A1A is the first coefficient of Formulation 1A. The coefficients
that accompany the non-compact forms are in equation type face (A1A) and the compact counterpart is in
text type face (A1A).
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A. Pressure Formulations

Equation 10 is the non-compact form of Formulation 1 taken directly from Farassat.8 Using the derivation
outlined in the previous section, the compact form of the monopole term of Formulation 1 is Eq. 11

4πpm(xi, t) =
∂

∂t

∫
f=0

[
(QJ)A1

]
ret

du1du2 (10)

A1 = R(1, 1)

4π

ρ∞
pm(xi, t) =

∂2

∂t2

∫
f=0

[
(ΛK)A1

]
ret

du (11)

A1 = R(1, 1)

Applying the identity ∂/∂t = R(0, 1)∂/∂τ, the non-compact form of Formulation 1A is shown in Eq. 12
and the compact form is Eq. 13.

4πpm(xi, t) =

∫
f=0

[
(Q̇J +QJ̇)A1A + (QJ)B1A

]
ret

du1du2 (12)

A1A = R(0, 1)A1 B1A = R(0, 1)Ȧ1

4π

ρ∞
pm(xi, t) =

∫
f=0

[
(Λ̈K + 2Λ̇K̇ + ΛK̈)A1A + (Λ̇K + ΛK̇)B1A + (ΛK)C1A

]
ret

du (13)

A1A = R(0, 2)A1 B1A = R(0, 2)Ȧ1 +R(0, 1)Ṙ(0, 1)A1

C1A = R(0, 2)Ä1 +R(0, 1)Ṙ(0, 1)Ȧ1

Formulation 2B is a broadband formulation proposed by Farassat and Casper25 that computes the acous-
tic pressure spectrum via the velocity potential Φ. The non-compact and compact forms of monopole com-
ponent of Formulation 2B are shown in Eq. 14 and 16, respectively.

p̂′(xi, f) = −2πifρ∞Φ̂(xi, f) (14)

4πρ∞Φm = −
∫
f=0

[
(QJ)A2B

]
ret

du1du2 (15)

A2B = R(1, 1)

4πΦm(xi, t) = − ∂

∂t

∫
f=0

[
(ΛK)A2B

]
ret

du (16)

A2B = R(1, 1)

B. Pressure Gradient Formulations

Pressure gradient formulations are used in conjunction with scattering algorithms, such as the FAST scat-
tering code,28 to account for scattering and shielding of noise caused by an object, such as an aircraft, in
proximity to the sound source. Pressure gradient formulations provide the incident field on the scattering
body and at the observer while the scattering codes provide the scattered field.26 The sum of the incident
and scattered fields is then the total noise at the observer. There are currently three pressure gradient for-
mulations implemented in ANOPP2: Formulation G0, G1, and G1A. The non-compact and compact forms
of Formulation G0 are shown in Eq. 17 and 18, respectively.

4πc∞
∂p′m
∂xi

(xi, t) = − ∂2

∂t2

∫
f=0

[
(QJ)AG0,i

]
ret

du1du2 −
∂

∂t

∫
f=0

[
(QJ)BG0,i

]
ret

du1du2 (17)

AG0,i = R(1, 1)r̂i BG0,i = c∞R(2, 1)r̂i

4π
c∞
ρ∞

∂p′m
∂xi

(xi, t) = − ∂3

∂t3

∫
f=0

[
(ΛK)AG0,i

]
ret

du− ∂2

∂t2

∫
f=0

[
(ΛK)BG0,i

]
ret

du (18)
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AG0,i = R(1, 1)r̂i BG0,i = c∞R(2, 1)r̂i

The non-compact and compact forms of the monopole component of Formulation G1 are shown in Eq. 19
and 20, respectively.

4πc∞
∂p′m
∂xi

(xi, t) = − ∂

∂t

∫
f=0

[
(Q̇J +QJ̇)AG1,i + (QJ)BG1,i

]
ret

du1du2 (19)

AG1,i = R(0, 1)AG0,i BG1,i = R(0, 1)ȦG0,i +BG0,i

4π
c∞
ρ∞

∂p′m
∂xi

(xi, t) = − ∂

∂t

∫
f=0

[
(Λ̈K + 2Λ̇K̇ + ΛK̈)AG1,i + (Λ̇K + ΛK̇)BG1,i + (ΛK)CG1,i

]
ret

du (20)

AG1,i = R(0, 2)AG0,i BG1,i = R(0, 1)(Ṙ(0, 1)AG0,i + BG0,i)

CG1,i = R(0, 2)ÄG0,i +R(0, 1)Ṙ(0, 1)ȦG0,i +R(0, 1)ḂG0,i

And finally, the non-compact and compact forms of monopole component of Formulation G1A are shown in
Eq. 21 and 22, respectively.

4πc∞
∂p′m
∂xi

(xi, t) = −
∫
f=0

[
(Q̈J + 2Q̇J̇ +QJ̈)AG1A,i + (Q̇J +QJ̇)BG1A,i + (QJ)CG1A,i

]
ret

du1du2 (21)

AG1A,i = R(0, 1)AG1,i BG1A,i = R(0, 1)(ȦG1,i +BG1,i) CG1A,i = R(0, 1)ḂG1,i

4π
c∞
ρ∞

∂p′m
∂xi

(xi, t) = −
∫
f=0

[
( ˙̈ΛK + 3Λ̈K̇ + 3Λ̇K̈ + Λ ˙̈K)AG1A,i+

(Λ̈K + 2Λ̇K̇ + ΛK̈)BG1A,i + (Λ̇K + ΛK̇)CG1A,i + (ΛK)DG1A,i

]
ret

du

(22)

AG1A,i = R(0, 1)AG1,i BG1A,i = R(0, 1)(ȦG1,i + BG1,i) CG1A,i = R(0, 1)(ḂG1,i + CG1,i)

DG1A,i = R(0, 1)ĊG1,i

C. Velocity Formulations

The most recent formulation implemented in ANOPP2 is the velocity formulation, V1A.29 This formulation
provides the acoustic velocity at an observer position. The non-compact and compact forms of the monopole
component of Formulation V1A are shown in Eq. 23 and 24, respectively.

4πρ∞c∞u
′
i,m(xi, t) =

∫
f=0

[
(Q̇J +QJ̇)AV 1A,i + (QJ)BV 1A,i

]
ret

du1du2 (23)

AV 1A,i = R(0, 1)AG0,i BV 1A,i = R(0, 1)ȦG0,i +BG0,i

4πc∞u
′
i,m(xi, t) =

∫
f=0

[
(Λ̈K + 2Λ̇K̇ + ΛK̈)AV 1A,i + (Λ̇K + ΛK̇)BV 1A,i + (ΛK)CV 1A,i

]
ret

du (24)

AV 1A,i = R(0, 2)AG0,i BV 1A,i = R(0, 1)Ṙ(0, 1)AG0,i +R(0, 1)BG0,i

CV 1A,i = R(0, 2)ÄG0,i +R(0, 1)Ṙ(0, 1)ȦG0,i +R(0, 1)ḂG0,i

III. Demonstration

This section demonstrates the compact forms of the formulations by predicting the noise from a wing
with constant airfoil cross section undergoing forward flight at three different Mach numbers and a rotorcraft
undergoing forward flight at two different advance ratios.
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A. Rectilinear Flight

The first example includes a wing with NACA 23012 airfoil cross section at zero angle of attack undergoing
forward flight at Mach numbers of 0.25, 0.75, and 0.95. The wing is 10 meters in span with a 0.5 meter chord
length. There are two stationary observer positions: directly below the flight path and to the side when
τ = 0. The observers are 7.5 meters below and 7.5 meters to the side of the center of the wing at the closest
point, shown in Fig. 2. Figure 3 shows the acoustic pressure from the compact and non-compact forms of the
time-domain pressure formulations (Formulation 1 and 1A). The differences are negligible. Figure 4 shows
the power spectral density from the compact and non-compact forms of Formulation 1, 1A, and 2B. The
differences in the compact and non-compact forms are only apparent at the higher bin frequencies, above 100
Hz, when the wing is moving at Mach 0.75 and 0.95. Figure 5 shows the compact and non-compact forms
of Formulation V1A. The observer directly below the flight path results in an X2 component of 0, and the
observer to the side results in an X3 component of 0 and are therefore not shown due to the symmetry of the
set up. The differences between the compact and non-compact results are negligible. Figures 6 and 7 show
the compact and non-compact forms of the pressure gradient formulations. Similar to the other time-domain
formulations, the differences are very small.

Figure 2. Schematic of wing segment and observer positions. Wing segment moving out of page centered at
(0.0, 0.0, 0.0); sideline observer at (0.0, -7.5, 0.0); flyover observer at (0.0, 0.0, -7.5).

B. Rotor

The second demonstration case presented here is a rotor with 4 blades that have NACA 0012 airfoil cross
sections undergoing forward flight at two advance ratios. The radius of the rotor is ten meters, and each
blade has a chord length of 0.5 meters. The rotation rate and forward flight speed are specified such that the
advancing tip Mach numbers are 0.76 and 0.9. The observer positions are 100 meters from the rotor hub in
the tip path plane of the rotor. The observers are moving at the same forward speed as the rotor. Figure 8
shows the acoustic pressure time history at 8 observer positions around the rotor when the rotor is moving at
an advance ratio of 0.1 with an advancing tip Mach number of 0.76. For brevity, only the non-compact and
compact forms of Formulation 1A are shown. The differences between the compact and non-compact forms
are extremely small. Figure 9 shows the acoustic pressure for the same observer positions but for a rotor
moving at an advance ratio of 0.3 with an advancing tip Mach number of 0.9. For most observer positions
the differences between the acoustic pressure predicted by the compact and non-compact formulations are
very small. The exceptions are at observer positions directly ahead of the rotor (Ψ = 135o, 180o, and 225o).
At these observer positions, the compact form overpredicts the negative peak. Figure 10 shows the power
spectral density at the same observer positions as Fig. 9. While the noise at the lower frequencies, where it is
the strongest, is predicted well, the prediction by the compact form of Formulation 1A falls off at a different
rate when compared to the non-compact form. As a result, the higher frequencies are overpredicted.
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Figure 3. Acoustic pressure time history predicted by non-compact and compact forms of Formulations 1 and
1A. Sideline observer shown in left column and flyover observer shown in right column.
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Figure 4. Power spectral density predicted by non-compact and compact forms of Formulations 1, 1A, and
2B. Sideline observer shown in left column and flyover observer shown in right column.
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Figure 5. Acoustic velocity predicted by non-compact and compact forms of Formulation V1A. X1 and X2

components for sideline (left column) and X1 an d X3 components for flyover (right column) observer positions.
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Figure 6. Pressure gradient predicted by non-compact and compact forms of Formulations G0, G1, and G1A.
X1 component for sideline (left column) and flyover (right column) observer positions.
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Figure 7. Pressure gradient predicted by non-compact and compact forms of Formulations G0, G1, and G1A.
X2 and X3 component for sideline (left column) and flyover (right column) observer positions.
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Figure 8. Acoustic pressure time history predicted by non-compact and compact forms of Formulation 1 and
1A at in-plane observer positions. Advance ratio of 0.1 and advancing tip Mach number of 0.76.
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Figure 9. Acoustic pressure time history predicted by non-compact and compact forms of Formulation 1 and
1A at in-plane observer positions. Advance ratio of 0.3 and advancing tip Mach number of 0.9.
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Figure 10. Power spectral density predicted by non-compact and compact forms of Formulation 1A at in-plane
observer positions.
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The error incurred by using the compact formulation can be seen by analyzing the difference in the
Overall Sound Pressure Level (OASPL) between the non-compact and compact forms of Formulation 1A.
Table 1 shows the OASPL from the non-compact and compact forms of Formulation 1A at the eight in-plane
observer positions around the rotor with an advance ratio of 0.3. The observer position directly in front
of the rotor contains the highest amount of error at 0.82dB. The second and third highest errors are at
Ψ = 225oand 135o, respectively.

Table 1. Overall Sound Pressure Level (OASPL) at different in-plane microphone positions for non-compact
and compact forms of Formulation 1A. Change in levels (non-compact minus compact) also shown. Isolated
rotor at advance ratio of 0.3 and tip Mach number of 0.9.

Ψ 0o 45o 90o 135o 180o 225o 270o 315o

Non-Compact 73.79 79.49 90.57 102.91 107.65 99.16 86.05 76.18

Compact 73.79 79.44 90.57 103.26 108.47 99.57 86.24 76.28

∆ dB 0.00 0.04 0.00 -0.34 -0.82 -0.40 -0.19 -0.10

Figure 11 shows the acoustic pressure predicted by the non-compact and compact forms of Formulation
1A over a polar arc directly below the rotor (advance ratio of 0.3 and advancing tip Mach number of 0.9).
Similar to the in-plane results, the the out-of-plane results match very closely with the exception of the
forward observer location (Θ = 15o). Table 2 tabulates the differences in OASPL between the two forms for
the observer positions below the rotor. Only at an observer positions of Θ = 105o are the levels significant;
however, at this observer position the levels are extremely small and the differences are primarily a numerical
artifact.

Figure 11. Acoustic pressure time history predicted by non-compact and compact forms of Formulation 1A
at out-of-plane observer positions. Rotor is advancing at a ratio of 0.3 with a tip Mach number of 0.9.
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Table 2. Overall Sound Pressure Level (OASPL) at different out-of-plane microphone positions for non-
compact and compact forms of Formulation 1A. Change in levels (non-compact minus compact) also shown.
Isolated rotor at advance ratio of 0.3 and tip Mach number of 0.9.

θ 15o 45o 75o 105o 135o 165o

Non-Compact 104.14 86.38 61.04 23.11 59.83 72.39

Compact 104.65 86.45 61.06 23.84 59.80 72.38

∆ dB -0.51 -0.07 -0.02 -0.73 0.03 0.00

IV. Blade Shape Study

The compact form of the monopole term of Farassat’s formulations is based on the cross sectional area
of the airfoil. It is easy to imagine two airfoils with the same cross sectional area which would generate
significantly different noise when in motion. In this section, the effect of cross sectional shape on the PSD of
the thickness noise emanating from a rotor is studied. Figure 12 shows seven different airfoils with the same
cross sectional area ranging from a NACA 0009 to a high aspect ratio, vertically-elongated rectangle, labeled
here as Box. Figure 13 shows the compact and non-compact thickness noise predictions using Formulation
1A at an observer directly ahead (Ψ = 180o) of a rotor with an advance ratio of 0.3 and advancing tip Mach
number of 0.9. The predictions in Fig. 13 are for rotors with the blade cross sectional shapes outlined in
Fig. 12. Regardless of the cross sectional shape, the compact form predicts the same noise because the cross
sectional area is the same, and therefore, only one compact prediction is shown. While the peaks at the lower
frequencies are well predicted by the compact form, the fall off rate at the high frequencies is significantly
different between cross sectional shapes, and the compact form does not predict the fall off rate well. In fact,
the compact form predicts the lowest fall off rate while the more elongated blades exhibit faster fall off rates
when using the non-compact form. When the compact assumption is applied, the lack of an exact retarded
time computation results in all sound sources within the blade being correlated and arriving at the observer
at the same time. Higher aspect ratio airfoils, such as the 0009, have a faster fall off rate of sound with
increasing frequency because of cancellation due to uncorrelated sources. Conversely, airfoils with low aspect
ratio, such as the Box, have a slower fall off rate and therefore are much closer to the compact prediction.

Figure 12. Seven airfoils with the same cross sectional area. The compact form of the thickness term of
Farassat’s formulations will predict the same noise for each of these airfoils.

Since the fall off rate of sound with respect to frequency for all compact sources is the same regardless of
blade shape, it is possible to determine a correction to the noise that can be applied to account for the errors
incurred by the compact assumption. Figure 14 shows the change in Overall Sound Pressure Level (OASPL)
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Figure 13. Predictions ahead of a rotor (Ψ = 180o) with different cross sectional shapes and same cross sectional
area.

as a function of aspect ratio of the blade cross section. A-weighted OASPL is also shown to demonstrate the
influence of frequency weighting to the correction factor. Since the loss of accuracy is frequency dependent,
and the lower frequencies contain less error, the curves are have significantly different fall off rates. Using
this information, a robust corrective method could easily be determined due to the predictability of the error
as a function of azimuth angle and blade shape.

Figure 14. Change in Overall Sound Pressure Level (OASPL) and A-weighted OASPL at Ψ = 180o as a function
of blade cross sectional apsect ratio.

V. Computation Time

s The implementation of the non-compact and compact forms of Farassat’s formulations in ANOPP2 differ
significantly in computation time. The benefit of the compact forms of the implementation is a significant
reduction in computation time at the cost of reduced accuracy for higher frequencies. The accuracy of the
compact form has been explored in the previous sections. In this section, the benefit will be shown by
running the non-compact and compact forms of Formulation G1A to calculate the pressure gradient on a
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body in close proximity to a rotor. For this demonstration, the rotor is identical to that used previously
in Section III.B with an advance ratio of 0.3 and advancing tip Mach number of 0.9. To demonstrate a
typical calculation which may be required to predict the scattering from a rotorcraft body, a circular body
that tapers off sinusoidally toward the front and back is placed 5 meters below the center of the rotor. The
body is 20 meters in length and 5 meters in width at its widest point and contains 10201 observer positions.
10201 observers were chosen arbitrarily for demonstration (101 by 101), but should be chosen to capture a
specific frequency of scattered sound in practical applications. Figure 15 shows a snapshot in time of the
pressure gradient, colored by pressure gradient magnitude, on the rotorcraft body at 2 different viewing
angles. The computation time for this calculation on a standard multi-thread capable workstation using
the non-compact formulation was approximately 19836 minutesa vs. 73 minutes for the compact form on a
single computational thread. This represents a 99.6% reduction in computation time.

Figure 15. Two views of pressure gradient predicted by compact form of the thickness term of Formulation
G1A on body below rotor.

VI. Conclusion

This paper presented and demonstrated compact forms of the monopole term of several of Farassat’s
formulations including Formulation 1, 1A, G0, G1, G1A, V1A, and 2B. The compact forms of the monopole
term were shown to be a function of the blade cross sectional area, reducing the computation from an inte-
gration on a surface to an integration along a line. At the cost of slightly reduced accuracy at high tip Mach
numbers when not applying any correction, this significantly reduces computation time, facilitating coupling
this form of Farassat’s Formulations with a design environment such as Model Center or OpenMDAO. The
compact forms of all formulations, implemented in ANOPP2, were applied to two example cases: a short
span wing with constant airfoil cross section at three forward flight Mach numbers and a rotor undergoing
forward flight at two advance ratios. Acoustic pressure time histories of monopole noise predicted from the
compact forms of all the formulations at several observer positions were shown to compare very closely to
the predictions from their non-compact counterparts. Power spectral densities were also compared to their
non-compact counterparts for select formulations and observer positions and shown to match very closely in
most cases.
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VIII. Appendix

The dipole term of each formulation (acoustic pressure, pressure gradient, acoustic velocity) implemented
in ANOPP2 is presented here.
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A. Pressure Formulations

The non-compact and compact forms of the dipole term of Formulation 1 are shown in Eq. 25 and 26,
respectively.

4πc∞p
′
d(xi, t) =

∂

∂t

∫
f=0

[
(LiJ)B1,i

]
ret

du1du2 +

∫
f=0

[
(LiJ)C1,i

]
ret

du1du2 (25)

B1,i = R(1, 1)r̂i C1,i = c∞R(2, 1)r̂i

4πc∞p
′
d(xi, t) =

∂

∂t

∫
f=0

[
(FiK)B1,i

]
ret

du+

∫
f=0

[
(FiK)C1,i

]
ret

du (26)

B1,i = R(1, 1)r̂i C1,i = c∞R(2, 1)r̂i

The non-compact and compact forms of the dipole term of Formulation 1A are shown in Eq. 27 and 28,
respectively.

4πc∞p
′
d(xi, t) =

∫
f=0

[
(L̇iJ + LiJ̇)C1A,i + (LiJ)D1A,i

]
ret

du1du2 (27)

C1A,i = R(0, 1)B1,i D1A,i = R(0, 1)Ḃ1,i + C1,i

4πc∞p
′
d(xi, t) =

∫
f=0

[
(ḞiK + FiK̇)D1A,i + (FiK)E1,i

]
ret

du (28)

D1A,i = R(0, 1)B1,i E1A,i = R(0, 1)Ḃ1,i + C1,i

The non-compact and compact forms of the dipole term of Formulation 2B are shown in Eq. 29 and 30,
respectively.

4πρ∞c∞Φd(xi, t) = −
∫
f=0

[
(LiJ)Bi

]
ret

du1du2 −
∫ t

−∞

∫
f=0

[
(LiJ)Ci

]
ret

du1du2dt
′ (29)

B2B,i = R(1, 1)r̂i C2B,i = c∞R(2, 1)r̂i

4πρ∞c∞Φd(xi, t) = −
∫

f=0

[
(FiK)Bi

]
ret

du−
∫ t

−∞

∫
f=0

[
(FiK)Ci

]
ret

dudt′ (30)

B2B,i = R(1, 1)r̂i C2B,i = c∞R(2, 1)r̂i

B. Pressure Gradient Formulations

The dipole terms of the non-compact and compact forms of Formulation G0 are shown in Eq. 31 and 32,
respectively.

4πc2∞
∂

∂xi
p′d(xi, t) =− ∂2

∂t2

∫
f=0

[
(LjJ)CG0,ij

]
ret

du1du2+

∂

∂t

∫
f=0

[
(LjJ)DG0,ij

]
ret

du1du2 +

∫
f=0

[
(LjJ)EG0,ij

]
ret

du1du2

(31)

CG0,ij = R(1, 1)r̂ir̂j DG0,ij = c∞R(2, 1)(δij − 3r̂ir̂j) EG0,ij = c2∞R(3, 1)(δij − 3r̂ir̂j)

4πc2∞
∂

∂xi
p′d(xi, t) =− ∂2

∂t2

∫
f=0

[
(FjK)CG0,ij

]
ret

du1du2 +
∂

∂t

∫
f=0

[
(FjK)DG0,ij

]
ret

du1du2+

∫
f=0

[
(FjK)EG0,ij

]
ret

du1du2

(32)
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CG0,ij = R(1, 1)r̂ir̂j DG0,ij = c∞R(2, 1)(δij − 3r̂ir̂j) EG0,ij = c2∞R(3, 1)(δij − 3r̂ir̂j)

The dipole terms of the non-compact and compact forms of Formulation G1 are shown in Eq. 33 and 34,
respectively.

4πc2∞
∂

∂xi
p′d(xi, t) =− ∂

∂t

〈 ∫
f=0

[
(L̇jJ + Lj J̇)CG1,ij + (LjJ)DG1,ij

]
ret

du1du2

〉
+

∫
f=0

[
(LjJ)EG1,ij

]
ret

du1du2

(33)

CG1,ij = R(0, 1)CG0,ij DG1,ij = R(0, 1)ĊG0,ij −DG0,ij EG1,ij = EG0,ij

4πc2∞
∂

∂xi
p′d(xi, t) = − ∂

∂t

〈∫
f=0

[
(ḞjK + FjK̇)DG1,ij + (FjK)EG1,ij

]
ret

du

〉
+

∫
f=0

[
(FjK)FG1,ij

]
ret

du (34)

DG1,ij = R(0, 1)CG0,ij EG1,ij = R(0, 1)ĊG0,ij −DG0,ij FG1,ij = EG0,ij

The dipole terms of the non-compact and compact forms of Formulation G1A are shown in Eq. 35 and 36,
respectively.

4πc2∞
∂

∂xi
p′d(xi, t) =

−
∫
f=0

[
(L̈jJ + 2L̇j J̇ + Lj J̈)DG1,ij + (L̇jJ + Lj J̇)EG1A,i + (LjJ)FG1A,i

]
ret

du1du2
(35)

DG1A,ij = R(0, 1)CG1,ij EG1A,ij = R(0, 1)(ĊG1,ij +DG1,ij) FG1A,ij = R(0, 1)ḊG1,ij − EG1,ij

4πc2∞
∂

∂xi
p′d(xi, t) = −

∫
f=0

[
(F̈jK + 2ḞjK̇ + FjK̈)EG1,ij + (ḞjK + FjK̇)FG1A,i + (FjK)GG1A,i

]
ret

du (36)

EG1A,ij = R(0, 1)DG1,ij FG1A,ij = R(0, 1)(ḊG1,ij + EG1,ij) GG1A,ij = R(0, 1)ĖG1,ij − FG1,ij

C. Acoustic Velocity Formulations

The dipole terms of the non-compact and compact forms of Formulation V1A are shown in Eq. 37 and 38,
respectively.

4πρ∞c
2
∞u
′
i,d(xi, t) =

∫
f=0

[
(L̇jJ + Lj J̇)CV 1A,ij + (LjJ)DV 1A,ij

]
ret

du1du2−

∫ t

∞

∫
f=0

[
(LjJ)EV 1A,ij

]
ret

du1du2dt
′

(37)

CV 1A,ij = R(0, 1)CG0,ij DV 1A,ij = R(0, 1)ĊG0,ij −DG0,ij EV 1A,ij = EG0,ij

4πρ∞c
2
∞u
′
i,d(xi, t) =

∫
f=0

[
(ḞjK + FjK̇)DV 1A,ij + (FjK)EV 1A,ij

]
ret

du−

∫ t

∞

∫
f=0

[
(FjK)FV 1A,ij

]
ret

dudt′
(38)

DV 1A,ij = R(0, 1)CG0,ij EV 1A,ij = R(0, 1)ĊG0,ij −DG0,ij FV 1A,ij = EG0,ij
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