AB Allen-Bradley

Compact ${ }^{\text {TM }}$ High Speed Counter Module
(Catalog Number 1769-HSC)

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Rockwell Automation, is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION

Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss

Attention statements help you to:

- identify a hazard
- avoid a hazard
- recognize the consequences

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

[^0]Preface Who Should Use This Manual P-1
How to Use This Manual P-1
Conventions Used in This Manual P-2
Rockwell Automation Support P-3
Chapter 1
Module OverviewModule Overview1-1
Hardware Features 1-3
Chapter 2
Counter Defaults 2-1
Module Operation Block Diagrams 2-2
Number of Counters 2-4
Summary of Available Counter Configurations 2-4
Input Filtering 2-6
Operational Mode Selection. 2-7
Input Frequency 2-14
Counter Types 2-14
Modifying Count Value 2-15
Rate/Timer Functionality 2-18
Output Control 2-23
Chapter 3
Installation and Wiring Compliance to European Union Directives 3-1
Power Requirements 3-2
General Considerations 3-2
System Assembly. 3-6
Mounting 3-7
Replacing the Module within a System 3-10
Field Wiring Connections 3-11
Chapter 4
Module Configuration, Output, and Configuring the Module. 4-1
Input Data Configuration Array 4-2
Output Array 4-21
Input Array 4-31
Chapter 5
Diagnostics and Troubleshooting Safety Considerations 5-1
Module Operation vs. Counter Operation 5-3
Counter Defaults 5-3
Module Diagnostics 5-4
Non-Critical vs. Critical Module Errors 5-5
Module Error Definition 5-5
Error Codes 5-8
Contacting Rockwell Automation 5-14
Specifications
General Specifications A-1
Input Specifications A-2
Output Specifications A-2
Throughput and Timing A-3
Rate Accuracy A-3
Temperature Derating A-4
Appendix B
System Diagram B-1
1769-HSC Module with
845F Encoder Wiring to the 1769 -HSC B-1
Purpose B-2
Scope B-2
Adding a $1769-H S C$ High Speed Counter Module into a CompactLogix System B-2
Configuring Your 1769-HSC Module B-6
Monitoring the Current Count Value and Verifying Output Operation B-10
Appendix C
1769-HSC Module with
MicroLogix 1500 Controllers and an Allen-Bradley 845F Encoder
Programming Quick Reference
System Diagram C-1
845F Encoder Wiring to the 1769-HSC C-1
Purpose C-2
Scope C-2
Adding a $1769-H S C$ High Speed Counter Module into a MicroLogix 1500 System C-2
Configuring Your 1769-HSC Module C-5
Monitoring the Current Count and Verifying Output Operation C-8
Appendix D
Configuration Array D-2
Output Array D-4
Input Array D-5
Index
Appendix A

Read this preface to familiarize yourself with the rest of the manual. This preface covers the following topics:

- who should use this manual
- how to use this manual
- related publications
- conventions used in this manual
- Rockwell Automation support

Who Should Use This Manual

Use this manual if you are responsible for designing, installing, programming, or troubleshooting control systems that use Allen-Bradley Compact ${ }^{\text {TM }}$ I/O and/or Micrologix ${ }^{\text {TM }} 1500$ or CompactLogix ${ }^{\mathrm{TM}}$ controllers.

As much as possible, we organized this manual to explain, in a task-by-task manner, how to install, configure, program, operate and troubleshoot a control system using the 1769 High Speed Counter modules.

Manual Contents

If you want...	See
An overview of the module	Chapter 1
A description of module operation, including counters, inputs, and outputs.	Chapter 2
Installation and wiring guidelines	Chapter 3
Module addressing, configuration and status information	Chapter 4
Information on module diagnostics and troubleshooting	Chapter 5
Specifications	Appendix A
Programming and Configuration for CompactLogix	Appendix B
Programming and Configuration for MicroLogix 1500	Appendix C
Programming Quick Reference	Appendix D

Related Documentation

The table below provides a listing of publications that contain important information about Compact I/O, CompactLogix, and MicroLogix 1500 systems.

For	Read this document	Document number
A user manual containing information on how to install, use and program your MicroLogix 1500 controller	MicroLogixM 1500 User Manual	1764-UM001A-US-P
A user manual containing information on how to install, use, and program your CompactLogix processor.	CompactLogix ${ }^{\text {TM }}$ User Manual	1769-UM007C-EN-P
A user manual containing information on how to install, and use your 1769-ADN DeviceNet Adapter.	DeviceNet Adapter User Manual	1769-UM001A-US-P
An overview of 1769 Compact Discrete I/O modules	1769 Compact Discrete Input/Output Modules Product Data	1769-2.1
An overview of the MicroLogix 1500 System, including 1769 Compact I/O.	MicroLogix ${ }^{\text {TM }} 1500$ System Overview	1764-SO001B-EN-P
In-depth information on grounding and wiring Allen-Bradley programmable controllers.	Allen-Bradley Programmable Controller Grounding and Wiring Guidelines	1770-4.1

If you would like a manual, you can:

- download a free electronic version from the internet at www.theautomationbookstore.com
- purchase a printed manual by:
- contacting your local distributor or Rockwell Automation representative
- visiting www.theautomationbookstore.com and placing your order
- calling 1.800.963.9548 (USA/Canada) or 001.330.725.1574 (Outside USA/Canada)

Conventions Used in This Manual

The following conventions are used throughout this manual:

- Bulleted lists (like this one) provide information not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.
- Italic type is used for emphasis.
- Text in this font indicates words or phrases you should type.

Rockwell Automation Support

Rockwell Automation offers support services worldwide, with over 75 Sales/Support Offices, 512 authorized distributors and 260 authorized Systems Integrators located throughout the United States alone, plus Rockwell Automation representatives in every major country in the world.

Local Product Support

Contact your local Rockwell Automation representative for:

- sales and order support
- product technical training
- warranty support
- support service agreement

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance, please review the information in Chapter 5, Diagnostics and Troubleshooting first. Then call your local Rockwell Automation representative.

Your Questions or Comments on the Manual

If you find a problem with this manual, please notify us. If you have any suggestions for how this manual could be made more useful to you, please contact us at the address below:

Rockwell Automation
Automation Control and Information Group
Technical Communication, Dept. A602V
P.O. Box 2086

Milwaukee, WI 53201-2086

Module Overview

This chapter contains the following:

- module overview
- hardware features

Module Overview

The 1769-HSC is an intelligent counter module with its own microprocessor and I/O that is capable of reacting to high speed input signals. The module can interface with up to 2 channels of quadrature or 4 channels of pulse/count inputs. The signals received at the inputs are filtered, decoded, and counted. They are also processed to generate rate and time-between-pulses (pulse interval) data. Count and rate values can then be used to activate outputs based on user-defined ranges.

The module counts pulses at up to 1 MHz from devices such as proximity switches, pulse generators, turbine flowmeters, and quadrature encoders. The module has four on-board high speed switching outputs. These outputs can be under user program or direct module control, based on the count value or frequency.

The module is compatible with MicroLogix ${ }^{\text {TM }} 1500^{(1)}$ packaged controllers, CompactLogix ${ }^{\text {TM }}{ }^{(2)}$ modular PLCs, and the Series $\mathrm{B}^{(3)}$ 1769-ADN DeviceNet Adapter.

Counters

The module is capable of counting pulses in either direction (forward/reverse, up/down, etc.). A maximum of four pulse counters (or 2 quadrature counters) are available. Each 32-bit counter can count to ± 2 billion as a ring or linear counter. In addition to providing a count value, the module provides a rate value up to $\pm 1 \mathrm{MHz}$, dependent upon the type of input. The rate value (as modified by scalar) is the input frequency to the counter. When the count value is increasing, the rate value is positive. When the count value is decreasing, the rate value is negative.
(1) 1764-LSP and 1764-LRP Series C, Firmware revision 6.0 and higher.
(2) Firmware versions prior to 11.0 require the use of Generic Profiles.
(3) Available Spring 2002.

Counters can also be reset or preset to any value between user-defined minimum and maximum values. Preset can be accomplished from the user program or at a Z input event. The Z input can also generate a capture value and/or freeze (gate) the counters.

Inputs

The module features six high-speed differential inputs labeled $\pm \mathrm{A} 0$, $\pm \mathrm{B} 0, \pm \mathrm{Z} 0, \pm \mathrm{A} 1, \pm \mathrm{B} 1$, and $\pm \mathrm{Z} 1$. These inputs support 2 quadrature encoders with $A B Z$ inputs and/or up to 4 discrete count inputs. In addition, $\mathrm{x} 1, \mathrm{x} 2$, and x 4 encoder configurations are provided to fully use the capabilities of high resolution quadrature encoders. The inputs can be wired for standard differential line driver output devices, as well as single-ended devices such as limit switches, photo eyes, and proximity sensors. Inputs are optically isolated from the bus and from one another, and have an operational range of 2.6 to 30 V dc.

Outputs

Sixteen outputs are available: four on-board (real) and twelve virtual bits. All 16 outputs can be individually controlled by the module or by the user control program.

The 4 on-board (real) outputs are dc sourcing, powered by a user-supplied (5 to 30 V dc) power source. These outputs are electronically protected from current overloads and short circuit conditions. Overcurrent status is monitored and fed back to the user program. Output states are determined by a combination of output data, configuration data, ranges, and overcurrent status.

See Output Control on page 2-23 for a description of how the module determines output status.

Hardware Features

The module's hardware features are illustrated below. Refer to Chapter 3 for detailed information on installation and wiring.

Figure 1.1 Hardware Features

Item	Description
1	bus lever
2 a	upper panel mounting tab
2 b	lower panel mounting tab
3	module status LEDs (6 Input, 4 Output, 1 Fuse, 1 OK)
4	module door with terminal identification label
$5 a$	movable bus connector (bus interface) with female pins
5 b	stationary bus connector (bus interface) with male pins
6	nameplate label
7 a	upper tongue-and-groove slots
7 b	lower tongue-and-groove slots
8 aa	upper DIN rail latch
8 b	lower DIN rail latch
9	write-on label for user identification tags
10	removable terminal block (RTB) with finger-safe cover
$10 a$	RTB upper retaining screw
10 b	RTB lower retaining screw

LEDs

The front panel has a total of twelve indicator LEDs, as shown in Figure 1.1 on page $1-3$.

Table 1.1 Diagnostic Indicators

LED	Color	Indicates
O OUT	Amber	ON/OFF logic status of output 0
1 OUT	Amber	ON/OFF logic status of output 1
$20 U T$	Amber	ON/OFF logic status of output 2
3 OUT	Amber	ON/OFF logic status of output 3
FUSE	Red	Overcurrent
OK	Off	No power is applied.
	Red (briefly)	Performing self-test.
	Solid Green	OK, normal operating condition.
	Flashing Green	OK, module in Program or Fault mode.
	Solid Red or Amber	Hardware error. Cycle power to the module. If problem persists, replace the module.
	Flashing Red	Recoverable fault. Reconfigure, reset, or perform error recovery. See section on page 5-5, Non-Critical vs. Critical Module Errors. The OK LED flashes red for all of the error codes in Table 5.6.
A0	Amber	ON/OFF status of input A0
A1	Amber	ON/OFF status of input A1
B0	Amber	ON/OFF status of input B0
B1	Amber	ON/OFF status of input B1
Z0	Amber	ON/OFF status of input ZO
Z1	Amber	ON/OFF status of input Z1
$\begin{aligned} & \overline{\text { ALL }} \\ & \text { ON } \end{aligned}$	Possible causes for all LEDs to be on: - Bus Error has occurred: Controller hard fault. Cycle power. - During Flash Upgrade of Controller: Normal. Do not cycle power during the Flash Upgrade. - All LEDs will flash on briefly during power-up. This is normal.	

Module Operation

This chapter contains information about:

- counter defaults
- module operation block diagrams
- number of counters
- input filtering
- input operational mode
- modifying count value or input signals
- counter types
- rate/timer functionality
- output control
- safe state control

Counter Defaults

When the module powers-up, all Output Array and Configuration Array values are set to their default values (see Chapter 4 or Appendix D for default values). All Input Array values are cleared. None of the module data is retentive through a power cycle.

In effect, this means that power cycling clears the module:

- stored counts and configurations are lost
- faults and flags are cleared
- outputs are off

Module Operation Block Diagrams

To provide an overview of the module operation, the block diagrams indicate relationships between module functions and configuration parameters.

Inputs

The following diagram illustrates how the inputs function.

Outputs

The following diagram illustrates how the outputs function.

Number of Counters

Summary of Available Counter Configurations

The module has six input points: A0, B0, Z0, A1, B1, and Z1. Through these inputs, the module can function with $1,2,3$, or 4 counters depending upon the number of counters and the operational mode configuration of the input points.

The table below summarizes the input configurations available for all counters, based on the number of counters.

Number of Counters	Counter	Operational Mode	Gate or Preset Functionality
1 Counter	0	Any	All
	1 through 3	Not available	All
	0	Any	All
	1	Any	All
	2 and 3	Not Available	All
3 Counters	0	Any	None
	1	Pulse/Internal Direction	
	2	Pulse/Internal Direction	Not available
	0	Pulse/Internal Direction	All
	3	Pulse/Internal Direction	All
	1	Pulse/Internal Direction	None
	2	Pulse/Internal Direction	None
	3		

The counter options and operating modes are summarized in Figure 2.1.

Figure 2.1 Summary of Available Counters
AO
AO
(1) The number of counters is defined by the NumberOfCounters bits in word 0 of the Configuration Array.

Input Filtering

In many industrial environments, high frequency noise can be inadvertently coupled to the sensor wires. The module can help reject some noise by means of built-in filters. Inputs are filtered by means of user-selectable, low-pass filters ${ }^{(1)}$ set up during module configuration.

The available nominal pulse width filters are:
Table 2.1 Available Filters

Input	Filter
A0, A1, B0, B1, Z0, Z1	$5 \mathrm{~ms}, 500 \mu \mathrm{~s}, 10 \mu \mathrm{~s}$, no filter

The filters are selected for each input in the Filter Selection word of the Module Configuration Array.

TIP

The input state bits (InputStateA0 through InputStateZ1) reflect the filter's inputs, but are NOT affected by the signal inhibit or invert operations described on page 2-7.

Table 2.2 Filter Pulse Width and Frequency

Nominal Filter Settings		Maximum Guaranteed Blocked Pulse Width		Minimum Guaranteed Pass Pulse Width	
Pulse Width	Equivalent Frequency ${ }^{(\mathbf{1})}$	Pulse Width	Equivalent Frequency ${ }^{(1)}$	Pulse Width	Equivalent Frequency
no filter	1 MHz	n / a	n / a	250 ns	2 MHz
$10 \mu \mathrm{~s}$	50 kHz	$7.4 \mu \mathrm{~s}$	67.5 kHz	$25 \mu \mathrm{~s}$	20 kHz
$500 \mu \mathrm{~s}$	1 kHz	$370 \mu \mathrm{~s}$	1.35 kHz	1.25 ms	400 Hz
5 ms	100 Hz	3.7 ms	135 Hz	12.5 ms	40 Hz

(1) Equivalent frequency assumes a perfect 50% duty cycle and are for reference purposes only. Hence, the no-filter setting is guaranteed to pass 4 MHz even though the module's maximum is 1 MHz . This allows the sensor and wiring to attenuate the pulse to 25% duty cycle while the module maintains pulse recognition.

IMPORTANT

The built-in filters are simple, averaging, low-pass filters. They are designed to block noise pulses of width equal to the values presented in Table 2.2. Applying full amplitude, 50% duty cycle signals that are of frequency above the selected filter's threshold frequency may result in an average value signal of sufficient amplitude to turn the input on. A transition from no input to the full amplitude, 50% duty cycle signal (or back to no signal) may result in inadvertent input transitions.

[^1]
Operational Mode Selection

A count channel's operational mode configuration selection determines how the A and B inputs cause a counter channel to increment or decrement. The six available mode selections are:

- Pulse/External Direction Input
- Pulse/Internal Direction Input
- Up and Down Pulse Input
- X1 Quadrature Encoder Input
- X2 Quadrature Encoder Input
- X4 Quadrature Encoder Input

IMPORTANT
The operational mode selection is limited by the number of counters selected.

- With 2 counters selected, Counters 0 and 1 can be assigned any operational mode.
- With 3 counters selected, Counter 0 can be assigned any mode, but Counters 1 and 2 can only be configured as pulse/internal direction.
- With 4 counters selected, all counters must be configured for the pulse/internal direction mode.

See the Figure 2.1 on page $2-5$ for the operational modes available for the counters, based on the number of counters configured.

Direction Inhibit and Direction Invert Output Control Bits

These bits apply to all of the counter modes.

TIP

When set, the Direction Inhibit bit disables any physical input from affecting count direction.

When set, the Direction Invert bit changes the direction of the counter in all operational modes.

When Direction Inhibit is set, then Direction Invert is the direction.

Pulse/External Direction Mode Selection

In this mode, the B input controls the direction of the counter, as shown in Figure 2.2 on page 2-8. If the B input is low (0), the counter increments on the rising edges of input A. If the input B is high (1), the counter decrements on the rising edges of input A .

TIP

Two Output Control bits allow you to modify the operation of the B input from your control program or during configuration. The Direction Inhibit bit, when set (1), disables the operation of the B input.

The Direction Invert bit, when set (1), reverses the operation of the B input, but only if the Direction Inhibit bit is not set. If the Direction Inhibit bit is set, then the Direction Invert bit controls counter direction.

When the Direction Inhibit bit is set (1):

- and Direction Invert $=0$, count direction is up (forward)
- and Direction Invert $=1$, count direction is down (reversed)

Figure 2.2 Pulse/External Direction Mode (Direction Inhibit = 0, Direction Invert = 0)

Table 2.3 Pulse External Direction Counting

Direction Inhibit Bit	Direction Invert Bit	Input A (Count)	Input B (Direction)	Change in Count Value
0	0	\uparrow	0 or open	+1
		\uparrow	1	-1
		0, 1, \downarrow	don't care	0
0	1	\uparrow	0 or open	-1
		\uparrow	1	+1
		$0,1, \downarrow$	don't care	0
1	0	\uparrow	0 or open	+1
		\uparrow	1	+1
		0, 1, \downarrow	don't care	0
1	1	\uparrow	0 or open	-1
		\uparrow	1	-1
		$0,1, \downarrow$	don't care	0

See Direction Inhibit and Direction Invert Output Control Bits page 2-7 for more information.

Pulse/Internal Direction Mode Selection

When the Pulse/Internal Direction mode is selected, the status of the Direction Invert bit, as controlled by the user program, determines the direction of the counter. The counter increments on the rising edge of the module's A input when the Direction Invert bit is reset (0). The counter decrements on the rising edge of the A input when the Direction Invert bit is set (1).

Table 2.4 Pulse Internal Direction Counting - Counters 0 and 1

Direction Inhibit Bit	Direction Invert Bit	Input A (Count)	Input B	Change in Count Value
don't care		\uparrow	don't care	+1
		$0,1, \downarrow$	don't care	0
don't care		\uparrow	don't care	-1
		$0,1, \downarrow$	don't care	0

Table 2.5 Pulse Internal Direction Counting - Counters 2 and 3

Direction Inhibit Bit	Direction Invert Bit	Input A	Input B (Count)	Change in Count Value
don't care		don't care	\uparrow	+1
		$0,1, \downarrow$	0	
don't care	(don't care	\uparrow	-1
		don't care	$0,1, \downarrow$	0

Up and Down Pulses Mode Selection

In this mode, the counter channel increments on the rising edge of pulses applied to input A and decrements on the rising edge of pulses applied to input B. When set, the Direction Inhibit bit causes both A and B to increment. When set, the Direction Invert bit causes B to increment and A to decrement. When the Direction Invert and Direction Inhibit bits are both set, both A and B decrement.

TIP

When both inputs transition simultaneously or near simultaneously, the net result is no change to the count value.

Figure 2.3 Up and Down Pulse Mode (Direction Inhibit = 0, Direction Invert =0)

Table 2.6 Up and Down Counting

Direction Inhibit Bit	Direction Invert Bit	Input A (Count)	Input B (Direction)	Change in Count Value
0	0	\uparrow	0, 1, \downarrow	+1
		0, 1, \downarrow	\uparrow	-1
		\uparrow	\uparrow	0
0	1	\uparrow	0, 1, \downarrow	-1
		$0,1, \downarrow$	\uparrow	+1
		\uparrow	\uparrow	0
1	0	\uparrow	0, 1, \downarrow	+1
		0, 1, \downarrow	\uparrow	+1
		\uparrow	\uparrow	0
1	1	\uparrow	0, 1, \downarrow	-1
		0, 1, \downarrow	\uparrow	-1
		\uparrow	\uparrow	0

X1 Quadrature Encoder Mode Selection

In this mode, when a quadrature encoder is attached to inputs A and B , the count direction is determined by the phase relation of inputs A and B. If A leads B, the counter increments. If B leads A, the counter decrements. In other words, when B is low, the count increments on the rising edge of input A and decrements on the falling edge of input A. If B is high, all rising transitions on input A are ignored. The counter changes value only on one edge of input A as shown in Figure 2.4.

When both A and B transition at the same time, instead of in the defined 90° phase separation, the quadrature signal is invalid.

See also: Direction Inhibit and Direction Invert Output Control Bits on page 2-7 and their effect on Quadrature signals on page 2-13.

Figure 2.4 Quadrature Encoder Modes (Direction Inhibit = 0, Direction Invert = 0)

Forward Rotation
Reverse Rotation

X2 Quadrature Encoder Mode Selection

The X2 Quadrature Encoder mode operates much like the X1 Quadrature Encoder except that the resolution is doubled as shown in Figure 2.4 on page 2-12.

X4 Quadrature Encoder Mode Selection

The X4 Quadrature Encoder mode operates much like the X1 Quadrature Encoder except that the resolution is quadrupled as shown in Figure 2.4 on page 2-12.

The following diagram shows how Direction Inhibit and Direction Invert affect the counter.

Figure 2.5 Operation Using Various Direction Inhibit and Direction Invert Settings

Input Frequency

Counter Types

Maximum input frequency is determined by the input configuration as shown in the table below.

Input Configuration	Input Frequency
X4 Quadrature Encoder	250 kHz
X2 Quadrature Encoder	500 kHz
All Other Configurations	1 MHz

See Table 2.2 for additional details.

Each of the four possible counters can be configured to stop counting and set a flag at its limits (linear counter) or to roll over and set a flag at its limits (ring counter). A counter's limits are programmed by the Ctr n MaxCount and $\operatorname{Ctr} n$ MinCount words in the Module Configuration Array. Both types are described below.

Linear Counter

The figure below describes linear counter operation. In linear operation, the current count ($\mathrm{Ctr}[n]$.CurrentCount) value remains between, or equal to, the user-programmed minimum count ($\mathrm{Ctr} n$ MinCount) and maximum count ($\operatorname{Ctr} n$ MaxCount) values. If the $\operatorname{Ctr}[n]$.CurrentCount value would go above (>) or below (<) these values, the counter stops counting, and an overflow/underflow bit is set. The overflow/underflow bits can be reset using the $\operatorname{Ctr} n$ ResetCounterOverflow and Ctr n ResetCounterUnderflow bits.

Figure 2.6 Linear Counter Diagram

Pulses are not accumulated in an overflow/underflow state. The counter begins counting again when pulses are applied in the proper direction. For example, if you exceed the maximum by 1,000 counts, you do not need to apply 1,000 counts in the opposite direction before the counter begins counting down. The first pulse in the opposite direction decrements the counter.

Ring Counter

Figure 2.7 demonstrates ring counter operation. In ring counter operation, the current count ($\operatorname{Ctr}[n]$.CurrentCount) value changes between user-programmable minimum count ($\mathrm{Ctr} n$ MinCount) and maximum count ($\mathrm{Ctr} n$ MaxCount) values. If, when counting up, the counter reaches the $\operatorname{Ctr} n$ MaxCount value, it rolls over to the Ctr n MinCount value upon receiving the next count and sets the overflow bit. If, when counting down, the counter reaches the $\mathrm{C} \operatorname{tr} n$ MinCount value, it rolls under to the $\operatorname{Ctr} n$ MaxCount value upon receiving the next count and sets the underflow bit. These bits can be reset using the Ctr n ResetCounterOverflow and Ctr n ResetCounterUnderflow bits.

Figure 2.7 Ring Counter Diagram

Modifying Count Value

The count value ($\operatorname{Ctr}[n]$.CurrentCount) can be stored, reset, or preset using the Z input, CtrReset bit in the Configuration Array, control bits in the Output Array, or written over using a Direct Write command.

Table 2.7 Available Z Functions

Setting	For function
Store ${ }^{(1)}$	on rising edge of Z, store count in the Stored Count input word
Hold	while $Z=1$, hold counter at its current value
Preset/Reset	on rising edge of Z, preset the count value to the value in the preset word

(1) If both a store and preset function are configured, the stored count is captured before the preset operation takes place.

IMPORTANT

Because only the Z inputs are used for external gating and presetting, these functions are not available for Counters 2 and 3, which do not have Z inputs. All options are always available for Counters 0 and 1 , regardless of input operational mode.

Counter Enable/Disable

The counter may be enabled or disabled using the $\mathrm{Ctr} n$ En control bit. Be aware that disabling the counter does not inhibit any current count loading functions (e.g. preset or direct write) or any Z function.

Z Input Functions

Store

The Z input can be used to capture the current count value even when the counter is counting at full 1 MHz speed.

Gate
The Z inputs can be used to gate (hold) the counter at its current value regardless of incoming A or B inputs. A gating function is typically one that allows pulses to reach the counter (gate open) or not (gate closed).

Z Preset

Preset can be programmed to occur based on the actions of the Z input signal.

Inhibit and Invert

The Z input signals may be inverted and/or inhibited, depending on the user configuration of the Ctr n ZInvert and $\mathrm{Ctr} n$ ZInhibit output control bits. If the signal is inhibited, the invert bit is the Z signal for the actions described above.

For an explanation of those bits, see Z Inv - Z Invert (CtrnZInvert) on page 4-25 and Z Inh - Z Inhibit (CtrnZInhibit) on page 4-25.

Direct Write

You can arbitrarily change the current count value (Ctr[$n]$.CurrentCount) to the direct write control value (Range12To15[n].HiLimOrDirWr). This ability applies to ranges 12 through 15. The direct write value takes effect when the Load Direct Write bit (Range12To15[$n]$].LoadDirectWrite) transitions from 0 to 1 .

If you attempt to preset and load direct write to a counter at the same time, only the preset ($\mathrm{Ctr} n$ Preset) will take effect.

Preset/Reset

Preset sets the counter to a zero or non-zero value you define. Reset the counter by setting this value ($\operatorname{Ctr} n$ Preset) to zero.

Counter Reset

The CtrReset bit in the Configuration Array, when set, causes the following to occur when the system transitions to Run or the Inhibit Module bit transitions to 0 :

- All counters are disabled and reset to zero.
- The Output Array is reset to default values until the ModConfig bit is set (1). The default value for the Output Array is all zeros.
- The Input Array counter Status Flags (Overflow, Underflow, RisingEdgeZ, RateValid, PresetWarning) are reset.
- The Input Array counter values (Current Count ${ }^{(1)}$, StoredCount, CurrentRate and PulseInterval) are also reset to zero.
- All counts are lost and all outputs are turned off.

IMPORTANT

For the most predictable results, you may want to clear the output image of the processor BEFORE performing a counter reset (CtrReset) to the 1769-HSC module.

This is because CtrReset does not change the processor's output image. CtrReset sets the 1769-HSC module's Output Array to all zero's. If any bit is set to 1 in the processor's output image, when sent to the module, it will be seen as a state transition and be acted upon.

Soft Preset

Preset can be programmed to occur by setting the appropriate output control bits via your control program. Setting the Ctr n SoftPreset bit in the Output Array causes the counter to be preset, changing the count to the value in $\operatorname{Ctr} n$ Preset.

[^2]
Z Preset

Preset can be programmed to occur based on the actions of the Z input signal.

Autopreset

If the module is configured such that CtrnMaxCount $<$ $\operatorname{Ctr}[n]$.CurrentCount or $\mathrm{Ctr} n \mathrm{MinCount}>\operatorname{Ctr}[n]$.CurrentCount, then the module will automatically change $\operatorname{Ctr}[n]$.CurrentCount to the Ctr n Preset value and set the $\mathrm{C} \operatorname{tr} n$ PresetWarning bit.

Rate/Timer Functionality

To ensure maximum accuracy, the module offers two different methods to calculate the rate:

- Per Pulse = 1 /Pulse Interval
- Cyclic $=$ Number of Pulses/User-Defined Time Interval

You select the method used, depending upon the pulse speed as defined below. These are continuously available regardless of input operational mode.

Pulse Interval Rate Calculation Method

The pulse interval rate method is very accurate for slower rates, i.e. when the pulse interval (or time between pulses) is large compared to the system clock timer ($1 \mu \mathrm{~s}$). A timer is used to measure the time between two successive pulses. The inverse of this value is the pulse interval rate. The pulse interval rate cannot be read directly from the module. It needs to be calculated. The calculation can be performed in the user control program.

This method is not as accurate for higher pulse rates. When the pulse interval shrinks, two factors can distort the per pulse calculation. If the pulse interval is close to the measuring timer's clock frequency, 1 MHz , the granularity of the time increments has a greater effect on rate inaccuracy. In addition, the rate may be calculated many times over the course of a single backplane scan. As a result, the rate data
obtained at a backplane scan is only that of the very last pair of pulses and disregards the other rate calculations that may have occurred during that interval. This can result in rate inaccuracy if the pulses are unevenly spaced.

Cyclic Rate Calculation Method (Current Rate)

The module continuously calculates rates for each of its four possible counters, regardless of operational mode (e.g. up/down count). The 32 -bit signed integer rate from each counter is reported in the $\operatorname{Ctr}[n]$.CurrentRate words of the Input Array.

In this method, the rates are calculated at the end of a counter's configured cycle time. This is configured via the Ctr n CyclicRateUpdateTime configuration word/menu. Valid entries are +1 to 32767 milliseconds. The number of net counts, net change in $\operatorname{Ctr}[n]$.CurrentCount, during that period is converted into a rate value, providing an average pulse rate.

The generalized rate calculation is: Rate $=\Delta$ count/ Δ time .

IMPORTANT
The rate calculation is based on net counts. If a counter goes up 500 counts and down 300 counts, the net count is +200 . Therefore, changes in direction and speed affect the $\operatorname{Ctr}[n]$.CurrentRate value.

The cyclic method is better suited to high pulse rates.

Hysteresis Detection and Configuration

Because physical vibration can cause an encoder to generate pulses which you may not wish to consider as valid motion, a hysteresis value is used to eliminate a certain number of pulses in either direction as vibration-generated. These pulses are not used to calculate the $\operatorname{Ctr}[n]$.CurrentRate value. You program the minimum number of counts that are considered to be valid motion, using the Ctr n Hysteresis configuration word/menu. If the change in counts over the update time cycle is less than that minimum number of programmed counts, the $\operatorname{Ctr}[n]$.CurrentRate is reported as zero.

NOTE: This concept is not used to alter actual count values.

IMPORTANT
Hysteresis does not depend on the direction(s) of the change in count. Therefore, creeping, a slow change in count in one direction only, can also be reported as zero frequency when it falls below the hysteresis threshold.

Scalar

You can configure the $\mathrm{Ctr} n \mathrm{~S}$ calar value to scale or convert the raw rate value to application-specific information, such as RPM
(Revolutions Per Minute). Setting Ctr n Scalar to 1 leaves the rate value in cycles per second (Hertz).

The actual rate equation is:

Current Rate $=\frac{1000 \times \Delta \text { count }}{\text { CyclicRateUpdateTime } \times \text { Scalar }}$

TIP

$>$

To configure the $\mathrm{Ctr}[n]$.CurrentRate value to show an RPM value, set $\operatorname{Ctr} n$ Scalar to (counts per revolution)/60.

For example, where Ctr0CyclicRateUpdateTime $=80$, the encoder has 360 counts per revolution, and the change in $\mathrm{Ctr}[0]$.CurrentCount is 96:

```
Scalar \(=\frac{360 \text { counts/revolution }}{60 \mathrm{sec} / \mathrm{min}}\)
RPM \(=\frac{1000 \text { Cyclic Rate Update Time } / \text { sec } \times 96 \text { counts }}{80 \text { Cyclic Rate Update Time } \times \frac{360 \text { counts } / \text { revolution }}{60 \text { sec } / \mathrm{min}}}=200\) RPM
```


Rate Valid

The $\operatorname{Ctr}[n]$.RateValid bit indicates calculation integrity. When the bit is set, it indicates that the accompanying $\operatorname{Ctr}[n]$.CurrentRate value is accurate. The $\operatorname{Ctr}[n]$.RateValid bit is reset when the overflow or underflow events have occurred, i.e. at rising edges of $\operatorname{Ctr}[n]$.Overflow or $\operatorname{Ctr}[n]$. Underflow bits. It also happens when the count is abruptly modified via a preset (Ctr n SoftPreset, $\mathrm{Ctr} n$ CtrPresetWarning or Z based preset event) or direct write (Range12To15[n].LoadDirectWrite). When this occurs, the $\operatorname{Ctr}[n]$.CurrentRate value is frozen at the last known good value so that effects of erroneous rates will not propagate to range comparisons. The value remains frozen until the current cycle time plus one more cycle time are elapsed (this may be up to twice the $\operatorname{Ctr} n$ CyclicRateUpdateTime). If the overflow/underflow occurrence lasts for more than one cycle time, the value is frozen that entire time plus up to two more cycle times.

Ensure that another overflow/underflow, etc. does not happen during this recovery time. The rate will remain invalid until a full update time has occurred with no such events. If the $\operatorname{Ctr}[n]$.RateValid bit is seldom or never set, the $\mathrm{Ctr} n$ MinCount and $\mathrm{Ctr} n$ MaxCount values may be configured too close to each other.

Rate Method Selection

By knowing when to use each method, an optimal rate determination can be made.

Fractional rates are not reported by the module, but can be calculated from $\operatorname{Ctr}[n]$.PulseInterval in your control program.

The following information is provided to assist you in choosing the appropriate calculation method. In general you should consider the effect of having the count off by ± 1 in each method at frequencies of interest to see if the resulting inaccuracy is acceptable.

Per Pulse Method Example

If the frequency of interest has 100 counts (of the $1 \mu \mathrm{~s}$ clock) between pulses, an error of 1 count results in a $1-\mathrm{in}-100$, or 1%, error. If there are 1000 counts between pulses, then the error is $1-\mathrm{in}-1000$, or 0.1%. Error for a variety of pulse values is shown below.

Table 2.8 Per Pulse Errors

Actual 1 $\boldsymbol{\mu} \mathbf{s}$ Internal Pulses ${ }^{(\mathbf{1})}$	Reported Pulses	Real Frequency	Reported Frequency	\% Error
2	1	500 kHz	1 MHz	100%
9	10	111 kHz	100 kHz	11.1%
101	100	9.901 kHz	10.000 kHz	1.00%
1001	1000	999 Hz	1000 Hz	0.10%
9,999	10,000	100.01 Hz	100.00 Hz	0.010%
99,999	100,000	10.00010 Hz	10.00000 Hz	0.001%

(1) 1.9999 can be rounded to 2 and so on.

Cyclic Method

Since the update time is programmable, there is more flexibility in choosing the correct fit when using the Cyclic Method.

Error estimates are shown below for a variety of update times.
Table 2.9 Maximum Cyclic Rate Errors

CyclicRate	Frequency				
Update Time x Scalar	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
1	n/a	n/a	20.02\%	2.011\%	0.210\%
10	n/a	20.11\%	2.020\%	0.210\%	0.030\%
100	20.01\%	2.110\%	0.220\%	0.031\%	0.012\%
1000	3.010\%	0.310\%	0.040\%	0.013\%	0.010\%
10,000	1.210\%	0.130\%	0.022\%	0.011\%	0.010\%

See also: Rate Accuracy graph on page A-3.

All 16 outputs can be controlled by any of the 4 counters or by the user's control program, via the output mask function. Output states are determined by count, rate, ranges, mask configuration data, overcurrent status, and safe state settings and conditions.

The 16 outputs are made up of 4 real (physical) outputs and 12 virtual outputs. The status of the real and virtual outputs is available to the user program. The real outputs are electronically protected from overloads.

IMPORTANT
To turn outputs on, you must use both the Output On Mask and the Output Off Mask.

Masks

Output On Mask

Using the Output On Mask, all of the module's outputs can be turned on directly by the user control program, like discrete outputs. A bit which is set in the mask turns on the corresponding real or virtual output.

Output Off Mask

The Output Off Mask has veto power over any output. It can turn any or all of the module's outputs off. When a bit in this mask is set to 0 , the output will be turned off. Each bit is logically ANDed with the Output On Mask and masks of active and enabled ranges. If the bit in this mask is set to 1 , the output may be turned on or off by the ranges, or the Output On Mask. The final result is available as the Readback. n bit.

Ranges

Up to 16 dynamically configurable ranges are available. Ranges activate outputs based on the current count value or the current rate value. Each range is programmed with a type, counter number, two limit values, an invert bit, and an output mask.

Each range is programmed with high and low limits for the chosen value. The range's invert bit indicates whether the range is active between or outside the range limits. When the chosen value fulfills the configuration parameters, the range is active as indicated in the Input Array. When a range is active and enabled (RangeEn. $n=1$), the range turns on all outputs indicated by the Range Output Mask except those that are prevented from being enabled by the other factors such as Output Off Mask or Overcurrent. The status of a range is provided by the range active status word, where 1 equals range active and zero equals inactive.

Ranges can be disabled while the module is running using the RangeEn. n bit in the output file. However, even a disabled range will report when it is active or not. For example, an unprogrammed range has limits of 0 , and points to the $\mathrm{Ctr}[0]$.CurrentCount value. If this value is 0 , that range is reported as active.

Count Range

In a non-inverted count range, the outputs are active if the count value is within the user-defined range. In an inverted count range, the outputs are active if the count value is outside the user-defined range. Valid limits for the range are -2 billion and +2 billion regardless of programmed minimum and maximum values.

The example shows all ranges referring to one counter. The module is capable of individually assigning each range to any counter. Each counter can also have a combination of count and rate ranges.

Figure 2.8 Count Range Example

Table 2.10 Count Range Example Values

						$\begin{gathered} \text { Outputs }^{(2)} \\ \text { (Range[n].OutputControl word) } \end{gathered}$																
$\underset{\sim}{\underset{\sim}{x}}$						15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	01	0	-7000	-5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2	01	0	-1000	+4500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
3	01	0	-4000	+3000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
4	01	0	-9000	+9000	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0 and 3

(1) For Range Type, $0=$ count range and $1=$ rate range.
(2) Bits 0 through 3 are real outputs. Bits 4 through 15 are virtual outputs.

Rate Range

In a non-inverted rate range, the outputs are active if the rate measurement is within the user-defined range. In an inverted rate range, the outputs are active if the rate measurement is outside the user-defined range. The input rate can be up to 1 MHz in either direction.

The example shows all ranges referring to one counter. The module is capable of individually assigning each range to any counter. Each counter can also have a combination of count and rate ranges.

Figure 2.9 Rate Range Example

Table 2.11 Count Range Example Values

						$\begin{gathered} \text { Outputs }^{(2)} \\ \text { (Range[n].OutputControl word) } \end{gathered}$																
$\underset{\sim}{\underset{\sim}{\mid}}$						15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	00	1	-7000	-5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2	00	1	-1000	+4500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
3	00	1	-4000	+3000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
4	00	1	-20000	+20000	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0 and 3

[^3]
Overcurrent

If the module detects a real output point overcurrent condition, it reports it to the input file and turns off that output. You can also program the module to latch each of the four real outputs off, emulating a physical fuse, or to automatically reset. The 12 virtual outputs do not have this function.

When the OvercurrentLatchOff bit is set and an overcurrent situation occurs, even momentarily, the associated real output is latched off until the ResetBlownFuse bit transitions from 0 to 1.

If the OvercurrentLatchOff bit is reset and an overcurrent situation occurs, the output turns off for 1 second and is then retried (auto-reset). The module continues to attempt to turn the output back on until the overcurrent situation is no longer detected and the output is successfully turned back on.

IMPORTANT

The outputs will be on momentarily while they are retried. The length of time they are on depends on the magnitude of the load.

Safe State Control

The $1769-H S C$ module combines the Hold Last State and User-Defined Safe State options with a safe state run alternative that allows the module to continue to control outputs under program or fault states ${ }^{(1)}$. These options are described below.

Only the physical outputs are affected by safe state settings and conditions. Virtual outputs, inputs, and counting are not affected by program or fault states.

Hold Last State (HLS)

This condition applies depending on the mode of the controller. When the hold last state option is set, the module holds the outputs at the state they were at just before the control system transitioned from Run to Program or Run to Fault.

HLS sets the module according to the values configured for Program Mode (described on page 4-9) and Output Fault Mode (described on page 4-10).

[^4]
User-Defined Safe State (UDSS)

In this configuration, the module sets the outputs to a user-defined safe state when the control system transitions from Run to Program or Run to Fault.

UDSS sets the module according to the values configured for Output Program Value (described on page 4-10) and Output Fault Value (described on page 4-11).

Program State Run (PSR)

Program State Run allows you to specify that the output should continue to be controlled by the module as if it were in the Run state. That is, events on the module or changes in the Output image will affect the physical outputs without regard to the Program_HLS or UDSS state indicated. When this bit is set, the corresponding Out n ProgramMode and Out n ProgramValue bits are ignored.

PSR sets the module according to the value configured for Output Program State Run (described on page 4-9).

ATTENTION	Selecting this option will allow outputs to change state while ladder logic is not running. You must take care to assure that this does not pose a risk of injury or equipment damage when selecting this option.
IMPORTANT	The prescan initiated by some controllers could have an effect on the outputs. To overcome any changes in physical output states that may be caused by this, retentive output instructions (eg. latch, unlatch etc.) should be used when bit manipulations are done on the Output image of this module in ladder logic.
This applies to a wide range of bits when Program State Run is selected, since presetting a counter, enabling a range, changing a mask, and changing Module Configuration Array settings can cause ranges and outputs to change state.	

Fault State Run (FSR)

Similar to Program State Run, Fault State Run allows you to specify, on a bit basis, that the output should continue to be controlled by the module as if it were Run state. That is, events on the module or changes in the Output image will affect the physical outputs without regard to the Program_HLS or UDSS state indicated. When this bit is set, the corresponding Program Mode and Program Value bits are ignored.

FSR sets the module according to the value configured for Output Fault State Run (described on page 4-10).

ATTENTION

Selecting this option will allow outputs to change state while ladder logic is not running. You must take care to assure that this does not pose a risk of injury or equipment damage when selecting this option.

The prescan initiated by some controllers could have an effect on the outputs. To overcome any changes in physical output states that may be caused by this, retentive output instructions (eg. latch, unlatch etc.) should be used when bit manipulations are done on the Output image of this module in ladder logic.

This applies to a wide range of bits when Fault State Run is selected, since presetting a counter, enabling a range, changing a mask, and changing Configuration Array settings can cause ranges and outputs to change state.

Program to Fault Enable (PFE)

The ProgToFaultEn bit allows you to select which data value (Program Value or Fault Value) to apply to the output when the Output State Logic state Prog_HLS changes to indicate Fault_HLS.

If PFE is 0 , the module leaves the Program value applied. If PFE is set to 1 , the Fault value is applied.

TIP

The module's Default Safe State configuration is all zero's, resulting in the following:

- Program State = UDSS
- Program Value = OFF
- Program State Run = No
- Fault State = UDSS
- Fault Value = OFF
- Fault State Run = No
- $\mathrm{PFE}=$ leave program value applied.

Output Control Example

The following example illustrates the module's output control flow. The following conditions are reflected in Table 2.12:

- Range 0 is enabled and active
- Range 1 is disabled
- Range 2 is enabled but not active
- an overcurrent condition exists on real output 3
- OvercurrentLatchOff is set
- the system is in Run mode

The table below illustrates the step-by-step logical operations that are performed to determine the final output state. For example, Range 1 values do not affect the output because Range 1 is disabled, and the Output Off Mask causes some of the outputs to change to zero because it takes priority over the range masks.

The output parameters shown in the table have been discussed in the previous sections.

Table 2.12 Output Control Example

Output Parameter	Mask Information									Logical Operation	Result ${ }^{(1)}$														
Range 0	00001	01110	1	1	1	0		0	1	OR		0	01	0	1	1	0	1	1	0		0	0	0	1
Range 1	0010	1111	1	1	1	0		0	0	OR		0	01	0	1	1	0	1	1	0		0	0	0	1
Range 2	0100	0000	0	0	0	1		1	0	OR		0	01	0	1	1	0	1	1	0		0	0	0	1
Output On Mask	0100	1010	1	0	0	1		0	0	OR		1	01	1	1	1	0	1	1	1		1	0	0	1
Output Overcurrent	- - - -	- - - -	-	-	-	1		0	0	AND		1	01	1	1	1	0	1	1	1		0	0	0	1
Output Off Mask	11111	0000	1	1	1	1		1	0	AND		1	01	0	0	0	0	1	1	1		0	0	0	0
Program State Values	- - -	- - - -	-	-		1		1	1	Override		1	01	0	0	0	0	1	1	1		0	0	0	0
Fault State Values	- - -	- - -	-	-		1		1	1	Override	0	1	01	0	0	0	0	1	1	1		0	0	0	0
Final Output State												1	01	0	0	0	0	1	1	1		0	0	0	0

(1) Bolded text indicates that these values have changed.

Readback/Loopback

The Readback/loopback function is the feedback of the module's outputs via its Input Array. This 16-bit image includes both real (4) and virtual (12) outputs.

If the module's output is OFF due to overcurrent, both the Overcurrent status flag and the Readback bit will indicate the condition being 1 and 0 respectively. Conversely, should the output be ON due to any module control (eg. UDSS), this will be indicated by Readback.

Installation and Wiring

This chapter tells you how to:

- determine the power requirements for the modules
- avoid electrostatic damage
- install the module
- wire the module's terminal block
- wire input devices

Compliance to European
 Union Directives

This product is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

The 1769 -HSC module is tested to meet Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) and the following standards, in whole or in part, documented in a technical construction file:

- EN 50081-2

EMC - Generic Emission Standard, Part 2 - Industrial Environment

- EN 50082-2

EMC - Generic Immunity Standard, Part 2 - Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low Voltage, by applying the safety requirements of EN 61131-2 Programmable Controllers, Part 2 - Equipment Requirements and Tests.

For specific information required by EN61131-2, see the appropriate sections in this publication, as well as the following Allen-Bradley publications:

- Industrial Automation, Wiring and Grounding Guidelines for Noise Immunity, publication 1770-4.1
- Automation Systems Catalog, publication B113

Power Requirements

General Considerations

The modules receive power through the Compact bus interface from the +5 V dc $/+24 \mathrm{~V}$ dc system power supply. The maximum current drawn by the modules is shown in the table below.

Module Current Draw	at 5V dc	at 24V dc
	425 mA	0 mA

Compact I/O is suitable for use in an industrial environment when installed in accordance with these instructions. Specifically, this equipment is intended for use in clean, dry environments (Pollution degree $2^{(1)}$) and to circuits not exceeding Over Voltage Category II ${ }^{(2)}$ (IEC 60664-1). ${ }^{(3)}$
(1) Pollution Degree 2 is an environment where, normally, only non-conductive pollution occurs except that occasionally a temporary conductivity caused by condensation shall be expected.
(2) Over Voltage Category II is the load level section of the electrical distribution system. At this level transient voltages are controlled and do not exceed the impulse voltage capability of the product's insulation.
(3) Pollution Degree 2 and Over Voltage Category II are International Electrotechnical Commission (IEC) designations.

Hazardous Location Considerations

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, D or non-hazardous locations only. The following WARNING statement applies to use in hazardous locations.

EXPLOSION HAZARD

- Substitution of components may impair suitability for Class I, Division 2.
- Do not replace components or disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
- Do not connect or disconnect components unless power has been switched off or the area is known to be non-hazardous.
- This product must be installed in an enclosure. All cables connected to the product must remain in the enclosure or be protected by conduit or other means.
- All wiring must comply with N.E.C. article 501-4(b).

Prevent Electrostatic Discharge

ATTENTIONElectrostatic discharge can damage integrated circuits or semiconductors if you touch the bus connector pins, terminal block, or devices on the circuit board. Follow these guidelines when you handle the module: - Touch a grounded object to discharge static potential. - Wear an approved wrist-strap grounding device. - Do not touch the bus connector or connector pins. - Do not touch circuit components inside the module. - If available, use a static-safe work station. - When it is not in use, keep the module in its static-shield box.

Remove Power

> ATTENTION $\begin{aligned} & \text { Remove power before removing or inserting this } \\ & \text { module. When you remove or insert a module with } \\ & \text { power applied, an electrical arc may occur. An } \\ & \text { electrical arc can cause personal injury or property } \\ & \text { damage by: } \\ & \text { - sending an erroneous signal to your system's } \\ & \text { field devices, causing unintended machine } \\ & \text { motion } \\ & \text { - causing an explosion in a hazardous environment } \\ & \text { Electrical arcing causes excessive wear to contacts on } \\ & \text { both the module and its mating connector and may } \\ & \text { lead to premature failure. }\end{aligned}$.

Selecting a Location

Reducing Noise

Most applications require installation in an industrial enclosure to reduce the effects of electrical interference. The module is highly susceptible to electrical noise. Electrical noise coupled to the inputs will reduce the performance (accuracy) of the module.

Group your modules to minimize adverse effects from radiated electrical noise and heat. Consider the following conditions when selecting a location for the module. Position the module:

- away from sources of electrical noise such as hard-contact switches, relays, and AC motor drives
- away from modules which generate significant radiated heat, such as the 1769-IA16. Refer to the module's heat dissipation specification.

In addition, route shielded, twisted-pair analog input and output wiring away from any high voltage I/O wiring.

Protecting the Circuit Board from Contamination

The printed circuit boards of the modules must be protected from dirt, oil, moisture, and other airborne contaminants. To protect these boards, we recommend installing the system in an enclosure suitable for the environment. The interior of the enclosure should be kept clean and the enclosure door should be kept closed whenever possible.

Power Supply Distance

You can install as many modules as your power supply can support. However, the module has a power supply distance rating of 4, which means that it may not be located more than 4 modules away from the system power supply.

The illustration below provides an example showing how power supply distance is determined.

OR

System Assembly

The module can be attached to an adjacent controller, power supply, or I/O module. For mounting instructions, see Panel Mounting on page 3-7, or DIN Rail Mounting on page 3-9. To work with a system that is already mounted, see Replacing the Module within a System on page 3-10.

The following procedure shows you how to assemble the Compact I/O system.

1. Disconnect power.
2. Check that the bus lever of the module (A) is in the unlocked (fully right) position.
3. Use the upper and lower tongue-and-groove slots (B) to secure the modules together.
4. Move the module back along the tongue-and-groove slots until the bus connectors (C) line up with each other.
5. Use your fingers or a small screw driver to push the bus lever back slightly to clear the positioning tab (D).
6. Move the module's bus lever fully to the left (E) until it clicks. Ensure it is locked firmly in place.

When attaching I/O modules, it is very important that the bus connectors are securely locked together to ensure proper electrical connection.
7. Attach an end cap terminator (F) to the last module in the system by using the tongue-and-groove slots as before.
8. Lock the end cap bus terminator (G).

IMPORTANT

A $1769-E C R$ or $1769-E C L$ right or left end cap must be used to terminate the end of the serial communication bus.

Mounting

ATTENTION

During panel or DIN rail mounting of all devices, be sure that all debris (metal chips, wire strands, etc.) is kept from falling into the module. Debris that falls into the module could cause damage at power up.

Minimum Spacing

Maintain spacing from enclosure walls, wireways, adjacent equipment, etc. Allow 50 mm (2 in .) of space on all sides for adequate ventilation, as shown below:

Panel Mounting

Mount the module to a panel using two screws per module. Use M4 or \#8 panhead screws. Mounting screws are required on every module.

Panel Mounting Using the Dimensional Drawing

NOTE: All dimensions are in mm (inches). Hole spacing tolerance: $\pm 0.04 \mathrm{~mm}$ (0.016 in .).

Figure 3.1 Compact I/O with CompactLogix Controller and Power Supply

Figure 3.2 Compact I/O with MicroLogix 1500 Base Unit and Processor

Panel Mounting Procedure Using Modules as a Template

The following procedure allows you to use the assembled modules as a template for drilling holes in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:

1. On a clean work surface, assemble no more than three modules.
2. Using the assembled modules as a template, carefully mark the center of all module-mounting holes on the panel.
3. Return the assembled modules to the clean work surface, including any previously mounted modules.
4. Drill and tap the mounting holes for the recommended M4 or \#8 screw.
5. Place the modules back on the panel, and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

TIP

If mounting more modules, mount only the last one of this group and put the others aside. This reduces remounting time during drilling and tapping of the next group.
7. Repeat steps 1 to 6 for any remaining modules.

DIN Rail Mounting

The module can be mounted using the following DIN rails: $35 \times 7.5 \mathrm{~mm}$ (EN $50022-35 \times 7.5$) or $35 \times 15 \mathrm{~mm}$ (EN 50 022-35 x 15).

Before mounting the module on a DIN rail, close the DIN rail latches. Press the DIN rail mounting area of the module against the DIN rail. The latches will momentarily open and lock into place. DIN rail mounting dimensions are shown below.

Dimension	Height
A	$118 \mathrm{~mm}(4.65 \mathrm{in})$.
B	$59 \mathrm{~mm}(2.325 \mathrm{in})$.
C	$59 \mathrm{~mm}(2.325 \mathrm{in)}$.

Replacing the Module within a System

The module can be replaced while the system is mounted to a panel (or DIN rail).

1. Remove power. See important note on page 3-4.
2. Remove terminal block or disconnect input/output wiring from the module.
3. Remove the upper and lower mounting screws from the module (or open the DIN latches using a flat-blade screwdriver).
4. On the module to be replaced and the right-side adjacent module (or end cap if the module is the last module in the bank), move the bus levers to the right (unlock) to disconnect the module from the adjacent modules.
5. Gently slide the disconnected module forward.

If you feel excessive resistance, make sure that you disconnected the module from the bus and that you removed both mounting screws (or opened the DIN latches).

```
TIP
It may be necessary to rock the module slightly from front to back to remove it, or, in a panel-mounted system, to loosen the screws of adjacent modules.
```

6. Before installing the replacement module, be sure that the bus lever on the right-side adjacent module is in the unlocked (fully right) position.
7. Slide the replacement module into the open slot.
8. Connect the modules together by locking (fully left) the bus levers on the replacement module and the right-side adjacent module or end cap.
9. Replace the mounting screws (or snap the module onto the DIN rail).
10. Replace the terminal block or connect input/output wiring to the module.

Field Wiring Connections
 System Wiring Guidelines

Consider the following when wiring your system:
General

- Make sure the system is properly grounded.
- Input and output channels are isolated from the 1769 Compact bus. Input channels are isolated from one another; output channels are not.
- Shielded cable is required for high-speed input signals A, B, and Z. Use individually shielded, twisted-pair cable for lengths up to 300 meters (1000 feet).
- Group this module and other low voltage DC modules away from AC I/O or high voltage DC modules.
- Route field wiring away from any other wiring and as far as possible from sources of electrical noise, such as motors, transformers, contactors, and ac devices.
- Routing field wiring in a grounded conduit can reduce electrical noise.
- If field wiring must cross ac or power cables, ensure that they cross at right angles.

Terminal Block

- To ensures optimum accuracy, limit overall cable impedance by keeping cable as short as possible. Locate the module as close to input devices as the application permits.
- Tighten terminal screws with care. Excessive tightening can strip a screw.

Grounding

- This product is intended to be mounted to a well-grounded mounting surface such as a metal panel. Additional grounding connections from the module's mounting tabs or DIN rail (if used) are only required when the mounting surface is non-conductive and cannot be grounded.
- Keep shield connection to ground as short as possible.
- Ground the shield drain wire at the $1769-H S C$ input end only.
- Refer to Industrial Automation Wiring and Grounding Guidelines, Allen-Bradley publication 1770-4.1, for additional information.

Considerations for Reducing Noise

In high noise environments, the 1769-HSC inputs may accept "false" pulses, particularly when using low frequency input signals with slowly sloping pulse edges. To minimize the effects of high frequency noise on low frequency signals, perform the following:

- Identify and remove noise sources.
- Route input cabling away from noise sources.
- Use your programming software to select low-pass filters on input signals. Filter values depend on the application and can be determined empirically.
- Use devices which output differential signals, such as differential encoders, to minimize the possibility that a noise source will cause a false input.

Removing and Replacing the Terminal Block

When wiring the module, you do not have to remove the terminal block. If you remove the terminal block, use the write-on label located on the side of the terminal block to identify the module location and type.

To remove the terminal block, loosen the upper and lower retaining screws. The terminal block will back away from the module as you remove the screws. When replacing the terminal block, torque the retaining screws to 0.46 Nm ($4.1 \mathrm{in}-\mathrm{lbs}$).

Wiring the Finger-Safe Terminal Block

When wiring the terminal block, keep the finger-safe cover in place.

1. Loosen the terminal screws to be wired.
2. Route the wire under the terminal pressure plate. You can use the bare wire or a spade lug. The terminals accept a 6.35 mm (0.25 in .) spade lug.

TIP

The terminal screws are non-captive. Therefore, it is possible to use a ring lug [maximum 1/4 inch o.d. with a 0.139 inch minimum i.d. (M3.5)] with the module.
3. Tighten the terminal screw making sure the pressure plate secures the wire. Recommended torque when tightening terminal screws is 0.68 Nm ($6 \mathrm{in}-\mathrm{lbs}$).

TIP

If you need to remove the finger-safe cover, insert a screwdriver into one of the square, wiring holes and gently pry the cover off. If you wire the terminal block with the finger-safe cover removed, you will not be able to put it back on the terminal block because the wires will be in the way.

Wire Size and Terminal Screw Torque

Each terminal accepts up to two wires with the following restrictions:

Wire Type		Wire Size	Terminal Screw Torque	Retaining Screw Torque
Solid	$\mathrm{Cu}-90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$	$\# 14$ to \#22 AWG	$0.68 \mathrm{Nm}(6 \mathrm{in}-\mathrm{lbs})$	$0.46 \mathrm{Nm}(4.1 \mathrm{in}-\mathrm{lbs})$
Stranded	$\mathrm{Cu}-90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$	$\# 16$ to \#22 AWG	$0.68 \mathrm{Nm}(6 \mathrm{in}-\mathrm{lbs})$	$0.46 \mathrm{Nm}(4.1 \mathrm{in}-\mathrm{lbs})$

Wiring the Modules

ATTENTION
To prevent shock hazard, care should be taken when wiring the module to signal sources. Before wiring any module, disconnect power from the system power supply and from any other source to the module.

After the module is properly installed, follow the wiring procedure below. To ensure proper operation and high immunity to electrical noise, always use shielded wire.

To wire your module follow these steps.

1. At each end of the cable, strip some casing to expose the individual wires.
2. Trim the signal wires to $2-\mathrm{in}$. (5 cm) lengths. Strip about $3 / 16 \mathrm{in}$. $(5 \mathrm{~mm})$ of insulation away to expose the end of the wire.

ATTENTION

Be careful when stripping wires. Wire fragments that fall into a module could cause damage at power up.
3. At the $1769-$ HSC input end of the cable, twist the drain wire and foil shield together, bend them away from the cable, and apply shrink wrap. Ground the shield at this end.
4. At the other end of the cable, cut the drain wire and foil shield back to the cable and apply shrink wrap.
5. Connect the signal wires to the terminal block. Connect the other end of the cable to the input device.
6. Repeat steps 1 through 5 for each channel on the module.

Terminal Door Label

A removable, write-on label is provided with the module. Remove the label from the door, mark the identification of each terminal with permanent ink, and slide the label back into the door. Your markings (ID tag) will be visible when the module door is closed.

Terminal Block Wiring

The input and output terminals are illustration in the figure below. Both inputs and outputs are isolated from the 1769 Compact bus.

Wiring Diagrams

Inputs

The module utilizes differential inputs. Therefore, two input terminals are required for each input point. For example, the A0+ and A0terminals are required for input point A 0 . Each input point is isolated from other input points, the 1769 Compact bus, and the entire output terminal group.

The inputs are compatible with standard differential line driver output devices as well as single-ended devices such as limit switches, photo-eyes, and proximity sensors. Examples of differential and single-ended circuits are shown in the following figures.

Figure 3.3 Differential Encoder Wiring

(1) Refer to your encoder manual for proper cable type. The type of cable used should be twisted pair, individually shielded cable with a maximum length of 300 m (1000 ft .).

Figure 3.4 Single-Ended Encoder Wiring

(1) Refer to your encoder manual for proper cable type. The type of cable used should be twisted-pair, individually shielded cable with a maximum length of $300 \mathrm{~m}(1000 \mathrm{ft}$.).
(2) External resistors are required if they are not internal to the encoder. The pull-up resistor (R) value depends on the power supply value. The table below shows the maximum resistor values for typical supply voltages. To calculate the maximum resistor value, use the following formula:
$R=\frac{(V d c-V \min)}{I \min }$
where:
$\mathrm{R}=$ maximum pull-up resistor value
$\mathrm{Vdc}=$ power supply voltage
$\mathrm{Vmin}=2.6 \mathrm{~V} \mathrm{dc}$
$\mathrm{Imin}=6.8 \mathrm{~mA}$

Power Supply Voltage (Vdc)	Maximum Pull-up Resistor Value (R) ${ }^{(\mathbf{1})}$
5 V dc	352Ω
12 V dc	1382Ω
24 V dc	3147Ω

(1) Resistance values may change, depending upon your application.

The minimum resistor (R) value depends on the current sinking capability of the encoder. Refer to your encoder's documentation.

Figure 3.5 Discrete Device Wiring

(1) External resistors are required if they are not internal to the sensor. The pull-up resistor (R) value depends on the power supply value. The table below shows the maximum resistor values for typical supply voltages. To calculate the maximum resistor value, use the following formula:
$R=\frac{(V d c-V \min)}{I \min }$
where:
$R=$ maximum pull-up resistor value
$\mathrm{Vdc}=$ power supply voltage
$\mathrm{Vmin}=2.6 \mathrm{~V} \mathrm{dc}$
$1 \mathrm{~min}=6.8 \mathrm{~mA}$

Power Supply Voltage (Vdc)	Maximum Pull-up Resistor Value (R) ${ }^{(\mathbf{1})}$
5 V dc	352Ω
12 V dc	1382Ω
24 V dc	3147Ω

(1) Resistance values may change, depending upon your application.

The minimum resistor (R) value depends on the current sinking capability of the sensor. Refer to your sensor's documentation.

Outputs

The four output terminals must be powered by a user-supplied external source. User Power range is from +5 to +30 V dc. See Output Specifications on page A-2 for voltage and current levels. There is no isolation between the outputs, but the outputs are isolated from the inputs and the 1769 Compact bus.

Electronic Protection

The electronic protection of the $1769-$ HSC has been designed to provide protection for current overload and short circuit conditions. The protection is based on a thermal cut-out principle. In the event of a short circuit or current overload condition on an output channel, that channel will turn off within milliseconds after the thermal cut-out temperature has been reached.

Overcurrent Autoreset Operation

The module detects overcurrent situations and reports them to the backplane in the Out n OverCurrent bits of the Input Array. When the overcurrent condition is detected, the outputs are turned off.

The module can latch outputs off in order to emulate the behavior of a physical fuse. Use the OvercurrentLatchOff bit to enable or disable this feature. When the OvercurrentLatchOff bit is set and an overcurrent situation occurs (even momentarily) the physical output will be latched off until the ResetBlownFuse bit is cycled from off to on (rising edge triggered). During the latched off time, the Readback. n bit in the Input Array also shows that the output is off.

If the OvercurrentLatchOff bit is not set, the output will be turned off for 1 second and then be retried (if still directed to be on). Retries will repeat until the overcurrent situation is corrected.

Only the 4 physical outputs can be latched off. The virtual outputs are not affected.

IMPORTANT
During the retry period, the physical output and the Readback. n bits will be on briefly (until the overcurrent causes them to shut off again). Take this into consideration and configure your system accordingly.

TIP

Short-circuits and overload conditions should be corrected as soon as possible. Damage may occur if short-circuits or overload conditions are allowed for extended periods.

Transistor Output Transient Pulses

The maximum duration of the transient pulse occurs when minimum load is connected to the output. However, for most applications, the energy of the transient pulse is not sufficient to energize the load.

ATTENTION	A transient pulse occurs in transistor outputs when the external DC supply voltage is applied to the output common terminals (e.g. via the master control relay). The sudden application of voltage creates this transient pulse. This condition is inherent in transistor outputs and is common to solid state devices. A transient pulse can occur regardless of the controller having power or not. Refer to your controller's user manual to reduce inadvertent operation.

The graph below illustrates that the duration of the transient is proportional to the load current. Therefore, as the on-state load current increases, the transient pulse decreases. Power-up transients do not exceed the time duration shown below, for the amount of loading indicated, at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

Figure 3.6 Transient Pulse Duration as a Function of Load Current

Output wiring is illustrated in the following diagram.

Figure 3.7 Output Wiring
Basic wiring ${ }^{(1)}$ of output devices ${ }^{(2)}$ to the module is shown below.

ATTENTION

- Miswiring of the module to an AC power source or applying reverse polarity will damage the module.
- Be careful when stripping wires. Wire fragments that fall into a module could cause damage at power up. Once wiring is complete, ensure the module is free of all metal fragments.

(1) Recommended Surge Suppression - The module has built-in suppression which is sufficient for most applications, however, for high-noise applications, use a 1 N 4004 diode reverse-wired across the load for transistor outputs switching 24 V dc inductive loads. For additional details, refer to Industrial Automation Wiring and Grounding Guidelines, Allen-Bradley publication 1770-4.1.
(2) Sourcing Output - Source describes the current flow between the I/O module and the field device. Sourcing output circuits supply (source) current to sinking field devices. Field devices connected to the negative side (DC Common) of the field power supply are sinking field devices. Field devices connected to the positive side (+V) of the field supply are sourcing field devices. Europe: DC sinking input and sourcing output module circuits are the commonly used options.

Module Configuration, Output, and Input Data

After installation of the 1769 -HSC module, you must configure it for operation, using the programming software compatible with the controller (for example, RSLogix 500 or RSLogix 5000).

TIP

Normal counter configuration is done using programming software. In that case, it is not necessary to know the meaning of the bit location. However, some systems allow configuration to be changed by the control program. Refer to your controller's documentation for details.

Information on programming the module using specific controllers and software is contained in the following Appendices.

Appendix	Controller	Software
Appendix B	CompactLogix Controller	RSLogix 5000
Appendix C	MicroLogix 1500 Controller	RSLogix 500

Configuring the Module

The module uses three arrays: Configuration Array, Output Array, and Input Array. You configure the module by establishing settings in the Configuration and Output Arrays. The Input Array shows the data that the module sends to the controller.

IMPORTANT

Both the Configuration Array and Output Array settings affect the module configuration. Changing certain configuration parameters from defaults may necessitate changing other values to avoid configuration errors.

Configuration Array

The Configuration Array, which consists of 118 words, allows you to specify how the module's counters will function. The default value is all zeros with the exception of:

- NumberofCounters (see page 4-8)
- Ctr n MaxCount (see page 4-11)
- Ctr n MinCount (see page 4-12)
- CtrnScalar (see page 4-14)
- Ctr n CyclicUpdateTime (see page $4-14$)

TIP

Normal counter configuration is done using programming software. In that case, it is not necessary to know the bit location. However, some systems allow configuration to be changed by the control program. Refer to your controller's documentation for details.

IMPORTANT

When changing configuration values, verify that only valid configurations are created for the module. For example, changing NumberofCounters from its default of 1 to 0 requires that C tr 1 MinCount and Ctr1MaxCount also be set to 0 , etc.

See Table 5.6 "Configuration Error Codes" on page $5-9$ if you encounter configuration errors.

Word 0 contains general configuration bits. Word 1 contains the filter settings. Words 2 through 5 refer to the physical outputs. Words 6 through 45 are counter configuration words. Words 46 through 117 are range configuration words. More detailed descriptions of the configuration words and bits follow the Configuration Array below.

IMPORTANT

Certain values (noted below) cannot be changed while a counter(s) or range(s) is enabled. Attempting to do so will cause a configuration error and the entire Configuration Array will be rejected until the error is eliminated.

Table 4.1 Configuration Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
0	Not Used						NumberOf Counters		Not Used			PFE	Not Used		$\begin{aligned} & \text { Ctr } \\ & \text { Rst } \end{aligned}$	OCLO	General Configuration Bits
1	Filte		Not Used	Filter_B1		$\begin{aligned} & \text { Not } \\ & \text { Used } \end{aligned}$	Filter_A1		Filter_Z0		Not	Filter_B0		$\begin{gathered} \hline \text { Not } \\ \text { Used } \end{gathered}$	Filter_A0		Filter Selection
2	Not Used								$\begin{aligned} & \text { Out3 } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & \text { Out2 } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & \text { Out1 } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & \text { Out0 } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & \text { Out3 } \\ & \text { PM } \end{aligned}$	$\begin{array}{\|l} \text { Out2 } \\ \text { PM } \end{array}$	$\begin{array}{\|l\|l} \text { Out1 } \\ \text { PM } \end{array}$	$\begin{aligned} & \text { Out0 } \\ & \text { PM } \end{aligned}$	Output Program Mode and Output Program State Run
3	Not Used												$\begin{aligned} & \hline \text { Out3 } \\ & \text { PV } \end{aligned}$	$\begin{array}{\|l} \hline \text { Out2 } \\ \text { PV } \end{array}$	$\begin{array}{\|c} \hline \text { Out1 } \\ \text { PV } \end{array}$	$\begin{gathered} \hline \text { Out0 } \\ \text { PV } \end{gathered}$	Output Program Value
4	Not Used								$\begin{aligned} & \hline \text { Out3 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out2 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out1 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out0 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out3 } \\ & \text { FM } \end{aligned}$	$\begin{array}{\|l} \hline \text { Out2 } \\ \text { FM } \end{array}$	$\begin{array}{\|c} \hline \text { Out1 } \\ \text { FM } \end{array}$	$\begin{gathered} \hline \text { Out0 } \\ \text { FM } \end{gathered}$	Output Fault Mode and Output Fault State Run
5	Not Used												$\begin{gathered} \hline \text { Out3 } \\ \text { FV } \end{gathered}$	$\begin{gathered} \hline \text { Out2 } \\ \text { FV } \end{gathered}$	$\begin{array}{\|c} \hline \text { Out1 } \\ \text { FV } \end{array}$	$\begin{gathered} \hline \text { Out0 } \\ \text { FV } \end{gathered}$	Output Fault Value
6	CtrOMaxCount																Counter 0 Maximum Count
8	CtrOMinCount																Counter 0 Minimum Count
10	CtrOPreset																Counter 0 Preset
12	CtrOHysteresis																Counter 0 Hysteresis
13	CtroScalar																Counter 0 Scalar
14	CtrOCyclicRateUpdateTime																Counter 0 Cyclic Rate Update Time
15	Not Used			$\begin{aligned} & \text { Lin- } \\ & \text { ear } \end{aligned}$	Not Used	Storage Mode			Not Used					Operational Mode			Counter 0 Configuration Flags
16	Ctr1MaxCount																Counter 1 Maximum Count
18	Ctr1 MinCount																Counter 1 Minimum Count
20	Ctr1Preset																Counter 1 Preset
22	Ctr1Hysteresis																Counter 1 Hysteresis
23	Ctr1Scalar																Counter 1 Scalar
24	Ctr1CyclicRateUpdateTime																Counter 1 Cyclic Rate Update Time
25	Not Used			$\begin{aligned} & \text { Lin- } \\ & \text { ear } \end{aligned}$	Not Used	Storage Mode			Not Used					Operational Mode			Counter 1 Configuration Flags
$\frac{26}{27}$	Ctr2MaxCount																Counter 2 Maximum Count
28 29	Ctr2MinCount																Counter 2 Minimum Count
30 31	Ctr2Preset																Counter 2 Preset
32	Ctr2Hysteresis																Counter 2 Hysteresis
33	Ctr2Scalar																Counter 2 Scalar
34	Ctr2CyclicRateUpdateTime																Counter 2 Cyclic Rate Update Time

4-4 Module Configuration, Output, and Input Data

Table 4.1 Configuration Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
35	Not Used			Linear	Not Used												Counter 2 Configuration Flags
36 37	Ctr3MaxCount																Counter 3 Maximum Count
38 39	Ctr3MinCount																Counter 3 Minimum Count
40	Ctr3Preset																Counter 3 Preset
42	Ctr3Hysteresis																Counter 3 Hysteresis
43	Ctr3Scalar																Counter 3 Scalar
44	Ctr3CyclicRateUpdateTime																Counter 3 Cyclic Rate Update Time
45	Not Used			$\begin{aligned} & \text { Lin- } \\ & \text { ear } \end{aligned}$	Not Used												Counter 3 Configuration Flags
46	RangeOTo11[0].HighLimit																Range 0 High Limit
48	RangeOTo11[0].LowLimit																Range 0 Low Limit
50	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 12 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 0 Output Control
51	Not Used							Inv		Not Used		Type	Not	Used	ToTh	sCtr	Range 0 Configuration Flags
52 53	RangeOTo11[1].HighLimit																Range 1 High Limit
$\frac{54}{55}$	RangeOTo11[1].LowLimit																Range 1 Low Limit
56	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{array}{\|c} \hline \text { Out } \\ 10 \end{array}$	$\begin{aligned} & \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 1 Output Control
57	Not Used							Inv		Not Used		Type	Not	Used	ToTh	sCtr	Range 1 Configuration Flags
58 59	RangeOTo11[2].HighLimit																Range 2 High Limit
60	RangeOTo11[2].LowLimit																Range 2 Low Limit
62	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Out } \\ 13 \end{array}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{array}{\|c} \hline \text { Out } \\ 10 \end{array}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 2 Output Control
63	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 2 Configuration Flags
64	RangeOTo11[3].HighLimit																Range 3 High Limit
66	RangeOTo11[3].LowLimit																Range 3 Low Limit
68	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Out } \\ 13 \end{array}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 3 Output Control
69	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 3 Configuration Flags
70 71	RangeOTo11[4].HighLimit																Range 4 High Limit

Table 4.1 Configuration Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
72	RangeOTo11[4].LowLimit																Range 4 Low Limit
74	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 13 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 4 Output Control
75	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 4 Configuration Flags
76	RangeOTo11[5].HighLimit																Range 5 High Limit
78 79	RangeOTo11[5].LowLimit																Range 5 Low Limit
80	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 5 Output Control
81	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 5 Configuration Flags
82	RangeOTo11[6].HighLimit																Range 6 High Limit
84	RangeOTo11[6].LowLimit																Range 6 Low Limit
86	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 13 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 6 Output Control
87	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 6 Configuration Flags
88	RangeOTo11[7].HighLimit																Range 7 High Limit
90	RangeOTo11[7].LowLimit																Range 7 Low Limit
92	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 7 Output Control
93	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 7 Configuration Flags
94 95	RangeOTo11[8].HighLimit																Range 8 High Limit
96	Range0To11[8].LowLimit																Range 8 Low Limit
98	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 14 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 8 Output Control
99	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 8 Configuration Flags
100	RangeOTo11[9].HighLimit																Range 9 High Limit
102	RangeOTo11[9].LowLimit																Range 9 Low Limit
104	$\begin{aligned} & \hline \text { Out } \\ & 15 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 14 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 13 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 9 Output Control
105	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 9 Configuration Flags
106	RangeOTo11[10].HighLimit																Range 10 High Limit
108	Range0To11[10].LowLimit																Range 10 Low Limit

Table 4.1 Configuration Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
110	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 10 Output Control
111	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 10 Configuration Flags
112	RangeOTo11[11].HighLimit																Range 11 High Limit
114	RangeOTo11[11].LowLimit																Range 11 Low Limit
116	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 12 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 09 \end{aligned}$	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0	Range 11 Output Control
117	Not Used							Inv	Not Used			Type	Not Used		ToThisCtr		Range 11 Configuration Flags

General Configuration Bits

Configuration Array Word 0	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
General Configuration Bits	Not Used					Numberof Counters	Not Used	PFE	Not Used	Ctr Reset	OCLO					

OCLO - Overcurrent Latch Off (OverCurrentLatchOff)

When set, this bit causes the module to make any overcurrent activity latch the corresponding output off, simulating a physical fuse. When OCLO $=0$, it automatically resets. The rising edge of RBF resets the output.

IMPORTANT

Do not set this bit while a counter or range is enabled (CtrOEn, $\operatorname{Ctr} 1 \mathrm{En}, \mathrm{Ctr} 2 \mathrm{En}, \mathrm{Ctr} 3 \mathrm{En}$, or RangeEn set to 1). Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Counter Reset (CtrReset)

The CtrReset bit in the Configuration Array, when set, causes the following to occur when the system transitions to Run or the Inhibit Module bit transitions to 0 :

- All counters are disabled and reset to zero.
- The Output Array is reset to default values until the ModConfig bit is set (1). The default value for the Output Array is all zeros.
- The Input Array counter Status Flags (Overflow, Underflow, RisingEdgeZ, RateValid, PresetWarning) are reset.
- The Input Array counter values (Current Count ${ }^{(1)}$, StoredCount, CurrentRate and PulseInterval) are also reset to zero.
- All counts are lost and all outputs are turned off.

IMPORTANT
For most predictable results, you may want to clear the output image of the processor BEFORE performing a counter reset (CtrReset) to the 1769-HSC module.
This is because CtrReset does not change the processor's output image. CtrReset sets the 1769-HSC module's Output Array to all zero's. If any bit is set to 1 in the processor's output image, when sent to the module, it will be seen as a state transition and be acted upon.

PFE - Program to Fault Enable (ProgToFaultEn)

This bit indicates what should happen when the bus controller indicates a change from one condition (Program mode) to another (Fault mode). If this bit is set (1), the safe state operation of all 4 real outputs changes to that identified by the Fault State and Fault Value words. If this bit is reset (0), the module continues with the operation identified by the Program State and Program Value words.

[^5]
Number of Counters (NumberOfCounters)

This 2-bit value indicates whether the module uses 1 counter, 2 counters, 3 counters, or 4 counters. The default value is 1 (2 counters).

Table 4.2 Number of Counters Determination

Bit 01	Bit 00	Counters
0	0	1
0	1	2
1	0	3
1	1	4

IMPORTANT

Do not set this value while a counter or range is enabled (Ctr 0 En , $\mathrm{Ctr} 1 \mathrm{En}, \mathrm{Ctr} 2 \mathrm{En}, \mathrm{Ctr} 3 \mathrm{En}$, or RangeEn set to 1). Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Filter Selection

Configuration Array Word 1	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Filter Selection	Filter_Z1	Not Used	FilterB1	Not Used	FilterA1	FilterZO	Not Used	FilterB0	Not Used	FilterA0						

This value indicates the nominal filter frequency as shown in the table below.

Table 4.3 Filter Selection Settings

	FilterA0	Bit 1 - FilterA0_1	Bit 0 - FilterA0_0
	FilterB0	Bit 4 - FilterB0_1	Bit 3 - FilterB0_0
	FilterZ0	Bit 7 - FilterZ0_1	Bit 6 - FilterZo_0
	FilterA1	Bit 9 - FilterA1_1	Bit 8 - FilterA1_0
	FilterB1	Bit 12 - FilterB1_1	Bit 11 - FilterB1_0
	FilterZ1	Bit 15 - FilterZ1_1	Bit 14 - FilterZ1_0
	None	0	0
	0.01 ms minimum pulse width	0	1
	0.5 ms minimum pulse width	1	0
	5 ms minimum pulse width	1	1
IMPORTANT	Do not set these bits while certain counters or ranges are enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.		

Program Mode and Program State Run

Configuration Array Word 2	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Output Program Mode and																
Output Program State Run																

Program Mode (OutOProgramMode through Out3ProgramMode)

The program mode bits configure the output for Hold Last State (HLS) or User-Defined Safe State (UDSS) during Program State.

- 1 = Hold Last State
- $0=$ User-Defined Safe State

IMPORTANT

Program Mode and Program State Run only apply to certain controllers. Refer to your controller's documentation for more information.

Program State Run (OutOProgramStateRun through Out3ProgramStateRun)

Program State Run allows you to specify, on a bit basis, that the output should continue to be controlled by the module as if it were in the Run state. That is, events on the module or changes in the Output image will affect the physical outputs without regard to the Program_HLS or UDSS state indicated. When this bit is set, the corresponding Program Mode and Program Value bits are ignored.

Selecting this option will allow outputs to change state while ladder logic is not running. You must take care to assure that this does not pose a risk of injury or equipment damage when selecting this option.

The prescan initiated by some controllers could have an effect on the outputs. To overcome any changes in physical output states that may be caused by this, retentive output instructions (eg. latch, unlatch etc.) should be used when bit manipulations are done on the Output image of this module in ladder logic.
This applies to a wide range of bits when Program State Run is selected, since presetting a counter, enabling a range, changing a mask, and changing Configuration Array settings can cause ranges and outputs to change state.

Output Program Value (OutOProgramValue through Out3ProgramValue)

Configuration Array Word 3	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Output Program Value																

These bits are the values that will be applied to each of the real outputs when User-Defined Safe State (UDSS) is set as described above and the module is in Program state.

Output Fault Mode and Output Fault State Run

Configuration Array Word 4	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Output Fault Mode and Output Fault State Run	Not Used								$\begin{aligned} & \hline \text { Out3 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out2 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out1 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out0 } \\ & \text { FSR } \end{aligned}$	$\begin{aligned} & \hline \text { Out3 } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \hline \text { Out2 } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \hline \text { Out1 } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \hline \text { Out0 } \\ & \text { FM } \end{aligned}$

Output Fault Mode (OutOFaultMode through Out3FaultMode)

These bits configure the output for Hold Last State or User-Defined Safe State during a Fault state.

- $1=$ Hold Last State
- 0 = User-Defined Safe State

Output Fault State Run (OutOFaultStateRun through Out3FaultStateRun)

Similar to Program State Run, Fault State Run allows you to specify, on a bit basis, that the output should continue to be controlled by the module as if it were Run state. That is, events on the module or changes in the Output image will affect the physical outputs without regard to the Program_HLS or UDSS state indicated. When this bit is set, the corresponding Program Mode and Program Value bits are ignored.

ATTENTION

 RSelecting this option will allow outputs to change state while ladder logic is not running. You must take care to assure that this does not pose a risk of injury or equipment damage when selecting this option.

IMPORTANT

The prescan initiated by some controllers could have an effect on the outputs. To overcome any changes in physical output states that may be caused by this, retentive output instructions (eg. latch, unlatch etc.) should be used when bit manipulations are done on the Output image of this module in ladder logic.
This applies to a wide range of bits when Fault State Run is selected, since presetting a counter, enabling a range, changing a mask, and changing Configuration Array settings can cause ranges and outputs to change state.

Output Fault Value (OutOFaultValue through Out3FaultValue)

Configuration Array Word 5		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
5	Output Fault Value	Not Used												$\begin{gathered} \hline \text { Out3 } \\ \text { FV } \end{gathered}$	$\begin{gathered} \hline \text { Out2 } \\ \text { FV } \end{gathered}$	$\begin{gathered} \text { Out1 } \\ \text { FV } \end{gathered}$	$\begin{gathered} \hline \text { Out0 } \\ \text { FV } \end{gathered}$

These bits are the values that will be applied to each of the real outputs when User-Defined Safe State is set as described above and the module is in Fault state.

TIP

Outputs are also affected by PFT above.

Counter Maximum Count (CtrnMaxCount)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
6	Counter 0 Maximum Count	CtrOMaxCount															
7																	
16	Counter 1 Maximum Count	Ctr1MaxCount															
17																	
26	Counter 2 Maximum Count	Ctr2MaxCount															
27																	
36	Counter 3 Maximum Count	Ctr3MaxCount															
37																	

This is the maximum count value allowed for counter (n). The count value cannot exceed this value. Allowable values are $\mathrm{Ctr} n$ MinCount + 1 through 2,147,483,647 (decimal).

The default value is $+2,147,483,647$ decimal for counters 0 and 1 . The default value is 0 for counters 2 and 3 .

IMPORTANT
Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Counter Minimum Count (CtrrMMinCount)

This is the minimum count value allowed for counter (n). The count value cannot fall below this value. This value must be less than $\mathrm{Ctr} n$ MaxCount or a configuration error occurs. Allowable values are from -2,147,483,648 to Ctr n MaxCount - 1.

The default value is $-2,147,483,648$ decimal for counters 0 and 1 . The default value is 0 for counters 2 and 3 .

IMPORTANT

Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Counter Preset (CtrnPreset)

This value can be used to change the current count value of counter n on certain gate ($\mathrm{Z} n$) events and when $\mathrm{Ctr} n$ SoftPreset is used.

Ctr n Preset must be greater than or equal to $\mathrm{Ctr} n$ MinCount and less than $\operatorname{Ctr} n$ MaxCount. The default value is zero.

Counter Hysteresis (CtrnHysteresis)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
12	Counter 0 Hysteresis	CtrOHysteresis															
22	Counter 1 Hysteresis	Ctr1Hysteresis															
32	Counter 2 Hysteresis	Ctr2Hysteresis															
42	Counter 3 Hysteresis	Ctr3Hysteresis															

The hysteresis value is the number of counts that should be disregarded in the calculation of the cyclic rate. If the count value changes by less than the hysteresis value, the rate is reported as zero, regardless of the actual rate at which the pulses are counted.

IMPORTANT

Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Counter Scalar (CtrnScalar)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
13	Counter 0 Scalar	CtroScalar															
23	Counter 1 Scalar	Ctr1Scalar															
33	Counter 2 Scalar	Ctr2Scalar															
43	Counter 3 Scalar	Ctr3Scalar															

This value is used to scale the Rate value. The Rate value is divided by the Scalar value. The default value is 1 for counters 0 and 1. The default value is 0 for counters 2 and 3 .

Ctr n Scalar may be used to determine RPM. To configure the $\mathrm{Ctr}[n]$.CurrentRate value to show an RPM value, set Ctrn Scalar to (counts per revolution)/60. See page 2-20 for more information.

IMPORTANT

For any counter being used, do not set Scalar to a value less than one or a configuration error will occur.

IMPORTANT Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Cyclic Rate Update Time (CtrnCyclicRateUpdateTime)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
14	Counter 0 Cyclic Rate Update Time	CtrOCyclicRateUpdateTime															
24	Counter 1 Cyclic Rate Update Time	Ctr1CyclicRateUpdateTime															
34	Counter 2 Cyclic Rate Update Time	Ctr2CyclicRateUpdateTime															
44	Counter 3 Cyclic Rate Update Time	Ctr3CyclicRateUpdateTime															

This value is used to set the cyclic rate update time for the CurrentRate calculation. The value indicates the time in milliseconds from 1 to 32767. An invalid number causes a configuration error. The default value is 10 for counters 0 and 1 . The default value is 0 for counters 2 and 3 .

IMPORTANT

Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

See page 2-19 for more information on cyclic rate.

Configuration Flags

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
15	Counter 0 Configuration Flags	Not Used			Linear	$\begin{gathered} \hline \text { Not } \\ \text { Used } \end{gathered}$	Storage Mode			Not Used					Operational Mode		
25	Counter 1 Configuration Flags	Not Used			Linear	Not Used	Storage Mode			Not Used					Operational Mode		
35	Counter 2 Configuration Flags	Not Used			Linear	Not Used											
45	Counter 3 Configuration Flags	Not Used			Linear	Not Used											

Operational Mode (CtrnConfig.OperationalMode_0 through

CtrnConfig.OperationalMode_2)
These bits apply to Counters 0 and 1 only.
This value determines how the $\mathrm{A} O$ or A 1 and $\mathrm{B} O$ or B 1 inputs are decoded when assigned to counter 0 or counter 1 . See the following table.

Table 4.4 Operational Mode Settings

Set bit				For function
CtrnConfig.OperationaIMode_2	CtrnConfig.OperationalMode_1	CtrnConfig.OperationalMode_0		
0	0	0	Pulse internal direction	
0	0	1	Pulse external direction	
1	0	0	Quadrature encoder X1	
1	0	1	Quadrature encoder X2	
1	1	0	Quadrature encoder X4	
0	1	0	Up/Down Pulses	
0	1	1	reserved	
1	1	1	reserved	

TIP

The Ctr1Config. OperationalMode bits are reserved if the Number of Counters equals 1. Attempting to set reserved bits will result in a configuration error.

IMPORTANT
Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Storage Mode (CtrnConfig.StorageMode_0 through CtrnConfig.StorageMode_2)

These three bits apply to Counters 0 and 1 only. They define how the module interprets the Z input, as shown below. Each bit works independently. If bit 0 and bit 2 are set simultaneously, a Z event causes the Current Count Value to be stored and then preset.

Table 4.5 Storage Mode Settings

Set bit	For function
CtrnConfig.StorageMode_0	Stores the Current Count Value on the rising edge of Z to Ctr[n].StoredCount in the input file.
CtrnConfig.StorageMode_1	Holds the counter at its Current Count Value while Z = 1.
CtrnConfig.StorageMode_2	Presets the Current Count Value on the rising edge of Z.

IMPORTANT
$Z=$ internal Z. Internal Z is the version of the Z input pin as modified by the Output Array control bits Z Invert and Z Inhibit.

TIP
The Ctr1Config.StorageMode bits are reserved if NumberofCounters_1 and NumberofCounters_0 are set to 00 (one counter). Attempting to set reserved bits will result in a configuration error.

IMPORTANT

Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Linear (CtrOConfig.Linear through Ctr3Config.Linear)

This bit indicates how the counter operates upon reaching a Ctr n MinCount or $\operatorname{Ctr} n$ MaxCount.

- $0=$ Ring Counter
- $1=$ Linear Counter

See page 2-14 for a description of ring and linear counter operation.

IMPORTANT

Do not change this value while the counter is enabled. Attempting to do so will result in a BadModConfigUpdate error. See page 5-13 for a full list of prohibited settings.

Range High Limit (RangeOTo11[n].HighLimit) and Range Low Limit (Range0To11[n].LowLimit)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
46 and 47	Range 0 High Limit	RangeOTo11[0]. HighLimit															
48 and 49	Range 0 Low Limit	RangeOTo11[0].LowLimit															
52 and 53	Range 1 High Limit	RangeOTo11[1].HighLimit															
54 and 55	Range 1 Low Limit	RangeOTo11[1].LowLimit															
58and 59	Range 2 High Limit	RangeOTo11[2].HighLimit															
60 and 61	Range 2 Low Limit	RangeOTo11[2].LowLimit															
64 and 65	Range 3 High Limit	RangeOTo11[3].HighLimit															
66 and 67	Range 3 Low Limit	RangeOTo11[3].LowLimit															
70 and 71	Range 4 High Limit	RangeOTo11[4].HighLimit															
72 and 73	Range 4 Low Limit	RangeOTo11[4].LowLimit															
76 and 77	Range 5 High Limit	RangeOTo11[5]. HighLimit															
78 and 79	Range 5 Low Limit	RangeOTo11[5].LowLimit															
82 and 83	Range 6 High Limit	RangeOTo11[6]. HighLimit															
84 and 85	Range 6 Low Limit	RangeOTo11[6].LowLimit															
88 and 89	Range 7 High Limit	RangeOTo11[7].HighLimit															
90 and 91	Range 7 Low Limit	RangeOTo11[7].LowLimit															
94 and 95	Range 8 High Limit	RangeOTo11[8]. HighLimit															
96 and 97	Range 8 Low Limit	RangeOTo11[8].LowLimit															
100 and 101	Range 9 High Limit	Range0To11[9].HighLimit															
102 and 103	Range 9 Low Limit	RangeOTo11[9].LowLimit															
106 and 107	Range 10 High Limit	RangeOTo11[10].HighLimit															
108 and 109	Range 10 Low Limit	RangeOTo11[10].LowLimit															
112 and 113	Range 11 High Limit	Range0To11[11].HighLimit															
114 and 115	Range 11 Low Limit	Range0To11[11].LowLimit															

These values, which represent a count value or rate value, depending upon the programed Type, are used for range comparison. When the rate value is equal to Range0To11[n]. HighLimit or Range0To11[n].LowLimit, Range n changes state, becoming either active or inactive, depending upon the setting of the Range0To11[n].Invert bit.
 Range0To11[n]. LowLimit or a configuration error results.

Range Output Control (Range0To11[n].OutputControl)

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
50	Range 0 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
56	Range 1 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{gathered} \text { Out } \\ 12 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
62	Range 2 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
68	Range 3 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
74	Range 4 Output	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
80	Range 5 Output Contro	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
86	Range 6 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
92	Range 7 Output Contr	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
98	Range 8 Output Contro	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	12	11	10	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
104	Range 9 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	Out	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 10 \end{aligned}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
110	Range 10 Output Contro	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 14 \end{gathered}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0
116	Range 11 Output Control	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{gathered} \text { Out } \\ 14 \end{gathered}$	$\begin{aligned} & \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 11 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 10 \end{gathered}$	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0

These 16 -bit words indicate which outputs should be enabled when a range is active. When range n is enabled, this word is combined with the other range output masks as described in Output Off Mask (OutputOffMask.0 through OutputOffMask.15) on page 4-23 and Output On Mask (OutputOnMask. 0 through OutputOnMask.15) on page 4-22.

Range Configuration Flags

Configuration Array Words		15	14	13	12	11	10	09	08	07	06	05	04	$03 \mathrm{O2}$	01	00
51	Range 0 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
57	Range 1 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
63	Range 2 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
69	Range 3 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
75	Range 4 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
81	Range 5 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
87	Range 6 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
93	Range 7 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
99	Range 8 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
105	Range 9 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
111	Range 10 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	
117	Range 11 Configuration Flags	Not Used							Inv	Not Used			Type	Not Used	ToThisCtr	

ToThisCtr (Range0To11[n]. ToThisCounter)

This 2-bit value indicates which counter is used in the range comparison for range n, as shown in the table below.

Table 4.6 Range Counter Number Determination

Bit 01	Bit 00	Counter
0	0	0
0	1	1
1	0	2
1	1	3

IMPORTANT

If this value is greater than NumberOfCounters, a configuration error occurs.

Type (RangeOTo11[n].Type)

This bit indicates which type of value to use for the range comparison in range n. This value and Range0To $11[n]$. ToThisCounter determine the current value that is used in range comparison as the rate or count value.

Range0To11[n].Type	Range Type
0	Count Value
1	Rate Value

Inv (RangeOTo11[n].Invert)

This bit indicates whether the range n should be active inside or outside the Range0To11[n]. Low Limit and Range0To11[n]. HighLimit window.

- $0=$ The range n is active when the rate or count value is at or between Range0To11[n]. Low Limit and
Range 0 To $11[n]$.HighLimit. When the range is active, the RangeActive. n bit is set. When the range is active and enabled, the outputs indicated in the Range Output Control word are activated.
- $1=$ The range n is active when the rate or count value is lower than or equal to Range0To11[n].LowLimit or higher than or equal to Range0To11[n]. HighLimit. When the range is active, the RangeActive. n bit is set. When the range is active and enabled, the outputs indicated in the Range Output Control word are applied.

Ranges can be active in overflow, underflow, and rollover situations.

Output Array

The Output Array, which consists of 34 words, allows you to access the module's real-time output data to control the module. The default value is all zeros.

IMPORTANT
The Output Array contains dynamic configuration data. The settings in the Output Array must be compatible with the settings in the Configuration Array.
For example, do not attempt to set Counter Control Bits for a given counter in the Output Array unless NumberOfCounters in the Configuration Array indicates that the counter is declared to be used.

IMPORTANT
All Not Used bits (shaded in Table 4.7) must be set to 0 or the InvalidOutput bit in the Input Array will be set. When the InvalidOutput bit is set, the entire Output Array is rejected until an Output Array that does not have this error is sent.

Table 4.7 Output Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
0	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 10 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 3 \end{gathered}$	$\begin{gathered} \text { Out } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 0 \end{gathered}$	Output On Mask
1	$\begin{aligned} & \text { Out } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Out } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Out } \\ & 10 \end{aligned}$	$\begin{gathered} \hline \text { Out } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 7 \end{gathered}$	$\begin{array}{\|c} \hline \text { Out } \\ 6 \end{array}$	$\begin{gathered} \hline \text { Out } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 3 \end{gathered}$	$\begin{gathered} \text { Out } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Out } \\ 0 \end{gathered}$	Output Off Mask
2	R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	Range Enable
3	Not Used																Not Used
4	Not Used								RBF	Not Used							Reset Blown Fuse
5	Not Used						RPW	RREZ	Z Inh	Z Inv	D Inh	D Inv	RU	RO	SP	En	Counter 0 Control Bits
6	Not Used						RPW	RREZ	Z Inh	Z Inv	D Inh	D Inv	RU	R0	SP	En	Counter 1 Control Bits
7	Not Used						RPW	Not Used				D Inv	RU	R0	SP	En	Counter 2 Control Bits
8	Not Used						RPW	Not Used				D Inv	RU	RO	SP	En	Counter 3 Control Bits
9	Not Used																Not Used
10	Range12To15[0].HiLimOrDirWr																Range High Limit or
11																	Direct Write Value
12	Range12To15[0].LowLimit																
13																	Range Low Limit
14	Range12To15[0].OutputControl																Range Output Control
15	Not Used							Inv	Not	Jsed	LDW	Type	Not	Used		isCtr	Range Configuration Flags
16	Range12To15[1].HiLimOrDirWr																Range High Limit or
17																	Direct Write Value
18	Range12To15[1].LowLimit																Range Low Limit
19																	Range Low Limit
20	Range12To15[1].OutputControl																Range Output Control
21	Not Used							Inv	Not	Jsed	LDW	Type	Not	Used	ToThisCtr		Range Configuration Flags

Table 4.7 Output Array

Output On Mask (OutputOnMask. 0 through OutputOnMask.15)

Output Array Word 0	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Output On Mask	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0						
	15	14	13	12	11	10										

This word allows you to turn on any output, real or virtual, when the corresponding bit is set. This mask is logically OR'ed with the range masks but logically AND'ed with the Output Off Mask Word described on page 4-23.

Using the Output On Mask, all of the module's outputs can be turned on directly by the user control program, like discrete outputs. A bit which is set in the mask turns on the corresponding real or virtual output.

See "Output Control" on page 2-23 and "Output Control Example" on page 2-30 for more information about output determination.

TIP

The corresponding Output Off Mask bit must be set to enable this bit.

Output Off Mask (OutputOffMask.0 through OutputOffMask.15)

Output Array Word 1	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Output Off Mask	Out 9	Out 8	Out 7	Out 6	Out 5	Out 4	Out 3	Out 2	Out 1	Out 0						
	15	14	13	12	11	10										

This word turns OFF any output, real or virtual, when the corresponding bit is reset. This mask has veto power over all the Range masks and the Output On Mask described above. It is logically AND'ed with the results of those masks. See "Output Control" on page 2-23 and "Output Control Example" on page 2-30 for more information about output determination.

TIP

This mask can be overridden when a safe state is indicated.

Range Enable (RangeEn. 0 through RangeEn.15)

Output Array Word 2	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Range Enable	$R 15$	$R 14$	$R 13$	$R 12$	$R 11$	$R 10$	$R 9$	$R 8$	$R 7$	$R 6$	$R 5$	$R 4$	$R 3$	$R 2$	$R 1$	$R 0$

When the bit corresponding to the range number is set, Range[n]. OutputControl is applied whenever the range is active.

> RBF - Reset Blown Fuse (ResetBlownFuse)

Output Array Word 4	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Reset Blown Fuse	Not Used								RBF	Not Used						

When the OvercurrentLatchOff bit is set and an overcurrent condition has occurred, the real output remains off until this bit is cycled from 0 to 1 (rising edge).

Control Bits

Output Array Words 5 to 8	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Counter 0 Control Bits (Word 5)	Not Used						RPW	RREZ	Z Inh	Z Inv	D Inh	D Inv	RU	RO	SP	En
Counter 1 Control Bits (Word 6)	Not Used						RPW	RREZ	Z Inh	Z Inv	D Inh	D Inv	RU	R0	SP	En
Counter 2 Control Bits (Word 7)	Not Used						RPW	Not Used				D Inv	RU	R0	SP	En
Counter 3 Control Bits (Word 8)	Not Used						RPW	Not Used				D Inv	RU	RO	SP	En

The control bits for counter (n) are described below.

The order of precedence for the Preset and Direct Write actions is:

1. Preset

2. Direct Write

IMPORTANT

Setting any of the control bits under certain conditions of the NumberOfCounters value will result in the input error flag, $\operatorname{Ctr}[n]$.InvalidCounter. For more information, see IC - Invalid Counter (Ctr[1].InvalidCounter to Ctr[3].Invalid Counter) on page 4-39.

En - Enable Counter (CtrnEn)

This bit, when set (1), enables the inputs to be counted. When reset (0), this bit inhibits any activity of the A or B inputs from affecting the count, pulse interval, and rate values.

SP - Soft Preset (CtrnSoftPreset)

A 0 to 1 transition of this bit causes counter (n) to be preset, changing the count to the value in $\operatorname{Ctr} n$ Preset.

RCO - Reset Counter Overflow (CtrnResetCounterOverflow)

A 0 to 1 transition of this bit causes the corresponding $\operatorname{Ctr}[n]$ Overflow bit to be reset.

RCU - Reset Counter Underflow (CtrnResetCounterUnderflow)

A 0 to 1 transition of this bit causes the corresponding $\mathrm{Ctr}[n]$ Underflow bit to be reset.

D Inv - Direction Invert (CtrnDirectionInvert)

This bit, when set, inverts the direction of the counter (n). If the Ctr n DirectionInhibit bit is set when this bit is:

- 0 - the resulting direction is up, increasing counts
- 1 - the resulting direction is down, decreasing counts

D Inh - Direction Inhibit (CtrnDirectionInhibit)

This bit, when set, inhibits the direction of the input signal from being used by the module.

Z Inv - Z Invert (CtrnZlnvert)

When set, this bit inverts the Zn value. The $\mathrm{Z} n$ value is also affected by the $\mathrm{C} \operatorname{tr} n$ ZInhibit bit. If the $\mathrm{Ctr} n$ ZInhibit is set, the module uses Ctr n ZInvert for all internal Z activities, preset, hold and store. Input state Zn is not affected by this bit.

Z Inh - Z Inhibit (CtrnZInhibit)

When set, this bit inhibits the Zn state from being used by the module.

RREZ - Reset Rising Edge Z (CtrnResetRisingEdgeZ)

A 0 to 1 transition causes the $\operatorname{Ctr}[n]$.RisingEdgeZ bit to be reset.
RPW - Reset Counter Preset Warning (CtrnResetCtrPresetWarning)

A 0 to 1 transition causes the $\mathrm{Ctr}[n]$ PresetWarning bit to be reset.

Range High Limit or Direct Write Value
(Range12To15[n].HiLimOrDirWr)

Output Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
10 and 11	Range 12 High Limit Direct Write Value	Range12To15[0].HiLimOrDirWr															
16 and 17	Range 13 High Limit Direct Write Value	Range12To15[1].HiLimOrDirWr															
22 and 23	Range 14 High Limit Direct Write Value	Range12To15[2].HiLimOrDirWr															
28 and 29	Range 15 High Limit Direct Write Value	Range12To15[3].HiLimOrDirWr															

This value may be used in one of two ways, depending on the setting of the Load Direct Write (Range12To15[n].LoadDirectWrite) bit.

When Load Direct Write $=0$
When Range12To15[n].LoadDirectWrite $=0$, then Range12To15[n]. HiLimOrDirWr is used in the range comparison (range represents a count value or a rate value according to the programmed range type, Range12To15[n].Type).

When the range value is equal to Range12To15[n].HiLimOrDirWr , Range n will change state. The range will become active or inactive depending on the Range12To15[n].Invert bit.

Range Value (Current Count or Current Rate)

TIP

Range12To15[n]. HiLimOrDirWr must be higher than the Range12To15[n].LowLimit or the InvalidRangeLimit n error flag in the Input Array will be set.

TIP

Range12To15[n].HiLimOrDirWr may be higher than the maximum rate or count value. For example, when the object value is a rate,
Range12To15[n].HiLimOrDirWr may be programmed in excess of $1,000,000$ with no configuration error.

When Load Direct Write $=1$

When Range 12 To $15[n]$.LoadDirectWrite $=1$, then Range12To15[n].HiLimOrDirWr is used to change the $\operatorname{Ctr}[n]$.CurrentCount to Range12To15[n].HiLimOrDirWr.

When the Range12To15[n].LoadDirectWrite bit transitions from 0 to 1 , then Range12To15[n].HiLimOrDirWr is loaded into $\operatorname{Ctr}[n]$. CurrentCount (where n is the counter indicated in Range12To15[n].ToThisCounter).

When Ctr n SoftPreset and a
Range12To15[$n]$.LoadDirectWrite to counter n are indicated at the same time, only the $\operatorname{Ctr} n$ SoftPreset will occur. When more than one range indicates a Range12To15[$n]$.LoadDirectWrite to a single counter, only the one from the lowest designated range will take effect.

Range Low Limit (Range12To15[n].LowLimit)

| | Output Array Words | $\mathbf{1 5}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{0 9}$ | $\mathbf{0 8}$ | $\mathbf{0 7}$ | $\mathbf{0 6}$ | $\mathbf{0 5}$ | $\mathbf{0 4}$ | $\mathbf{0 3}$ | $\mathbf{0 2}$ | $\mathbf{0 1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{0 0 0} 9$

This value is used in the range comparison. It is the complement of the Range12To15[n]. HiLimOrDirWr value in setting the compare window.

When the rate or count value is equal to Range12To15[n]. LowLimit, the range will change state - opposite of the action at Range12To15[n].HiLimOrDirWr. The range will become active or inactive depending on the Range12To15[n].Invert bit.

TIP

Range12To15[$n]$.LowLimit must be lower than the Range12To15[n]. HiLimOrDirWr or the InvalidRangeLimit n error flag in the Input Array will be set.

TIP

Like Range12To15[n].HiLimOrDirWr (see page 4-26) Range12To15[n].LowLimit may extend beyond the minimum rate or count value.

TIP

\square

When Range12To15[n].LoadDirectWrite is set, Range12To15[n].LowLimit is ignored.

Range Output Control (Range12To15[n].OutputControl)

	Output Array Words	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
14	Range 12 Output Control	Range12To15[0].OutputControl															
20	Range 13 Output Control	Range12To15[1].OutputControl															
26	Range 14 Output Control	Range12To15[2].OutputControl															
32	Range 15 Output Control	Range12To15[3].OutputControl															

This 16 -bit word indicates which outputs should be on (corresponding bit set in this word) when a range is active. When Range n is enabled and active, Range12To15[n]. OutputControl will be logically OR'ed with other Range12To15[n].OutputControl masks and the OutputOnMask. n etc., as described on page 4-22.

When Range12To15[n].LoadDirectWrite is set, Range12To15[n].OutputControl is ignored.

Range Configuration Flags (12 through 15)

	Output Array Words	15	14	13	12	11	10	09	08	07 06	05	04	$03 \mathrm{O2}$	01	00
15	Range 12 Configuration Flags	Not Used							Inv	Not Used	LDW	Type	Not Used	ToThisCtr	
21	Range 13 Configuration Flags	Not Used							Inv	Not Used	LDW	Type	Not Used	ToThisCtr	
27	Range 14 Configuration Flags	Not Used							Inv	Not Used	LDW	Type	Not Used	ToThisCtr	
33	Range 15 Configuration Flags	Not Used							Inv	Not Used	LDW	Type	Not Used	ToThisCtr	

ToThisCtr - Range Counter Number (Range12To15[n].ToThisCounter)

This 2-bit value indicates which counter will be used in the range comparison or Range12To15[n].LoadDirectWrite. The counter is indicated as follows:

Table 4.8 Range Counter Number Determination

Bit 01	Bit 00	Counter
0	0	0
0	1	1
1	0	2
1	1	3

If Range $12 \mathrm{To} 15[n]$.ToThisCounter is set to a number larger than NumberOfCounters in the Configuration Array, then the InvalidCtrAssignToRange n error bit in the Input Array will be set.

Type - RangeType (Range12To15[n]. Type)

This bit value indicates which type of value to use for the range comparison in Range. That is, the Range12To15[n].ToThisCounter, from above, and this Range12To15[n].Type value determine the rate or count value, the current value which is compared to, for the range comparison. The type of value is indicated as follows:

- $0=$ Count Value
- 1 = Rate Value

When Range12To15[n].LoadDirectWrite is set Range12To15[n].Type is ignored.

LDW - Load Direct Write (Range12To15[n].LoadDirectWrite)

A 0 to 1 transition of this bit causes counter (n)'s current count value to change to the value of Range12To15[n].HiLimOrDirWr.

IMPORTANT

The write occurs according to the internal timings of the module and the system. For the most predictable results, the counter should be disabled or stopped while performing this action.

IMPORTANT If both Ctr n SoftPreset and
Range12To15[n]. HiLimOrDirWr transition to 1 during the same Output Array update, only the Ctr n SoftPreset occurs.
Range12To15[n]. HiLimOrDirWr is ignored.

Inv - Range Invert (Range12To15[n].Invert)
Indicates the active portion of Rangen. When Range12To15[n].Invert = 0 , the outputs are activated when the range value is at or between the Range12To15[n].LowLimit and Range12To15[n].HiLimOrDirWr. When Range $12 \mathrm{To} 15[n]$.Invert $=1$, the outputs are activated when the range is at or outside the range limits.

Object Value (Current Count or Current Rate)

Input Array

The Input Array, which consists of 35 words, allows read-only access to the module's input data via word and bit access.The Input Array is described below. The functions are described in more detail in the sections following the table.

IMPORTANT

During the non-run states (program and fault), the module continues to update the Input Array (continues counting, etc). Depending on the bus master, you may not see this.

TIP

$>$ configuration settings for that counter. To receive valid status, the counter must be enabled and the module must have stored a valid configuration for that counter.

Table 4.9 Input Array

Word	Bit																Function
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
0	Not Used										Z1	B1	A1	Z0	B0	A0	Input State
1	Readback. 0 through Readback. 15																Readback
2	InvalidRangeLimit12 through InvalidCtrAssignToRange12 through InvalidRangeLimit15								Gen Error	Invalid Output	Mod Config	Not Used	OutOOvercurrent through Out30vercurrent				Status Flags
3	RangeActive. 0 through RangeActive. 15																Range Active
$\frac{4}{5}$	Ctr[0].CurrentCount																Counter 0 Current Count
6									01.Sto	edCount							Counter 0 Stored Count
7									0.Sto	edount							Counter OStored Count
8									[0].Cur	entRate							Counter 0 Current Rate
9																	
10										Interval							Counter 0 Pulse Interval
11									[0].Puls	Interval							Counter O Pulse Interval
12					Not	Jsed				COPW	RV	Not Used	IDW	REZ	CUdf	COvf	Counter 0 Status Flags
13									Not	sed							Not Used
14																	
15									.Cur	tCou							Counter 1 Current Count
16									11 Sto	dCount							Counter 1 Stored Count
17									[1].Stor	edount							Counter 1 Stored Count
18									11.	ntRate							Counter 1 Current Rate
19].	Rate							Counter M Current Rate
20									[1].Puls	Interval							Counter 1 Pulse Interval
21									[1].Pus	Interval							Counter 1 Pulse Interval
22					Not	Jsed				C1PW	RV	IC	IDW	REZ	CUdf	COvf	Counter 1 Status Flags
23									Not	sed							Not Used
24									[2] Cur	ntCount							Counter 2 Current Count
25									[2].Cur	,							Counter 2 Current Count
26									r[2].Cur	entRate							Counter 2 Current Rate
27																	
28					Not	Jsed				C2PW	RV	IC	IDW	$\begin{array}{\|c} \text { Not } \\ \text { Used } \end{array}$	CUdf	COvf	Counter 2 Status Flags
29									Not	sed							Not Used
30																	
31									[3].Cur	ntCount							Counter 3 Current Count
32									r[3].Cur	entRate							Counter 3 Current Rate
33																	Counter S Current Rate
34						Jsed				C3PW	RV	IC	IDW	$\begin{array}{\|c\|} \hline \text { Not } \\ \text { Used } \end{array}$	CUdf	COvf	Counter 3 Status Flags

Input State (InputStateA0 through InputStateZ1)

Input Array Word 0	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Input State	Not Used														Z 1	B 1

This word indicates the state of the real (physical) inputs after filtering.

- $1=O n$
- $0=$ Off

Readback (Readback. 0 through Readback.15)

Input Array Word 1	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Readback	Readback. 0 through Readback. 15															

This input word reflects counter's module-directed status of all sixteen outputs, real and virtual.

- $1=O n$
- $0=$ Off

Status Flags

Input Array Word 2	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 9}$	$\mathbf{0 8}$	$\mathbf{0 7}$	$\mathbf{0 6}$	$\mathbf{0 5}$	$\mathbf{0 4}$	$\mathbf{0 3}$	$\mathbf{0 2}$	$\mathbf{0 1}$	$\mathbf{0 0}$
Status Flags	InvalidRangeLimit12 through InvalidRangeLimit15	InvalidCtrAssignToRange12 through InvalidCtrAssignToRange15	Gen Error	Invalid Output	Mod Config	Not Used	Out00vercurrent through Out3Overcurrent									

Output Overcurrent (OutOOvercurrent to Out3OverCurrent)

The output overcurrent bits are set (1) when the module is in an overcurrent condition. These bits also show whether the output is latched off, because the output(s) remain in the off state and these bits remain on until the ResetBlownFuse bit is used.

Module Configured (ModConfig)

Word 2, bit 5 is set by the module after it has accepted all of the configuration data. When set (1), this bit confirms that the module received and accepted valid configuration data. When reset (0), this bit indicates that the module is still checking for errors or contains errors and the old configuration is still being used.

TIP

The module takes up to 2 seconds to validate configuration data.

Invalid Output (InvalidOutput)

- 1 = an unused bit in the Output Array is set
- $0=$ no unused bits in the Output Array are set

When this error occurs, the entire Output Array is rejected until an Output Array that does not have this error is sent.

Error (GenError)

When this bit is set (1), it indicates one or more of the following errors for the Input Array:

- OutnOvercurrent
- InvalidRangeLimitn
- InvalidCtrAssignToRangen
- InvalidOutput
- Ctr[n].Overflow
- $\mathrm{Ctr}[n]$.Underflow
- $\operatorname{Ctr}[n]$.InvalidDirectWrite
- $\operatorname{Ctr}[n]$.InvalidCounter
- $\operatorname{Ctr}[n]$.PresetWarning
where n indicates the counter number.
To determine which error has set the GenError bit, identify which bit is set. This could be done by using a subroutine to examine these bits in the Input Array.

Invalid Counter Assigned to Range (InvalidCtrAssignToRange12 through InvalidCtrAssignToRange15)

InvalidCtrAssignToRange12 is set when the indicated range in the Output Array refers to a non-existent counter.

- It is set (1) when Range12To15[n].ToThisCounter > NumberOfCounters.
- It is cleared (0) when Range12To15[n].ToThisCounter \leq NumberOfCounters.

When this error occurs, the entire Output Array is rejected until a valid configuration is detected.

Invalid Range Limit (InvalidRangeLimit12 through InvalidRangeLimit15)
This bit is set when the range limits are invalid according to the limitations indicated in Range12To15[n].HiLimOrDirWr and Range $12 \mathrm{To} 15[n]$.LowLimit in the Output Array.

- 1 = Range limits are invalid.
- $0=$ no error

When this error occurs, the entire Output Array is rejected until a valid configuration is detected.

Range Active (RangeActive. 0 through RangeActive.15)

This word reflects the status of all of the ranges. When a count or rate meets the criteria programmed for a given range, the range is active.

- $1=$ active
- $0=$ inactive/false

TIP

When the range is enabled and active, the output mask for that range is applied.

Current Count (Ctr[n].CurrentCount)

	nput Array Words	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
4	Counter 0 Current Count	Ctr[0].CurrentCount															
5																	
14	Counter 1 Current Count	Ctr[1].CurrentCount															
15																	
24	Counter 2 Current Count	Ctr [2].CurrentCount															
25																	
30	Counter 3 Current Count	Ctr[3].CurrentCount															
31																	

This is the 32 -bit count value from the counter.

Stored Count (Ctr[n].StoredCount)

	Input Array Words	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
6	Counter 0 Stored Count	Ctr[0].StoredCount															
7																	
$\frac{16}{17}$	Counter 1 Stored Count	Ctr[1].StoredCount															

This is the last stored 32 -bit value from counter (n). The count value is stored depending on the $\mathrm{Ctr} n$ Config.StorageMode and $\mathrm{Z} n$ inputs.

When a storage event occurs, the $\operatorname{Ctr}[n]$.RisingEdgeZ bit is set, indicating that the value is new. If more than one $\mathrm{Z} n$ occurs before the $\mathrm{Ctr}[n]$.RisingEdgeZ bit is reset (using the Ctr n ResetRisingEdgeZ bit), the $\operatorname{Ctr}[n]$.StoredCount word will contain only the last $\operatorname{Ctr}[n]$.StoredCount value. There is no indication that the data has been overwritten.

Current Rate (Ctr[0].CurrentRate to Ctr[3].CurrentRate)

	nput Array Words	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
8	Counter 0 Current Rate	Ctr[0].CurrentRate															
9																	
18	Counter 1 Current Rate	Ctr[1].CurrentRate															
19																	
26	Counter 2 Current Rate	Ctr[2].CurrentRate															
27																	
32	Counter 3 Current Rate	Ctr[3].CurrentRate															
33																	

This 32-bit value is the current rate value, scaled by $\mathrm{Ctr} n$ Scalar, from the counter. This uses the Cyclic Rate Calculation Method (see page 2-19 for more information).

Rate-based ranges use this value for comparisons, even when the $\mathrm{Ctr}[n]$. RateValid bit is zero.

IMPORTANT

This value is only current when the $\operatorname{Ctr}[n]$.RateValid bit is set (1).

Pulse Interval (Ctr[0].PulseInterval and Ctr[1].PulseInterval)

	Input Array Words	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
10	Counter 0 Pulse Interval	$\mathrm{Ctr}[0]$ Pulselnterval															
11																	
20	Counter 1 Pulse Interval	Ctr[1].Pulselnterval															
21																	

This is the time, in microseconds, between the last two pulses for the counter. The pulses indicated here are those transitions on which the count value can change. For example, in quadrature X1 mode, these are the successive rising edges of A only.

If more than two pulses have occurred since the value was last read, the value indicates only the time between the last two pulses that have been processed.

Status Flags

Input Array Words		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
12	Counter 0 Status Flags	Not Used									COPW	RV	Not Used	IDW	REZ	CUdf	COvf
22	Counter 1 Status Flags	Not Used									C1PW	RV	IC	IDW	REZ	CUdf	COvf
28	Counter 2 Status Flags	Not Used									C2PW	RV	IC	IDW	Not	CUdf	COvf
34	Counter 3 Status Flags	Not Used									C3PW	RV	IC	IDW	Used	CUdf	COvf

The status bits for the counter (n) are described below.

COvf - Count Overflow (Ctr[0].Overflow to Ctr[3].Overflow)

For linear counters, this bit is set when the counter is, or has been, in an overflow condition. For ring counters, this bit is set when the counter has rolled over. COvf is reset when the Ctr n ResetCountOverflow bit transitions from 0 to 1.

See Counter Types on page 2-14 for more information about linear and ring counters.

CUdf - Count Underflow (Ctr[0].Underflow to Ctr[3].Underflow)

For linear counters, this bit is set when the counter is, or has been, in an underflow condition. For ring counters, this bit is set when the counter has rolled under. CUdf is reset when the Ctr n ResetCountUnderflow bit transitions from 0 to 1.

See Counter Types on page 2-14 for more information about linear and ring counters.

REZ - Rising Edge Z (Ctr[0].RisingEdgeZ to Ctr[1].RisingEdgeZ)
This bit is set (1) when $\mathrm{Z} n$, as modified by the Ctr n ZInvert and Ctr n ZInhibit bits, has a rising edge. It is reset (0) by a 0 to 1 transition of the $\operatorname{Ctr} n$ ResetRisingEdgeZ bit in the Output Array. N is equal to 0 or 1 depending upon which input is used, Z0 or Z1.

IDW - Invalid Direct Write (Ctr[0].InvalidDirectWrite to Ctr[3].InvalidDirectWrite)

This bit is set when the Range12To15[n].HiLimOrDirWr is invalid. (For example, if $\operatorname{Ctr} n$ MaxCount < Range12To15[$n]$.HiLimOrDirWr or Range12To15[n]. HiLimOrDirWr < Ctr n MinCount.)

When this error occurs, the entire Output Array is rejected until a valid configuration is detected.

IC - Invalid Counter (Ctr[1].InvalidCounter to Ctr[3].Invalid Counter)

When set (1) this bit indicates that an invalid control bit is set for the counter. Depending on the value of NumberOfCounters, the following errors will occur:

- If NumberOfCounters <1, then setting one of the control bits for Counter 1 will result in input error flag Ctr[1].InvalidCounter.
- If NumberOfCounters <2, then setting one of the control bits for Counter 2 will result in input error flag Ctr[2].InvalidCounter.
- If NumberOfCounters <3, then setting one of the control bits for Counter 3 will result in input error flag Ctr[3].InvalidCounter.

When this error occurs, the entire Output Array is rejected until an Output Array that does not have this error is sent.

The control bits are shown on page 4-24.

RV - Rate Valid (Ctr[0].RateValid to Ctr[3].RateValid)

This bit is set (1) when the rate value indicated in $\operatorname{Ctr}[n]$.CurrentRate is current. When this bit is reset (0) , $\operatorname{Ctr}[n]$.CurrentRate is frozen at the last known good value.

This bit is reset when the $\operatorname{Ctr}[n]$. Overflow or $\operatorname{Ctr}[n]$. Underflow bits have been set during the last $\operatorname{Ctr} n$ CyclicRateUpdateTime period. See page 2-21 for more Rate Valid reset conditions.

CnPW - Counter Preset Warning (Ctr[0].PresetWarning to Ctr[3].PresetWarning)

This bit is set when $\operatorname{Ctr}[n]$.CurrentCount has been forced, by the module, to the $\operatorname{Ctr} n$ Preset value. This will happen when a Configuration Array is accepted which sets:
$\mathrm{Ctr} n$ MinCount $>\operatorname{Ctr}[n]$.CurrentCount, or
Ctr n MaxCount $<\operatorname{Ctr}[n]$.CurrentCount.
This bit is reset by a 0 to 1 transition of the $\mathrm{Ctr} n$ ResetCtrPresetWarning bit in the Output Array.

TIP

You must manually reset CnPW, COvf, CUdf and REZ (but not IDW, RV or IC) to enable them to be set again.

Diagnostics and Troubleshooting

This chapter describes troubleshooting the module. This chapter contains information on:

- safety considerations when troubleshooting
- module vs. counter operation
- the module's diagnostic features
- critical vs. non-critical errors
- error codes

Safety Considerations

Safety considerations are an important element of proper troubleshooting procedures. Actively thinking about the safety of yourself and others, as well as the condition of your equipment, is of primary importance.

The following sections describe several safety concerns you should be aware of when troubleshooting your control system.

ATTENTION	Never reach into a machine to actuate a switch because unexpected motion can occur and cause injury.
Remove all electrical power at the main power	
disconnect switches before checking electrical	
connections or inputs/outputs causing machine	
motion.	

Indicator Lights

When any LED on the module is illuminated, it indicates that power is applied to the module.

Stand Clear of the Machine

When troubleshooting any system problem, have all personnel remain clear of the machine. The problem could be intermittent, and sudden unexpected machine motion could occur. Have someone ready to operate an emergency stop switch in case it becomes necessary to shut off power to the machine.

Program Alteration

There are several possible causes of alteration to the user program, including extreme environmental conditions, Electromagnetic Interference (EMI), improper grounding, improper wiring connections, and unauthorized tampering. If you suspect a program has been altered, check it against a previously saved program on an EEPROM or UVPROM memory module.

Safety Circuits

Circuits installed on the machine for safety reasons, like over-travel limit switches, stop push buttons, and interlocks, should always be hard-wired to the master control relay. These devices must be wired in series so that when any one device opens, the master control relay is de-energized, thereby removing power to the machine. Never alter these circuits to defeat their function. Serious injury or machine damage could result.

Module Operation vs. Counter Operation

Counter Defaults

The module performs operations at two levels:

- module level
- counter level

Module-level operations include functions such as power-up, configuration, and communication with a bus master, such as a MicroLogix 1500 controller.

Counter-level operations include counter-related functions, such as data conversion and overflow or underflow detection.

Internal diagnostics are performed at both levels of operation. When detected, module error conditions are immediately indicated by the module status LED. Both module hardware and configuration error conditions are reported to the controller. Counter overflow or underflow conditions are reported in the module's input data table. Module hardware errors are typically reported in the controller's I/O status file. Refer to your controller manual for details.

When the module powers-up, all Output Array and Configuration Array values are set to their default values (see Chapter 4 or Appendix D for default values). All Input Array values are cleared. None of the module data is retentive through a power cycle.

In effect, this means that power cycling clears the module:

- stored counts are lost
- faults and flags are cleared
- outputs are off

The bus master will attempt to write program data to the Output Array and Configuration Array.

Module Diagnostics

Power-up Diagnostics

At module power-up, a series of internal diagnostic tests are performed. These diagnostic tests must be successfully completed or the OK LED remains off and a module error results and is reported to the controller.

Table 5.1 Diagnostic Indicators

LED	Color	Indicates
0 OUT	Amber	ON/OFF logic status of output 0
1 OUT	Amber	ON/OFF logic status of output 1
$20 U T$	Amber	ON/OFF logic status of output 2
3 OUT	Amber	ON/OFF logic status of output 3
FUSE	Red	Overcurrent
OK	Off	No power is applied.
	Red (briefly)	Performing self-test.
	Solid Green	OK, normal operating condition.
	Flashing Green	OK, module in Program or Fault mode.
	Solid Red or Amber	Hardware error. Cycle power to the module. If problem persists, replace the module.
	Flashing Red	Recoverable fault. Reconfigure, reset, or perform error recovery. See section on page 5-5, Non-Critical vs. Critical Module Errors. The OK LED flashes red for all of the error codes in Table 5.6.
A0	Amber	ON/OFF status of input A0
A1	Amber	ON/OFF status of input A1
B0	Amber	ON/OFF status of input BO
B1	Amber	ON/OFF status of input B1
Z0	Amber	ON/OFF status of input ZO
21	Amber	ON/OFF status of input $\mathrm{Z1}$
$\begin{aligned} & \text { ALL } \\ & \text { ON } \end{aligned}$	Possible causes for all LEDs to be on: - Bus Error has occurred: Controller hard fault. Cycle power. - During Flash Upgrade of Controller: Normal. Do not cycle power during the Flash Upgrade. - All LEDs will flash on briefly during power-up. This is normal.	

Configuration Diagnostics

When a configuration is sent, the module performs a diagnostic check to see that the configuration is valid. This results in either a valid ModConfig bit or module configuration error. See Table 5.6 for configuration error codes.

Post Configuration Diagnostics

If the ModConfig bit in the input array is set, then the module has accepted the configuration. Now, on every scan, each channel status flag in the Input Array is examined. The Output Array is checked on each scan for compatibility with the Configuration Array.

Non-Critical vs. Critical
 Module Errors

Non-Critical Errors

Non-critical module errors are typically recoverable. Non-critical error conditions are indicated by the extended error code. See Table 5.6 Configuration Error Codes on page 5-9.

TIP

The OK LED will be in a flashing red state for all of the error codes in Table 5.6.

Critical Errors

Critical module errors are conditions that prevent normal or recoverable operation of the system. When these types of errors occur, the system typically leaves the run or program mode and enters the fault mode of operation until the error can be dealt with. Critical module errors are indicated in Table 5.5 General Common Hardware Error Codes on page 5-8.

Module Error Definition

Module errors are expressed in two fields as four-digit Hex format with the most significant digit as "don't care" and irrelevant. The two fields are "Module Error" and "Extended Error Information". The structure of the module error data is shown below.

Table 5.2 Module Error Definition

"Don't Care" Bits				Module Error				Extended Error Information								
$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hex Digit 4				Hex Digit 3				Hex Digit $\mathbf{2}$				Hex Digit $\mathbf{1}$				

Module Error Field

The purpose of the module error field is to classify module errors into three distinct groups, as described in the table below. The type of error determines what kind of information exists in the extended error information field. These types of module errors are typically reported in the controller's I/O status file. Refer to your controller manual for details.

Table 5.3 Module Error Types

Error Type	Module Error Field Value Bits 11 through 09 (Binary)	Description
No Errors	000	No error is present. The extended error field holds no additional information.
Hardware Errors	001	General and specific hardware error codes are specified in the extended error information field.
Configuration Errors	Module-specific error codes are indicated in the extended error field. These error codes correspond to options that you can change directly. For example, the input range or input filter selection.	

Extended Error Information Field

Check the extended error information field when a non-zero value is present in the module error field. Depending upon the value in the module error field, the extended error information field can contain error codes that are module-specific or common to all 1769 modules.

If no errors are present in the module error field, the extended error information field will be set to zero.

Hardware Errors

General or module-specific hardware errors are indicated by module error code 1. See Table 5.5 General Common Hardware Error Codes on page 5-8.

Configuration Errors

If you set the fields in the configuration file to invalid or unsupported values, the module ignores the invalid configuration, generates a non-critical error, and keeps operating with the previous configuration.

Table 5.6 Configuration Error Codes on page 5-9 lists the possible module-specific configuration error codes defined for the module. Correct the error by providing proper configuration data to the module.

Table 5.4 describes configuration errors in more general terms.
Table 5.4 Error Conditions by Type of Configuration

Programming Words	Error Conditions
General Configuration Bits, Filters and Safe State Words	- Unused or Reserved bit(s) were set. - A counter or counters were running when the general configuration bits or filter and safe state words were sent.
Counter Configuration	- Unused or Reserved bit(s) were set. - Operational Mode is invalid for the counter. (NumberOfCounters may be incorrect.) - Operational Mode is invalid for the counter. (mode selection may be incorrect). - The selected counter was running when the configuration was sent. - CtrnMaxCount \mathbb{S} trnMinCount - CtrnHysteresis < 0 - CtrnScalar < 1 - CtrnCyclicRateUpdateTime < 1 - The preset value is outside its valid range. (CtrnPreset not equal to or between CtrnMinCount or CtrnMaxCount) - Counter was running when the minimum/maximum count value was changed.
Range Configuration	- Unused or Reserved bit(s) were set. - RangeOto11[n]. HighLimit \leq RangeOto11[n].LowLimit - RangeOTo11[n].ToThisCounter refers to a non-declared counter (RangeOTo11[n].ToThisCounter > NumberOfCounters)

Error Codes

The tables in this section explain the extended error codes for general common hardware errors, configuration errors, and runtime errors.

Table 5.5 General Common Hardware Error Codes

Error Type	Hex Equivalent ${ }^{(1)}$	Module Error Code	Extended Error Information Code	Description	Status of the OK LED ${ }^{(2)}$
		Binary	Binary		
No Error	X000	000	000000000	OK, normal operating condition.	Solid or flashing green
General Common Hardware Error	X200	001	000000000	General hardware error; no additional information	Solid red
	X201	001	000000001	Power-up reset state	Briefly red
	X202	001	000000010	Bus master incompatibility	Solid red
	X203	001	000000011	General hardware error	Solid red
	X20A	001	000001010	General microprocessor error	Solid red
	X20B	001	000001011	Microprocessor internal register error	Solid red
	X20C	001	000001100	Microprocessor special function register error	Solid red
	X20D	001	000001101	Microprocessor internal memory error	Solid red
	X20E	001	000001110	Microprocessor timer error	Solid red
	X20F	001	000001111	Microprocessor interrupt error	Solid red
	X210	001	000010000	Microprocessor watchdog error	Solid red
	X218	001	000011000	Firmware corrupt	Solid red
	X219	001	000011001	Firmware checksum error in non-volatile RAM	Solid red
	X21A	001	000011010	Firmware checksum error in RAM	Solid red
	X21E	001	000011110	External RAM test error	Solid red
	X21F	001	000011111	External RAM cell test error	Solid red
	X224	001	000100100	Gate array loading failed	Solid red
	X232	001	000110010	External watchdog error	Solid red

[^6]TIP
The OK LED will be in a flashing red state for all of the error codes in Table 5.6.

Table 5.6 Configuration Error Codes

Hex	Module Error Code	Extended Error Information Code		
Equivalent ${ }^{(1)}$	Binary	Binary	Error	Description
X400	010	000000000	General Configuration Error	no additional information
X401	010	000000001	UnusedConfigBitSet	One or more of the unused module configuration bits are set.
X402	010	000000010	BadModConfigUpdate	Occurs when you attempt to change a forbidden module configuration parameter while a counter or range is still enabled. See Table 5.7 on page $5-13$ for a list of the forbidden parameters.
X411	010	000010001	BadCounterNum_1	Nonzero configuration values were entered for Counter 1, when Counter 1 was not available.
X412	010	000010010	BadCounterNum_2	Nonzero configuration values were entered for Counter 2, when Counter 2 was not available.
X413	010	000010011	BadCounterNum_3	Nonzero configuration values were entered for Counter 3, when Counter 3 was not available.
X420	010	000100000	BadCounterMode_0	Operation Mode_0 is set to an invalid value. For example, value is reserved (011 or 111) or nonzero when NumberofCounters = 11 .
X421	010	000100001	BadCounterMode_1	Operation Mode_1 is set to an invalid value. For example, value is reserved (011 or 111) or nonzero when NumberofCounters = 10 or 11 .
X430	010	000110000	BadMin_0	Programmed CtroMinCount is greater than the CtroMaxCount.
X431	010	000110001	BadMin_1	Programmed Ctr1MinCount is greater than the Ctr1MinCount.
X432	010	000110010	BadMin_2	Programmed Ctr2MinCount is greater than the Ctr2MaxCount.
X433	010	000110011	BadMin_3	Programmed Ctr3MinCount is greater than the Ctr3MaxCount.
X440	010	001000000	BadPreset_0	The programmed CtroPreset is greater than the CtroMaxCount or less than the CtroMinCount.
X441	010	001000001	BadPreset_1	The programmed Ctr1Preset is greater than the Ctr1 MaxCount or less than the Ctr1MinCount.
X442	010	001000010	BadPreset_2	The programmed Ctr2Preset is greater than the Ctr2MaxCount or less than the Ctr2MinCount.
X443	010	001000011	BadPreset_3	The programmed Ctr3Preset is greater than the Ctr3MaxCount or less than the Ctr3MinCount.

Table 5.6 Configuration Error Codes

Hex	Module Error Code	Extended Error Information Code		
Equivalent ${ }^{(1)}$	Binary	Binary	Error	Description
X450	010	001010000	BadHysteresis_0	The CtrOHysteresis value is invalid, i.e. Iess than zero.
X451	010	001010001	BadHysteresis_1	The Ctr1Hysteresis value is invalid, i.e. Iess than zero.
X452	010	001010010	BadHysteresis_2	The Ctr2Hysteresis value is invalid, i.e. less than zero.
X453	010	001010011	BadHysteresis_3	The Ctr3Hysteresis value is invalid, i.e. less than zero.
X460	010	001100000	BadScalar_0	The CtrOScalar value is invalid, i.e. less than one.
X461	010	001100001	BadScalar_1	The Ctr1Scalar value is invalid, i.e. less than one when NumberofCounters $=01,10$ or 11 .
X462	010	001100010	BadScalar_2	The Ctr2Scalar value is invalid, i.e. less than one when NumberofCounters $=10$ or 11 .
X463	010	001100011	BadScalar_3	The Ctr3Scalar value is invalid, i.e. less than one when NumberofCounters = 11 .
X470	010	001110000	BadScale_0	The CtrOCyclicRateUpdateTime is invalid, i.e. less than one.
X471	010	001110001	BadScale_1	The Ctr1CyclicRateUpdateTime is invalid, i.e. less than one when NumberofCounters = 01, 10 or 11 .
X472	010	001110010	BadScale_2	The Ctr2CyclicRateUpdateTime is invalid, i.e. less than one when NumberofCounters $=10$ or 11 .
X473	010	001110011	BadScale_3	The Ctr3CyclicRateUpdateTime is invalid, i.e. less than one when NumberofCounters $=11$.
X480	010	010000000	BadRangeLimit_0	The RangeOTo11[0].LowLimit is greater than or equal to the Range0To11[0].HighLimit.
X481	010	010000001	BadRangeLimit_1	The RangeOTo11[1].LowLimit is greater than or equal to the RangeOTo11[1].HighLimit.
X482	010	010000010	BadRangeLimit_2	The RangeOTo11[2].LowLimit is greater than or equal to the Range0To11[2].HighLimit.
X483	010	010000011	BadRangeLimit_3	The RangeOTo11[3].LowLimit is greater than or equal to the Range0To11[3].HighLimit.
X484	010	010000100	BadRangeLimit_4	The RangeOTo11[4].LowLimit is greater than or equal to the RangeOTo11[4].HighLimit.
X485	010	010000101	BadRangeLimit_5	The RangeOTo11[5].LowLimit is greater than or equal to the Range0To11[5].HighLimit.
X486	010	010000110	BadRangeLimit_6	The RangeOTo11[6].LowLimit is greater than or equal to the Range0To11[6].HighLimit.
X487	010	010000111	BadRangeLimit_7	The RangeOTo11[7].LowLimit is greater than or equal to the RangeOTo11[7].HighLimit.
X488	010	010001000	BadRangeLimit_8	The RangeOTo11[8].LowLimit is greater than or equal to the RangeOTo11[8].HighLimit.
X489	010	010001001	BadRangeLimit_9	The RangeOTo11[9].LowLimit is greater than or equal to the Range0To11[9].HighLimit.
X48A	010	010001010	BadRangeLimit_10	The Range0To11[10].LowLimit is greater than or equal to the RangeOTo11[10].HighLimit.
X48B	010	010001011	BadRangeLimit_11	The RangeOTo11[11].LowLimit is greater than or equal to the RangeOTo11[11].HighLimit.

Table 5.6 Configuration Error Codes

Hex	Module Error Code	Extended Error Information Code		
Equivalent ${ }^{(1)}$	Binary	Binary	Error	Description
X490	010	010010000	BadCtrAssignToRange_0	This error occurs if you try to set RangeOT011[0].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X491	010	010010001	BadCtrAssignToRange_1	This error occurs if you try to set RangeOTo11[1]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X492	010	010010010	BadCtrAssignToRange_2	This error occurs if you try to set RangeOTo11[2]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X493	010	010010011	BadCtrAssignToRange_3	This error occurs if you try to set RangeOTo11[3].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X494	010	010010100	BadCtrAssignToRange_4	This error occurs if you try to set RangeOTo11[4]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X495	010	010010101	BadCtrAssignToRange_5	This error occurs if you try to set RangeOTo11[5].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X496	010	010010110	BadCtrAssignToRange_6	This error occurs if you try to set RangeOTo11[6].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X497	010	010010111	BadCtrAssignToRange_7	This error occurs if you try to set Range0To11[7]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X498	010	010011000	BadCtrAssignToRange_8	This error occurs if you try to set RangeOTo11[8]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).

Table 5.6 Configuration Error Codes

Hex Equivalent ${ }^{(1)}$	Module Error Code	Extended Error Information Code	Error	Description
	Binary	Binary		
X499	010	010011001	BadCtrAssignToRange_9	This error occurs if you try to set RangeOTo11[9]. ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X49A	010	010011010	BadCtrAssignToRange_10	This error occurs if you try to set Range0To11[10].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).
X49B	010	010011011	BadCtrAssignToRange_11	This error occurs if you try to set Range0To11[11].ToThisCounter to an invalid value (i.e. to a counter that is not available due to the number of counters selected).

(1) X represents the "Don't Care" digit.

The BadModConfigUpdate error conditions are shown in the following table. They occur when you attempt to change a forbidden module configuration parameter while a counter or range is still enabled. To recover from this situation:

- correct the configuration problem
- reconfigure the module ${ }^{(1)}$

Table 5.7 "BadModConfigUpdate" Error Prohibited Configuration Settings - Do not set while counter or range is enabled.

Configuration Parameter	Array Position		Prohibited from changing when indicated (¢) bits are set:				
	Word	Bit	Ctr0En	Ctr1En	Ctr2En	Ctr3En	RangeEn
OverCurrentLatchOff	0	0	\bullet	\bullet	-	\bullet	\bullet
ProgToFaultEn	0	4					
NumberOfCounters	0	8 and 9	\bullet	-	\bullet	\bullet	\bullet
Filter_A0	1	0 and 1	\bullet			\bullet	
Filter_B0	1	3 and 4	\bullet			\bullet	
Filter_ZO	1	6 and 7	\bullet			\bullet	
Filter_A1	1	8 and 9		-	-		
Filter_B1	1	11 and 12		\bullet	\bullet		
Filter_Z1	1	14 and 15		\bullet	-		
OutnProgramMode	2	0 to 3					
OutnProgramStateRun	2	4 to 7					
OutnProgramValue	3	0 to 3					
OutnOFaultMode	4	0 to 3					
OutnFaultStateRun	4	4 to 7					
OutnFaultValue	5	0 to 3					
CtrOMaxCount CtrOMinCount CtrOPreset ${ }^{(1)}$ CtrOHysteresis CtrOScalar CtrOCyclicRateUpdateTime CtrOConfig.OperationalMode CtrOConfig.StorageMode CtrOConfig.Linear	$\begin{aligned} & 6 \text { and } 7 \\ & 8 \text { and } 9 \\ & 10 \text { and } 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	-- -- -- -- -- - 0 to 3 8 to 10 12	(1)				
Ctr1MaxCount Ctr1MinCount Ctr1Preset ${ }{ }^{(1)}$ Ctr1Hysteresis Ctr1Scalar Ctr1CyclicRateUpdateTime Ctr1Config.OperationalMode Ctr1Config.StorageMode Ctr1Config.Linear	16 and 17 18 and 19 20 and 21 22 23 24 25 25 25	-- -- -- -- -- -- 0 to 3 8 to 10 12		(1)			
Ctr2MaxCount Ctr2MinCount Ctr2Preset ${ }{ }^{(1)}$ Ctr2Hysteresis Ctr2Scalar Ctr2CyclicRateUpdateTime Ctr2Config.Linear	26 and 27 28 and 29 30 and 31 32 33 34 35	-- -- -- -- -- 12			(1)		
Ctr3MaxCount Ctr3MinCount Ctr3Preset ${ }{ }^{(1)}$ Ctr3Hysteresis Ctr3Scalar Ctr3CyclicRateUpdateTime Ctr3Config.Linear	36 and 37 38 and 39 40 and 41 42 43 44 45	$\begin{aligned} & \hline-- \\ & \hline-- \\ & -- \\ & -- \\ & \hline-- \\ & \hline 12 \end{aligned}$				(1)	
Ranges	46 to 117	--	can be changed while counters and ranges are enabled				

(1) CtrnPreset can be changed while $\operatorname{CtrnEn}=1$.

Contacting Rockwell Automation

If you need to contact Rockwell Automation for assistance, please have the following information available when you call:

- a clear statement of the problem, including a description of what the system is actually doing. Note the LED state; also note input and output image words for the module.
- a list of remedies you have already tried
- processor type and firmware number (See the label on the processor.)
- hardware types in the system, including all I/O modules
- fault code if the processor is faulted

Then contact your local Allen-Bradley distributor or Rockwell Automation Technical Support.

Technical Support contact information:

- phone - 440-646-5800
- internet - http://support.rockwellautomation.com

Specifications

General Specifications

Specification	Value
Dimensions	118 mm (height) $\times 87 \mathrm{~mm}$ (depth) $\times 35 \mathrm{~mm}$ (width), height including mounting tabs is 138 mm 4.65 in. (height) $\times 3.43$ in (depth) $\times 1.38$ in (width), height including mounting tabs is 5.43 in.
Approximate Shipping Weight (with carton)	$309 \mathrm{~g}(0.681 \mathrm{lbs}$.
Bus Current Draw (max.)	425 mA at 5 V dc 0 mA at 24 V dc
Heat Dissipation	6.21 Total Watts (The Watts per point, plus the minimum Watts, with all points energized.)
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$)
Operating Humidity	5% to 95\% non-condensing
Operating Altitude	2000 meters (6561 feet)
Vibration	Operating: 10 to $500 \mathrm{~Hz}, 5 \mathrm{G}, 0.030$ in. peak-to-peak Relay Operation: $\mathrm{ZG}^{(1)}$
Shock	Operating: $30 \mathrm{G}, 11 \mathrm{~ms}$ panel mounted ($20 \mathrm{G}, 11 \mathrm{~ms}$ DIN rail mounted) Non-Operating: 40G panel mounted (30G DIN rail mounted)
System Power Supply Distance Rating	4 (The module may not be more than 4 modules away from a system power supply.)
Recommended Cable	individually shielded, twisted-pair cable (or the type recommended by the encoder or sensor manufacturer)
Agency Certification	- C-UL certified (under CSA C22.2 No. 142) - UL 508 listed - CE compliant for all applicable directives
Hazardous Environment Class	Class I, Division 2, Hazardous Location, Groups A, B, C, D (UL 1604, C-UL under CSA C22.2 No. 213)
Radiated and Conducted Emissions	EN50081-2 Class A
Vendor I.D. Code	1
Product Type Code	109
Product Code	19
Electrical/EMC:	The module has passed testing at the following levels:
ESD Immunity (IEC61000-4-2)	- 4 kV contact, 8 kV air, 4 kV indirect
Radiated Immunity (IEC61000-4-3)	- $10 \mathrm{~V} / \mathrm{m}, 80$ to $1000 \mathrm{MHz}, 80 \%$ amplitude modulation, +900 MHz keyed carrier
Fast Transient Burst (IEC61000-4-4)	- $2 \mathrm{kV}, 5 \mathrm{kHz}$
Surge Immunity (IEC61000-4-5)	- 1 kV galvanic gun
Conducted Immunity (IEC61000-4-6)	- 10V, 0.15 to 80MHz ${ }^{(2)}$
(1) This rating applies for your system if a relay module such as the $1769-0 W 8$ is used. If no relays are used, use the "Operating" vibration specification.	

Input Specifications

Specification	Value
Input Voltage Range	$-30 \mathrm{to} 30 \mathrm{~V} \mathrm{dc}{ }^{(1)}$
On-State Voltage (max.)	$30 \mathrm{~V} \mathrm{dc}{ }^{(1)}$
On-State Voltage (min.)	2.6 V dc
On-State Current (min.)	6.8 mA
Off-State Voltage (max.)	1.0 V dc
Off-State Current (max.)	1.5 mA
Off-State Leakage Current (max.)	1.5 mA
Input Current (max.)	15 mA
Input Current (min.)	6.8 mA
Input Impedance (nominal)	1950Ω
Pulse Width (min.)	250 nsec
Phase Separation (min.)	131 nsec
Input Frequency (max.)	1 MHz
Isolation (Inputs to the Bus and	Verified by one of the following dielectric tests: Input to Input) \bullet

(1) See Maximum Input Voltage - 24 V dc Operation temperature derating on page A-4.

Output Specifications

Specification	Value
Output Voltage Range	5 to 30 V dc
(1)	

(1) See Maximum Output Voltage - 24V dc Operation temperature derating on page A-4.
(2) See Maximum Output Current per Point - 5 V dc Operation temperature derating on page $\mathrm{A}-5$ and Maximum Output Current per Point - 24V dc Operation temperature derating on page A-6.
(3) See Maximum Output Current per Module - 5 V dc Operation temperature derating on page A-5 and Maximum Output Current per Module - 24 V dc Operation temperature derating on page A-6.
(4) Maximum turn-on time applies to output voltage range of 5 to 7 V dc . For output voltages greater than 7 V dc , the maximum turn-on time is $200 \mu \mathrm{~s}$.

Throughput and Timing

Operation	Description	Timing
Input File Update Time	The delay between the time the module receives a pulse and when the Compact bus count value is updated.	1 ms (maximum)
Output Turn-on Time	The time it takes for the real output to reach 90\% output voltage after commanded by the module, not including processor scan time.	$400 \mu \mathrm{~s}$ (maximum)
Output Turn-off Time	The time it takes for the real output to reach 10\% output voltage after commanded by the module, not including the processor scan time.	$200 \mu \mathrm{~s}$ (maximum)
Rate Accuracy	The accuracy of the reported rate as compared to actual input rate in the equation: reported rate/actual input rate.	Depends on frequency. See graph below.

Rate Accuracy

The following graph shows rate error at various frequencies. Pointing out a few trends may assist you in reading the graph:

- Of the lines that rise at low frequencies, the leftmost is a 10 second update time $(\operatorname{Ctr} n$ CyclicRateUpdateTime $=10000)$.
- The rightmost of these lines is a 1 ms update time $(C \operatorname{tr} n$ CyclicRateUpdateTime $=1)$.
- The line that rises at high frequencies illustrates $\operatorname{Ctr}[n]$.PulseInterval.

Figure A. 1 Rate Errors Comparison

Temperature Derating

Maximum Input Voltage - 24V dc Operation

Voltage Derating Based on Temperature

Temperature	Derated Voltage ${ }^{(\mathbf{1})}$
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	30 V dc
$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	26.4 V dc
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	5 V dc

(1) Input voltage derating between $55^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ is achieved by using a dropping resistor. For 24 V dc input voltage, use a $2.4 \mathrm{k} \Omega 1 / 2 \mathrm{Watt}$ resistor.
For input voltages greater than 24 V dc, use a $1 / 2$ Watt resistor with value: $125 \mathrm{x}\left(\mathrm{V}_{\text {in }}-5 \mathrm{~V}\right)$

Maximum Output Voltage - 24V dc Operation

Voltage Derating Based on Temperature

Temperature	Derated Voltage
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	30 V dc
$55^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	26.4 V dc

Maximum Output Current per Point - 5V dc Operation

Current Derating Based on Temperature

Temperature	Derated Current
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	1 A
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	0.5 A

Maximum Output Current per Module - 5V dc Operation

Current Derating Based on Temperature

Temperature	Derated Current
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	4 A
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	2.0 A

Maximum Output Current per Point - 24V dc Operation

Current Derating Based on Temperature

Temperature	Derated Current
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	1 A
$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	0.5 A
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	0.25 A

Maximum Output Current per Module - 24V dc Operation

Current Derating Based on Temperature

Temperature	Derated Current
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	4 A
$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	2 A
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	1 A

Dimensions

NOTE: All dimensions are in mm (inches). Hole spacing tolerance: $\pm 0.04 \mathrm{~mm}$ (0.016 in.).
Figure A. 2 Compact I/O with CompactLogix Controller and Power Supply

Figure A. 3 Compact I/0 with MicroLogix 1500 Base Unit and Processor

1769-HSC Module with CompactLogix Controllers and an Allen-Bradley 845F Encoder

System Diagram

845F Encoder Wiring to the 1769-HSC

Table B. 1 Encoder Wiring

845F Encoder Wire	Color	1769-HSC Terminal
Blue/Black Wire Pair	Blue	A0 +
	Black	A0-
White/Black Wire Pair	White	B0 +
	Black	B0-
Green/Black Wire Pair	Green	Z0+
	Black	ZO-
	Red	+24 V dc Power Supply
	Black	24 V dc Common

Purpose

Scope

Adding a 1769-HSC High Speed Counter Module into a CompactLogix System

The purpose of this application example is to demonstrate how to wire an Allen-Bradley 845F optical incremental encoder to a $1769-\mathrm{HSC}$ module and ultimately monitor the Current Count value in the CompactLogix controller. We will also control 2 onboard outputs with 2 Ranges.

This example will cover the following steps:

1. Add the 1769 -HSC High Speed Counter module into a CompactLogix system using the Generic profile in RSLogix 5000 programming software.
2. Configure the $1769-$ HSC by entering configuration information into Configuration and Output tags created in RSLogix 5000 for the $1769-H S C$ module.
3. Monitor the Current Count value from the $1769-H S C$ module in the Input Tag created for the module.
4. Verify that module outputs 0 and 1 turn on when the Current Counts value is in the specified Ranges.

This example uses a 1769-L20 CompactLogix controller. The 1769-L30 controller will operate the same with respect to the $1769-H S C$ module.

1. Start the RSLogix 5000 programming software by double clicking its icon on your desktop. The following screen appears:

2. Click the "New" icon or the File pull-down menu and select New. In the box that appears, choose the correct controller type (1769-L20 CompactLogix 5320 controller for this example) and give your project a name. Then click OK and the following screen will appear:

3. The area on the left of this screen is called the Controller Organizer. To add I/O modules to your CompactLogix Project, right-click on the last parameter listed in the Controller Organizer, called "[0] CompactBus Local" and choose "New Module". The following screen will appear:

4. This screen displays all 1769 I/O modules that have a Thin Profile. Any module listed by its catalog number has such a profile. To add these modules to your CompactLogix system, click on the module, then click OK. The screen that appears allows you to name the module. All other parameters should be left at their defaults.
5. Click "Finish" and your module will be displayed below the " $[0]$ CompactBus Local" in slot 1 . The next I/O module you configure, by default, will be placed in slot 2 and so on. Configure the remaining I/O modules that are listed by name in the same manner.
6. The $1769-H S C$ module does not yet have a Thin Profile. This means that until this module appears in the I/O list by name, the "Generic 1769 Module" profile will be used to add the 1769-HSC module to your CompactLogix system. To add it to your system, click on the "Generic 1769 Module", then click OK and the following screen appears:

7. Fill in this Generic profile screen as follows:

Name	Give your HSC module a name
Comm Format:	Data-INT
Input:	Assembly Instance $=101$, size $=35$
Output:	Assembly Instance $=100$, size $=34$
Configuration:	Assembly Instance $=102$, size $=118$
Slot:	For this example, the HSC module is in slot 4

8. When you have entered the data into your Generic profile screen, click Finish. Your module will be added to your CompactLogix system and it will be displayed under the [0] CompactBus Local in the Controller Organizer.

Configuring Your 1769-HSC Module

When the $1769-$ HSC module is added to the CompactLogix project, Input, Output and Configuration tags are automatically created in the Controller Tags area.

1. Double click on Controller Tags. The following screen appears:

This screen displays all the tags created for all the I/O modules added to the system. Discrete I/O modules are not configurable at this time, but all other types of I/O modules must be configured. In this example, the $1769-$ IF 4 and the 1769 -HSC must be configured. Refer to your Compact I/O Analog Modules User Manual, publication 1769-UM002A-EN-P, for information on configuring the 1769 -IF 4 module.

The tags for I / O modules are displayed in the following format, where s is the slot number of the module:

Tag	Description
Local:s:I	Input Image
Local:s:0	Output Image
Local:s:C	Configuration Data

Each of these tags has a plus sign to its left. Click on the plus sign to the left of any tag to open it. For the 1769 -HSC in slot 4 ,
click on the plus sign to the left of Local:4:C. A Reserved tag along with a Data tag are displayed. We need only be concerned with the Data tag. This is where we enter our configuration parameters for the $1769-\mathrm{HSC}$ module.
2. Expand Local:4:C.Data by clicking its plus sign. A configuration tag with a length of 198 words is displayed, but only the first 118 words are needed to configure the 1769 -HSC module. This 118 word configuration file is shown in Table 4.3. Word 0 in Table 4.3 corresponds to Local:4:C.Data[0], Word 1 corresponds to Local:4:C.Data[1] and so on.

It is best to configure the module in your offline project, then download the project to your CompactLogix controller. This is due to the fact that configuration files are downloaded to the I/O modules only at download, when an inhibited module is uninhibited and at power up. For this example, we will configure the module to operate in the following way:

Configuration Parameter	Value	
Number of Counters	1	
Maximum Count Value	1,200,000	
Minimum Count Value	0	
Scalar	1	
Update Time Value	1	
Operational Mode	Quadrature encoder X 4	
Ring Counter Two Ranges	Range0	Maximum Value: 600,000
		Minimum Value: 500,000
		Control Output 0 with this range
		Range Type: Count Value
		ToThisCounter: 0
	Range1	Maximum Value: 1,200,000
		Minimum Value: 1,000,000
		Control Output 1 with this range
		Range Type: Count Value
		ToThisCounter: 0

Translate the configuration parameters above into the $1769-\mathrm{HSC}$ Configuration file, per Chapter 4 as follows:

Configuration Tag	Hex Value	Description
Local:4:C.Data[0]	$16 \# 0000$	Number of Counters =1
Local:4:C.Data[1]	$16 \# 0000$	No filters used in this example
Local:4:C.Data[2]	$16 \# 0000$	PSO and PSR not used
Local:4:C.Data[3]	$16 \# 0000$	PV0 not used
Local:4:C.Data[4]	$16 \# 0000$	FSO and FSR not used
Local:4:C.Data[5]	$16 \# 0000$	FVO not used
Local:4:C.Data[6]	$16 \# 4 F 80$	Low word for CtroMaxCount
Local:4:C.Data[7]	$16 \# 0012$	High word for CtrOMaxCount
Local:4:C.Data[8]	$16 \# 0000$	Low word for CtroMinCount
Local:4:C.Data[9]	$16 \# 0000$	High word for CtroMinCount
Local:4:C.Data[10]	$16 \# 0000$	Low word for CtrOPreset
Local:4:C.Data[11]	$16 \# 0000$	High word for CtrOPreset
Local:4:C.Data[12]	$16 \# 0000$	Hysteresis not used
Local:4:C.Data[13]	$16 \# 0001$	Not used, must set to 1
Local:4:C.Data[14]	$16 \# 0001$	Not used, valid range:1-32767
Local:4:C.Data[15]	$16 \# 0006$	Operational Mode: Ouadrature Encoder X4

Local:4:C.Data[16] through Local:4:C.Data[45] are for configuring counters 1 through 3. Since we are only using counter 0 in this example, these words should not be modified.

Local:4:C.Data[46]	16\#27C0	Low word for RangeOHighLimit
Local:4:C.Data[47]	16\#0009	High word for RangeOHighLimit
Local:4:C.Data[48]	16\#A120	Low word for RangeOLowLimit
Local:4:C.Data[49]	$16 \# 0007$	High word for RangeOLowLimit
Local:4:C.Data[50]	$16 \# 0001$	Enable Output 0 for Range0
Local:4:C.Data[51]	16\#0000	For Counter0, Counter Value
Local:4:C.Data[52]	16\#4F80	Low word for Range1HighLimit
Local:4:C.Data[53]	16\#0012	High word for Range1HighLimit
Local:4:C.Data[54]	16\#4240	Low word for Range1LowLimit
Local:4:C.Data[55]	16\#000F	High word for Range1LowLimit
Local:4:C.Data[56]	16\#0002	Enable Output 1 for Range1
Local:4:C.Data[57]	16\#0000	For Counter0, Counter Value

Local:4:C.Data[58] through Local:4:C.Data[117] are for configuring ranges 2 through 11. Since we are only using ranges 0 and 1 in this example, these words should not be modified.

To enter double integer (DINT) values into 2 integer words, create a single DINT in your Controller Tags area and call it "Buffer" or something similar.
Enter any DINT value into this tag in the decimal radix, then change the radix to Hex. The DINT value will be displayed in two 4-digit hex values. The 4-digit hex value on the left is the high word and the one on the right is the low word.

Enter these values into the Configuration file or Output file where appropriate, in the hex radix. For example, the Ctr0MaxCount value is a DINT, represented in the Configuration tag for the $1769-H S C$ as 2 integer words, Local:4:C.Data[6] and Local:4:C.Data[7]. The value we want to enter here is $1,200,000$.

Enter this value into our DINT "Buffer" in decimal, then change to the hex radix. The result is $16 \# 0012 _4 f 80$. The low word is $4 f 80$ hex and must be entered into tag Local:4:C.Data[6]. The high word is 0012 hex and must be entered into tag Local:4:C.Data[7]. Be sure to be in the hex radix before entering the hex values into these words.
3. To fully configure the 1769 -HSC module, we must now modify parameters in the Output tag as well. Click the plus sign to the left of Local:4:O, then click the plus sign to the left of Local:4:O.Data. 34 words of output image appear. Addresses for these 34 words are:

Local:4:0.Data[0] through Local:4:O.Data[33].

For this example, only the first 6 words are modified. Words Local:4:O.Data[6] through Local:4:O.Data[33] are for Counters 1 to 3 and Ranges 12 to 15 , which we are not using in this example.

The 6 Output words are as follows:

Output Tag	Hex Value	Description
Local:4:O.Data[0]	$16 \# 0000$	
Local:4:O.Data[1]	$16 \# 0003$	Enables Outputs 0 and 1 to be controlled by Ranges 0 and 1.
Local:4:0.Data[2]	$16 \# 0003$	Enable Ranges 0 and 1
Local:4:0.Data[3]	$16 \# 0000$	Not using Interrupts
Local:4:0.Data[4]	$16 \# 0000$	Not using Interrupts
Local:4:0.Data[5]	$16 \# 0001$	Enable Counter 0

Local:4:0.Data[6] through Local:4:0.Data[33] are not used by this example and should not be modified

Monitoring the Current Count Value and Verifying Output Operation

The Current Count value for Counter0 is represented in the Input tag for the module with 2 integer words. Since this value is a DINT value, we must copy the two integer words to a DINT tag to properly view the Current Count of Counter0.

1. In the Controller tags screen, enter the edit mode and create a tag called "Ctr0CurrentCount". Be sure this tag is a DINT. Then enter the following ladder rung:

2. Notice that the Source of the COP instruction is the first of the two integer tags that represent the Current Count for Counter0. The destination of the COP instruction is the DINT you just created. The length of a COP instruction is always determined by the Destination tag, in this case a single DINT. If this were reversed and the Source of the COP were the DINT and the Destination was the address of the first of two integers, then the length would be 2 .
3. Save the program and download it to your controller. Place the controller into the RUN mode and spin the shaft on your 845F encoder. Tag "Ctr0CurrentCount" will display the current count data for Counter0 of the $1769-H S C$. This count, for this example is the number of pulses received from the encoder times 4 (we chose the operating mode to be "Quadrature Encoder X4").
4. Continue to spin the encoder shaft until the current count value is within the limits set for Range $0(500,000$ to 600,000). Output0 should turn on only when the current count value is equal to or within the Range 0 limits. Output1 should turn on only when the Current Counts value is equal to or within the Range 1 limits ($1,000,000$ to $1,200,000$). These two outputs will be off for all other values of the Current Count for Counter0.

1769-HSC Module with MicroLogix 1500 Controllers and an Allen-Bradley 845F Encoder

System Diagram

845F Encoder Wiring to the 1769-HSC

Table C. 1 Encoder Wiring

845F Encoder Wire	Color	1769-HSC Terminal
Blue/Black Wire Pair	Blue	A0 +
	Black	A0-
White/Black Wire Pair	White	B0 +
	Black	B0-
Green/Black Wire Pair	Green	Z0 +
	Black	ZO-
	Red	+24 V dc Power Supply
	Black	24 V dc Common

Purpose

Scope

The purpose of this application example is to demonstrate how to wire an Allen-Bradley 845F optical incremental encoder to a $1769-H S C$ module and ultimately monitor the Current Count value in the MicroLogix 1500 controller. We will also control 2 onboard outputs with 2 Ranges.

This example will cover the following steps:

1. Add the 1769 -HSC High Speed Counter module into a MicroLogix 1500 system using the RSLogix 500 programming software.
2. Configure the $1769-$ HSC by entering configuration information into I/O Configuration created in RSLogix 500 for the 1769-HSC module.
3. Monitor the Current Count value from the $1769-H S C$ module
4. Verify that module outputs 0 and 1 turn on when the Current Count value is within the specified Ranges.

This example uses a MicroLogix 1500 controller.

1. Start the RSLogix 500 programming software by double clicking its icon on your desktop or from the
Start>Programs>Rockwell Software $>$ RSLogix 500
English>RSLogix $\mathbf{5 0 0}$ English. The following screen appears:

2. Click the "New" icon or the File pull down menu and select New. The following screen appears:

3. Choose the correct controller type (Bul. 1764 MicroLogix 1500 LRP series C controller for this example) and give your processor a name. Then click OK and the following screen appears:

4. The area on the left of this screen is called the Project Menu. To add I/O modules to your MicroLogix 1500 Project, left click on the I/O Configuration parameter listed in the Project Menu. The following screen appears:

5. This screen displays all 1769 I/O modules supported by the MicroLogix 1500. To add the 1769 -HSC module to your MicroLogix 1500 system, double left click on the module or click, hold and drag the module to its desired slot. In this case we will use slot 1 .

Configuring Your 1769-HSC Module

Configuration of the module is done in your offline project, and then downloaded to the MicroLogix 1500 controller. This is due to the fact that configuration files are downloaded to the I/O modules only at download.

1. Click the Adv Config button to open the 1746 -HSC-module configuration file.
2. Then select the Counter Tab to display the counter configuration screen with all its default values.

3. For this example, configure the module to operate in the following way:

Number of Counters :	1 (default $=2$)
Maximum Count Value:	$1,200,000$ (default $=2147483647$)
Minimum Count Value:	0 (default $=-2147483648$)
Preset:	1 (default $=0$)
Update Time Value:	1 (default $=10)$
Operational Mode:	(Quadrature) Encoder X 4
	(default $=$ Pulse Internal Dir)
Count Behavior	
On Configuration:	Retained (default $=$ Retained)
Hysteresis:	0 (default $=0)$
RPM Scale Factor	1 (default $=0$)
Number Of Counters	1 (default $=2)$
Storage modes	All Unchecked (default $=$ all unchecked)
Acc behavior on	
Over/Under flow	Ring Counter (default $=$ Ring counter)
A, B, Z Filters	None (default $=$ none)

4. Select the Range Tab to display the counter range configuration screen with all its default values. This configuration will use two of the 12 ranges available for the ring counter.

5. Configure the module to operate with the following values:

Range \#0:	
Counter used:	Counter \#0
Range Type:	Count Value
High limit	600,000
Low limit	500,000
Range Active	Within the limits
Output Mask	0001
Range \#1:	Counter \#0
Counter used:	Count Value
Range Type:	$1,200,000$
High limit	$1,000,000$
Low limit	Within the limits
Range Active	0002
Output Mask	

6. In order to fully configure the $1769-H S C$ module, we must now modify parameters in the Output Data file as well. Click on the Output Data file on the left side under the Data files. 34 words of output image will appear. Addresses for these 34 words are Output word [0] through Output word [33].
7. For this example, only the first 6 words are modified. Output Word [6] through Output Word [33] are for Counters 1-3 and Ranges 12-15, which we are not using in this example.

The 6 Output words are as follows:

Output Data File	Decimal Value	Description
Output Word [0]	0	Not used
Output Word [1]	3	Enables Outputs 0 and 1 to be controlled by Ranges 0 and 1.
Output Word [2]	3	Enable Ranges 0 and 1
Output Word [3]	0	Not using Interrupts
Output Word [4]	0	Not using Interrupts
Output Word [5]	1	Enable Counter 0

Output Word [6] through Output Word [33] are not used by this example and should not be modified.

Monitoring the Current Count and Verifying Output Operation

No program logic is needed for this example. Save the program and download it to your controller. Place the controller into the RUN mode and spin the shaft on your 845 F encoder. Input words 4 and 5 "Current Count" will display the current count data for Counter \#0 of the $1769-\mathrm{HSC}$. This count, for this example, is the number of pulses received from the encoder times 4 (we chose the operating mode to be "Quadrature Encoder X4").

Continue to spin the encoder shaft until the current count value is within the limits set for Range0 $(500,000$ to 600,000$)$. Output 0 should turn on only when the current count value is equal to or within the Range0 limits. Output1 should turn on only when the Current Count value is equal to or within the Range1 limits ($1,000,000$ to $1,200,000$). These two outputs will be off for all other values of the Current Count for Counter 0 .

You could also use a CPW instruction to monitor 32-bit values via ladder logic.

Programming Quick Reference

This appendix contains at-a-glance listings of the:

- Configuration Array
- Output Array
- Input Array

These sheets are also available electronically. They can be downloaded from www.theautomationbookstore.com.

Search for Item Number 1769-QR002A-EN-E. You can print out the PDF file for your reference.

The default value for the Configuration Array is all zeros except where noted.

62	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Description		
	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	RangeOto11[2].OutputControl		
63	Inv											Type			ToThisCtr		Range0to11[2].ConfigFlags	\rightarrow	Range0To11[2].ToThisCounter_0 Range0To11[2].ToThisCounter_1 Range0To11[2].Type Range0To11[2].Invert
$\begin{aligned} & 64 \\ & 65 \end{aligned}$	Range0to11[3].HighLimit																Range0to11[3]. HighLimit		
$\begin{aligned} & 66 \\ & 67 \end{aligned}$	Range0to11[3].LowLimit																RangeOto11[3].LowLimit		
68	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[3].OutputControl		
69								Inv				Type			ToThisCtr		Range0to11[3].ConfigFlags	\rightarrow	Range0To11[3].ToThisCounter_0 Range0To11[3]. ToThisCounter_1 Range0To11[3].Type RangeOTo11[3].Invert
$\begin{aligned} & 70 \\ & 71 \end{aligned}$	Range0to11[4].HighLimit																Range0to11[4].HighLimit		
$\begin{aligned} & 72 \\ & 73 \end{aligned}$	RangeOto11[4].LowLimit																Range Oto11[4].LowLimit		
74	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[4].OutputControl		
75								Inv				Type			ToThi	sCtr	Range0to11[4].ConfigFlags	\rightarrow	Range0To11[4].ToThisCounter_0 Range0To11[4]. ToThisCounter_1 Range0To11[4].Type RangeOTo11[4].Invert
$\begin{aligned} & 76 \\ & 77 \end{aligned}$	Range0to11[5].HighLimit																RangeOto11[5]. HighLimit		
$\begin{aligned} & 78 \\ & 79 \end{aligned}$	Range0to11[5].LowLimit																Range0to11[5].LowLimit		
80	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[5].OutputControl		
81								Inv				Type			ToThis	sCtr	Range0to11[5].ConfigFlags	\rightarrow	ge0To11[5].ToThisCounter_0
$\begin{aligned} & 82 \\ & 83 \end{aligned}$							Rang	eOto11[6]	6].HighL								Range0to11[6]. HighLimit		RangeOTo11 [5]. Type Range0To11[5].Invert
$\begin{aligned} & 84 \\ & 85 \end{aligned}$							Rang	eOto11[6].LowLi								RangeOto11[6].LowLimit		
86	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[6].OutputControl		
87								Inv				Type			ToThi	sCtr	Range0to11[6].ConfigFlags	\rightarrow	Range0To11[6].ToThisCounter_0
$\begin{aligned} & 88 \\ & 89 \end{aligned}$							Rang	e0to11[7]].HighLi								Range0to11[7].HighLimit		Range0To11[6].Type RangeOTo11[6].Invert
$\begin{aligned} & 90 \\ & 91 \end{aligned}$							Rang	e0to11[]	7].LowLi								Range0to11[7].LowLimit		
92	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[7].OutputControl		
93								Inv				Type			ToThi	sCtr	Range0to11[7].ConfigFlags	\rightarrow	Range0To11[7] TToThisCounter_0
$\begin{aligned} & 94 \\ & 95 \end{aligned}$							Rang	e0to11[8	8].HighL								Range0to11[8].HighLimit		Range0To11[7]. Type Range0To11[7].Invert
$\begin{aligned} & \mathbf{9 6} \\ & \mathbf{9 7} \end{aligned}$							Rang	e0to11[8]	8].LowLi								Range0to11[8].LowLimit		
98	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[8].OutputControl		
99								Inv				Type			ToThis	sCtr	Range0to11[8].ConfigFlags	\rightarrow	Range0To11[8].ToThisCounter_0
$\begin{aligned} & 100 \\ & 101 \end{aligned}$							Rang	eOto11[9].HighL								Range0to11[9]. HighLimit		RangeOTo11[8]. Type RangeOTo11[8].Invert
$\begin{aligned} & 102 \\ & 103 \end{aligned}$							Rang	e0to11[9].LowLi								RangeOto11[9].LowLimit		
104	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[9].OutputControl		
105								Inv				Type			ToThi	sCtr	RangeOto11[9].ConfigFlags	\rightarrow	Range0To11[9].ToThisCounter_0
$\begin{aligned} & 106 \\ & 107 \end{aligned}$							Rang	e0to11[1	0].HighL	imit							Range0to11[10].HighLimit		RangeOTo11[9].Type RangeOTo11[9].Invert
$\begin{aligned} & 108 \\ & 109 \end{aligned}$							Rang	e0to11[1	10].LowL								Range0to11[10].LowLimit		
110	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[10].OutputControl		
111								Inv				Type			ToThis	sCtr	Range0to11[10].ConfigFlags	\rightarrow	Range0To11[10].ToThisCounter_0
$\begin{aligned} & 112 \\ & 113 \end{aligned}$							Rang	e0to11[1	1].HighL	imit							Range0to11[11].HighLimit		Range0T011[10]. Type Range0To11[10].Invert
$\begin{aligned} & 114 \\ & 115 \end{aligned}$							Rang	e0to 11 [1	1].LowL								Range0to11[11].LowLimit		
116	Out15	Out14	Out13	Out12	Out11	Out10	Out09	Out08	Out07	Out06	Out05	Out04	Out03	Out02	Out01	Out00	Range0to11[11].OutputContro		
117								Inv				Type			ToThi	sCtr	RangeOto11[11].ConfigFlags	$\xrightarrow{\rightarrow}$	RangeOTo11[11].ToThisCounter_0 Range0To11[11].ToThisCounter_1 Range0To11[11].Type Range0To11[11].Invert
1) T	defau	ult valu	e for N	umber	fCoun	nters is	01 (tw	o coun	ters de	clared)									
2) T	e defau	ult valu	e for C	trnMax	Count	is $+2,1$	47,483	,647 de	ecimal	for cou	unters 0	0 and 1	. The	default	value is	is 0 for	r counters 2 and 3.		
(3) T	defau	ult valu	e for C	trnMin	Count is	is $-2,147$	77,483,	648 de	cimal for	or coun	nters 0	and 1.	The de	efault	value is	0 for	counters 2 and 3.		
(4) T	e defaut	ult valu	e for C	trnSca	ar is 1	for cou	unters 0	0 and 1	. The d	default	value is	is 0 for	count	rs 2 and					
5) T	e defau	ult valu	e for C	trnCyc	icRate	Update	Time is	10 for	count	ers 0 a	and 1. T	e def	ult va	ue is 0	for cou	unters	2 and 3.		

Output Array
The default value for the Output Array is all zeros.

Input Array

The default value for the Input Array is all zeros.

A

Allen-Bradley contact information P-3, 5-14

C

cable 3-11, A-1
channel diagnostics 5-4
CompactLogix controller
application example B-1
compatibility 1-1
user manual P-2
configuration 4-1
Configuration Array 4-2, D-2
configuration errors 4-2, 5-7
Configuration Flags 4-3, 4-4, 4-15
Control Bits 4-24
Count Overflow 4-38
Count Underflow 4-38
count value 2-14, 2-15
counter
basic description 1-1
counter configuration
summary 2-4
Counter Control Bits 4-21
Counter Preset Warning 4-39
counter types
linear counter 2-14
ring counter 2-15
CtrOConfig.Linear 5-13
CtrOConfig.OperationalMode 5-13
CtrOConfig.StorageMode 5-13
CtrOCyclicRateUpdateTime 5-13
CtrOHysteresis 5-13
CtroMaxCount 5-13
CtroMinCount 5-13
CtrOPreset 5-13
CtroScalar 5-13
Current Count 4-32, 4-36
current draw A-1
Current Rate 4-37
Cyclic Rate Update Time 4-3, 4-14

D

Defaults

Configuration Array 4-2, D-2
Counter Defaults 2-1, 5-3
Counter Maximum Count 4-12, D-3
Counter Minimum Count 4-12, D-3

Counter Preset 4-13
Counter Reset 2-17, 4-7
Counter Scalar 4-14, D-3
Cyclic Rate Update Time 4-14, D-3
Default Safe State 2-30
Input Array D-4
Number of Counters 4-8, D-3
Output Array 4-21, D-4
DeviceNet adapter
compatibility 1-1
user manual P-2
dimensions $\mathrm{A}-4$
DIN rail mounting 3-9
Direct Write 2-16
Direct Write Value 4-26
Direction Inhibit 2-7, 4-25
Direction Invert 2-7, 4-25

E

electrical noise 3-4
EMC Directive 3-1
Enable Counter 4-24
error
cyclic rate error 2-23
general error bit 4-32, 4-34
invalid counter 4-24, 4-39
invalid counter assigned to range 4-29, 4-35
invalid direct write 4-38
invalid output 4-34
invalid output bit 4-21
invalid range 4-26, 4-27
invalid range limit 4-35
per pulse error 2-22
error codes 5-8
error definitions 5-5
errors
BadCounterMode 5-9
BadCounterNum 5-9
BadCtrAssignToRange 5-11
BadHysteresis 5-10
BadMin 5-9
BadModConfigUpdate 5-9, 5-12
BadPreset 5-9
BadRangeLimit 5-10
BadScalar 5-10
BadScale 5-10
configuration 5-7
configuration errors 4-2
critical 5-5
extended error information field 5-6
General Configuration Error 5-9
hardware 5-6
module error field 5-6
non-critical 5-5
UnusedConfigBitSet 5-9
European Union Directives 3-1
extended error codes 5-8
extended error information field 5-6

F

Fault State Run 2-29
Filter Selection 4-3, 4-8
FilterA0 5-13
FilterA1 5-13
FilterB0 5-13
FilterB1 5-13
FilterZ0 5-13
FilterZ1 5-13
finger-safe terminal block 3-13

G

gate/preset functions 2-4
gating 2-16
General Configuration Bits 4-3, 4-6
General Error Bit 4-34
grounding 3-11

H

hardware errors 5-6
hardware features 1-3
heat considerations 3-4
Hold Last State 2-27
Hysteresis 2-20, 4-3, 4-13

1

Input Array D-5
input array 4-31
input operational mode 2-7
pulse/external direction 2-8
pulse/internal direction 2-9
up and down pulses 2-10
X 1 quadrature encoder 2-11
X2 quadrature encoder 2-12
X4 quadrature encoder 2-12
Input State 4-32, 4-33
inputs
basic description 1-2
block diagram 2-2
differential encoder wiring 3-17
discrete device wiring 3-19
isolation 3-11
reducing noise 3-4, 3-12
single-ended encoder wiring 3-18
terminal block wiring 3-16
installation
grounding 3-11
heat and noise considerations 3-4
Invalid Counter 4-39
Invalid Counter Assigned to Range 4-35
Invalid Direct Write 4-38
Invalid Output 4-34
Invalid Range Limit 4-35

L

LEDs
overview 1-4
power-up diagnostics 5-4
safety considerations 5-1
troubleshooting status 1-4, 5-4
linear counter 2-14, 4-16
Load Direct Write 4-30

M

Masks 2-23
Maximum Count 4-3, 4-11
MicroLogix 1500
application example C-1, D-1
compatibility 1-1
user manual P-2
Minimum Count 4-3, 4-12
Module Configured 4-34
module error field 5-6
mounting 3-7

N

nameplate label 1-3
number of counters 2-4, 4-8, 5-13

0

operating

block diagrams 2-2
description 2-1

Operational Mode 4-15
Output Array D-4
output array 4-21
output control 2-23
Output Control Example 2-30
Output Fault Mode 4-3, 4-10
Output Fault State Run 4-3, 4-10
Output Fault Value 4-3, 4-11
Output Off Mask 2-24, 4-21, 4-23
Output On Mask 2-23, 4-21, 4-22
Output Program Mode 4-3
Output Program State Run 4-3
Output Program Value 4-3, 4-10
outputs
basic description 1-2
block diagram 2-3
isolation 3-20
overcurrent autoreset operation 3-20
required power supply 3-20
short-circuits 3-20
terminal block wiring 3-16
thermal protection 3-20
transient pulse warning 3-21
wiring diagram 3-22
Overcurrent 2-27
Overcurrent Feedback 4-33
OverCurrentLatchOff bit 3-20, 4-6, 5-13
overflow 2-14, 2-15, 2-21
linear counter 2-14

P

panel mounting 3-7
power-up diagnostics 5-4
Preset 4-3, 4-13
preset/reset 2-17
program alteration 5-2
Program Mode 4-9
Program State Run 2-28, 4-9
Program to Fault Enable 2-29, 4-7
programming 4-1
Pulse Interval 4-32, 4-37
pulse/external direction 2-8
pulse/internal direction 2-9

R

Range Active 4-32, 4-35
Range Configuration Flags 4-19, 4-21, 4-22, 4-29
range control 2-24

Range Enable 4-21, 4-23
Range High Limit 4-4, 4-17, 4-26
Range High Limit Direct Write Value 4-21, 4-22
Range Invert 4-20, 4-30
Range Low Limit 4-4, 4-17, 4-21, 4-22, 4-27
Range Output Control 4-4, 4-18, 4-21, 4-22, 4-28
Range Type 4-19
RangeType 4-29
Rate 2-18
rate accuracy $\mathrm{A}-3$
Rate Method 2-22
rate range 2-18
Rate Valid 2-21, 4-39
Readback 2-31, 4-32, 4-33
real outputs 2-23
removing terminal block 3-12
replacing a module 3-10
Reset 2-17, 4-7
Reset Blown Fuse 4-21, 4-23
Reset Counter Overflow 4-24
Reset Counter Preset Warning 4-25
Reset Counter Underflow 4-24
Reset Rising Edge Z 4-25
reset/preset 2-17
ring counter 2-15, 4-16
Rising Edge Z 4-38
Rockwell Automation contact information P-3, 5-14
Rockwell Software
application example B-2, C-2

S

Safe State Control 2-27
safety circuits 5-2
Scalar 2-20, 4-3, 4-14
short-circuits 3-20
Soft Preset 4-24
spacing 3-7
specifications A-1
Status bits 4-31
Status Flags 4-32, 4-33, 4-38
Storage Mode 4-16
Stored Count 4-36
T
technical support 5-14
temperature derating A-4
terminal block
identification drawing 1-3
removing 3-12
wiring 3-13
terminal door label 3-15
terminal screw torque 3-14
Throughput and Timing A-3
Timing A-3
ToThisCounter 4-19
troubleshooting
safety considerations 5-1

U

underflow 2-14, 2-15, 2-21
linear counter 2-14
up and down pulses 2-10
User-Defined Safe State 2-28
utput 4-21

V

virtual outputs 2-23

W

wire size 3-14
wiring 3-1
grounding and wiring guidelines manual P -2
module 3-14
routing considerations 3-4
terminal block 3-13

X

X1 quadrature encoder 2-11
X2 quadrature encoder 2-12
X4 quadrature encoder 2-12

Z

Z Inhibit 4-25
Z input
functions 2-16
gating 2-16
preset/reset 2-16
setting in output array 4-38
Z Invert 4-25

www.rockwellautomation.com

Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36-BP 3A/B, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 28874788, Fax: (852) 25081846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 351 6723, Fax: (65) 3551733
Publication 1769-UM006A-EN-P - March 2002

[^0]: Allen-Bradley, Compact, MicroLogix, CompactLogix, RSLogix and RSNetworx are trademarks of Rockwell Automation. Belden is a trademark of Belden, Inc.

[^1]: (1) Low-pass filters block frequencies above the threshold frequency.

[^2]: (1) If zero is outside the MinCount and MaxCount limits set in the Configuration Array, then the Preset value is loaded into CurrentCount instead of zero. This also causes the PresetWarning bit to be set, which, in turn, sets the GenError bit.

[^3]: (1) For Range Type, $0=$ count range and $1=$ rate range.
 (2) Bits 0 through 3 are real outputs. Bits 4 through 15 are virtual outputs.

[^4]: (1) The module continues to update the Input Array and count inputs in all modes. The operation of the outputs will vary according to mode and configuration and the capabilities of the controller or bus master.

[^5]: (1) If zero is outside the MinCount and MaxCount limits set in the Configuration Array, then the Preset value is loaded into CurrentCount instead of zero. This also causes the PresetWarning bit to be set, which, in turn, sets the GenError bit.

[^6]: (1) X represents the "Don't Care" digit.
 (2) See Table 5.1 on page 5-4 for recommendation based on LED operation.

