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Abstract 

Convolutional Neural Networks (CNN)-based fault detection is an emerging 

technology that shows great promise for the seismic interpreter.  One of the more successful 

deep learning CNN methods uses synthetic data to train a CNN model. Although training 

a CNN model is time-consuming, the CNN prediction and classification is extremely fast. 

In this paper, we build a CNN architecture to predict faults from 3D seismic data. We begin 

by building a U-net shape architecture CNN model, and then train this model with 250 3D 

synthetic 128×128×128 voxel seismic amplitudesubvolumes where each voxel is labeled 

as being a fault or not a fault. The training data exhibit different data quality, spectral 

bandwidth, noise level, and structural complexity. After training, we  apply the CNN to 

detect faults on four different data volumes, each of which exhibits different noise levels 

and geologic features. We compare the CNN results to a more conventional attribute-based 

image processing fault enhancement and skeletonization workflow. When the faults cut the 

stratigraphic reflectors close to perpendicular resulting in minimal stair step artifacts, the 

traditional attribute-based approach provides higher resolution images than CNN. However, 

when faults cut the reflectors at larger angles, the CNN-based approach provides more 

continuous and less noisy fault images. Although not trained on listric faults, the CNN-

based approach provides promising results for listric faults where the attribute-based 

approach totally fails. However, with the limited training data provided in this paper, the 

CNN -based approach cannot map the sole of listric faults that are easily picked by a human 

interpreter.  

 



 

 

 

 

Introduction 

Picking horizons and faults are key products of any seismic interpretation project. 

Faults may cause a reservoir to seal or leak, Faults may indicate a wider, fractured fault 

zone. Faults may provide a path for hydrocarbon migration and are critical to accurate 

section restoration to map the evolution of the geologic structure through time. While good 

horizon autopickers have been used for over thirty years, autopicking of faults has been 

more problematic.  

Traditional fault detection method is a time-consuming exercise based on hand-

picking a suite of fault sticks on a coarse grid of seismic lines, followed by passing a surface 

between the sticks to form a fault surface. Seismic edge-detection attributes such as eigen-

structure coherence (Gersztenkorn and Marfurt, 1999), gradient structure tensor (Bakker, 

2002), energy-ratio similarity (Chopra and Marfurt, 2007), variance (Van Bemmel and 

Pepper, 200), automated fault extraction (Dorn et al., 2012), fault likelihood (Hale, 2013), 

have been widely used to highlight faults on 3D seismic data for over two decades. Edge-

detection attributes can describe discontinuity surfaces, which can guide interpreters to 

create fault patches using commercial interpretation tools. With the help of seismic 



attributes computed on every line, the accuracy of seismic fault detection can be increased 

and the time of fault picking accelerated.  

Unfortunately, stratigraphic edges and seismic noise also give rise to discontinuities 

in 3D seismic data, such that interpreters still need to spend time to differentiate fault from 

other incoherent anomalies. Image processing filters and algorithms provide a partial 

solution to this problem.  Randen et al. (2001) and Pedersen et al. (2002) applied a swarm 

intelligence algorithm. Cohen et al. (2006) proposed a local fault extraction that is based 

on vertical and lateral directional filtering and thresholds. Barnes (2006) computed the 

eigenvectors of a second-moment tensors then processed faults by dilation and expansion 

on an edge-detection attribute. Wu and Hale (2016) proposed an automatic intersecting 

fault interpretation technique based on directional voxel interpolation by fault likelihood, 

dip, and strike. Dewett and Henza (2016) combined multiple spectrally limited coherence 

images using a self-organizing map algorithm to enhance fault anomalies. Wu and Fomel 

(2018) enhanced a fault detection attribute and generated fault surfaces using an optimal 

surface voting method. Qi et al. (2017) improved on Barnes’ (2006) approach by applying 

a Laplacian of a Gaussian filter, then skeletonized fault anomalies along fault surfaces. Qi 

et al. (2018) further improved this workflow by preconditioning the data and attributes to 

enhance and skeletonize faults.   

Convolutional neural networks (CNN) is a rapidly evolving technology that has 

applications that range from the recognition of faces for airport security to guiding 

decisions made by self-driving cars. The typical use of fully-connected CNN methods for 

computer visual recognition tasks requires large amounts of training data. As a supervised 

deep learning algorithm, CNN contains feature extraction (convolution), feature learning, 



parameter updating, and feature localizing steps (Figure 1). The size of a fully-connected  

network can range from 8 to 10 layers, which result in millions of parameters. The use of 

CNN in biomedical image processing (Ronneberger et al., 2015) is also one of the 

important tasks in applications of deep learning methods. In applications of seismic 

exploration, CNNs have been successfully applied to seismic stratigraphy interpretation 

(Di et al., 2019; Wu and Zhang, 2019; Geng et al., 2019), seismic inversion (Das et al., 

2018; Biswas et al., 2019; Wang et al., 2019), salt interpretation (Shi et al., 2017; 

Waldeland et al., 2018; Ye et al., 2019), first-break picking (Yuan et al., 2018), and seismic 

facies analysis (Dramsch et al., 2018; Zhao, 2018). Among thrse, the CNN application to 

fault detection has provided some of the more promising results. Over the past three years, 

Huang et al. (2017), Guo et al. (2018), Zhao and Mukhopadhyay (2018), Xiong et al. (2018), 

Li et al. (2019), Zhao (2019), and Wu et al. (2018, 2019) have shown that CNN can be 

trained to detect faults, differentiating them from other non-fault discontinuities in the 

seismic data. 

In fault classification we have two classes: voxels that are a fault and voxels that 

are not a fault.  Using 3D blocks of seismic amplitude data that are 128 inlines by 128 

crosslines by 128 samples in size, each of the 2,097,144 voxels in the block is assigned a 

value of 1 (a fault) or 0 (not a fault) defining the labeled information needed for training. 

Generating the training data using either carefully constructed synthetics or by manually 

picking 3D data volumes is perhaps the most time-consuming component of CNN 

classification. The actual training is also time consuming, although this process is computer 

intensive rather than human interpreter intensive. Once trained, the actual application of 



the CNN to a large 3D volume is quite fast – with the necessary convolutions being carried 

out on a graphic processing unit with 4608 CUDA cores.  

 In this paper, we build a deep learning convolutional neural network trained on 

synthetic training data and apply it to predict faults from three different data volumes. The 

first dataset was acquired from offshore New Zealand and contains many vertical normal 

faults. The second dataset is onshore data and was acquired in the Fort Worth Basin. The 

third data set is from onshore Gulf of Mexico and exhibits listric faults. We analyze the 

same data set using a more traditional seismic attribute/fault enhancement/skeletonization 

workflow described by Qi et al. (2017 and 2018). We then compare the two results and 

draw preliminary conclusions. 

The CNN-based fault detection workflow 

Training data preparing and augmentation 

There are several tasks required in CNN image classification and segmentation. 

First, we need to train the network using a suite of small 3D volumes that are “labeled” 

voxel by voxel as to whether or not there is a faulting. The direct way to construct such 

training data is to have an interpreter manually pick faults on a seismic amplitude volume.  

The subsequent learning (such as a stochastic or mini-batch gradient descent) algorithm 

then evaluates and updates the internal CNN model parameters. However, using real 

seismic data to generate training data requires enormous amounts of data to work well, 

with each block requiring the manual interpretation of 128 lines of seismic amplitude data.  



An alternative method is to generate the training data by creating faulted synthetic 

seismic amplitude volumes. An advantage of using synthetic data is that we can easily 

define the size and the total number of training data pairs. In this paper, the dimension of 

our  250 3D subvolumes measure 128×128×128. In each seismic data volume, parameters 

of fault dip magnitude, dip azimuth, displacement, and the number of faults (between 1 and 

8)  are randomly chosen.  The reflectors and stratigraphic variations are also randomly 

generated by adding vertical planar shifts and lateral folds. The seismic spectrum and 

bandwidth are additionally considered to vary across different training subvolumes. We 

randomly generate reflector thickness and set the peak frequency of Ricker wavelet 

between 30 Hz to 50 Hz. We add Gaussian noise to the synthetic seismic amplitude 

data.wherethe standard deviation of Gaussian noise is randomly defined. to fall between 0 

and 200% of the RMS amplitude of the reflectors. Representative training blocks are shown 

in Figure 2. The first training sample exhibits very high signal-to-noise ratio with limited 

lateral folding whereas the second training sample is noisy and its reflectors are strongly 

folded. Note the steeply dipping faults in the second synthetic seismic model are difficult 

to visually identify.  

U-Net shape architecture CNN model 

 We build a modified U-Net architecture CNN model based on that proposed by 

Ronneberger et al. (2015). We modify the number of filters and layers to evaluate the 

performance of a pre-trained model applications to various faults in different real datasets. 

Figure 3 show our U-Net architecture. We add nine blocks to extract features where each 

block contains two filter layers followed by a max pooling operator. The input is fed into 

a concatenation of different convolutional filters that are then fed into a decoder that 



localizes the feature.  Since we want to evaluate a trained model for different data fault 

classification problems, the first convolution layer is with 32 3D filters, and the last 

combination at the bottom of the U has 512 3D filters. The final network consists of 18 

convolutional 3×3×3 filter layers with a stride of 1×1×1. Following each convolution filter 

layer, we apply a Rectified Linear Unit (ReLU) as the activation function. 

Unlike the typical autoencoder architecture that compresses data linearly, the U-

Net architecture performs deconvolution, such that the output size of the U-Net architecture 

is equal to the input size. For this reason, we pad the output of each convolution to be the 

same size as the input. The maximum pooling sizes are 2×2×2. In the expansive part, the 

mathematically transposed convolutional operator are applied to perform upsampling of 

the feature maps using the learnable parameters. Our model only outputs one channel 

feature and uses a sigmoid activation function in the last layer.  

U-Net model training 

We feed the generated 250 synthetic amplitude volume and label pairs to the U-Net 

shape architecture model for training. From these 250 pairs we randomly select 30 pairs 

that are used to validate the training. The batch size of model training is 2, which means 2 

training datasets go through through the mini-batch gradient descent learning algorithm 

before updating the model parameters. Before training, we augment the  data augmentation 

through rotation, thereby  increasing the number of models to 1000. Each model is rotated 

by 90 degrees about the x, y, and z axes to create additional 3 volumes. The entire training 

data is trained 50 times (resulting in 50 epochs). The learning rate is 0.0001, and the Adam 

optimizer is implemented. We choose binary cross entropy to be the loss function: 



𝐿(𝑦, �̂�) = −
1

𝑁
∑ (𝑦 ∗ log(�̂�) + (1 − 𝑦) ∗ log(1 − �̂�𝑖))
𝑁
𝑖=0 ,                 (1) 

where 𝑦 is the label, and �̂� is the predicted value, where our goal is minimize the distance 

between the training and prediction labels. Figure 4 shows model accuracy and model loss. 

Note the accuracy of the training is above 95%, and the validation loss is below 0.01. 

 

Image processing-based fault detection workflow 

For image processing-based fault detection method we use the fault enhancement 

and skeletonization method described by Qi et al. (2017), Qi et al. (2018), and Lyu et al. 

(2019).  

. We begin with simple data conditioning that includes spectral balancing and 

structure-oriented filtering  which increases the bandwidth, improves the signal-to-noise 

ratio, sharpens discontinuities, and suppress random and incoherent noise. The conditioned 

data serve as input to multispectral coherence (Marfurt, 2017; Li et al. 2018). . For a poorly 

defined fault, the coherence anomalies can be thought of as a cloud of values that can be 

described by a center of mass, μ, and a  2nd moment tensor, I.. The mean value is defined 

as  :   

 

𝜇𝑖 =
∑ 𝑊𝑚𝑎𝑚𝑥𝑖𝑚
𝑀
𝑚=1

∑ 𝑊𝑚
𝑀
𝑚=1 𝑎𝑚

.                                                    (2) 

 



where 𝑥𝑚the vector distance of the mth voxel from the center of the analysis window, 𝑎𝑚 

is coherence anomalies within the analysis window and Wm is a measure of confidence in 

our measure which we construct frp, the energy about each voxel. The second moment 

tensor is  

𝐼𝑗𝑘 = ∑ 𝑊𝑚(𝑥𝑗𝑚 − 𝜇𝑗)(𝑥𝑘𝑚 − 𝜇𝑘)𝑎𝑚
𝑀
𝑚=1 ,                                         (2) 

 

To apply a directional Laplacian of Gaussian filter to fault anomalies in coherence, we 

decompose the energy-weighted moment tensor to three eigenvectors 𝐯𝐣 . Taking into 

account the hypothesized fault orientation (the eigenvectors 𝐯𝟏, 𝐯𝟐, and 𝐯𝟑), the Laplacian 

of a Gaussian operator can directionally smooth parallel to fault surfaces and sharpen 

perpendicular to fault surfaces. We iteratively apply the Laplacian of a Gaussian operator 

until fault image is sufficiently smoothed and sharped. Finally, we skeletonize faults along 

the perpendicular direction defined by the eigenvectors 𝐯𝟑. 

 

Field data applications 
 

We validate the CNN-based method and the image-processing based method to 

three datasets. The first dataset is acquired from offshore New Zealand. We apply both 

CNN-based and image processing-based fault detection methods to compute fault 

probability. Figure 5 shows the comparison on vertical slices. Figure 5b shows the vertical 

slice through seismic amplitude data co-rendered with the proposed CNN-based fault 

probability, while Figure 5c shows seismic amplitude co-rendered with the image 



processing-based fault enhancement and skeletonization fault probability. The image 

processing-based fault probability exhibits good fault resolution. Note faults penetrating 

the middle chaotic mass transport deposits are also detected. Figure 5c shows the fault 

probability computed from the CNN U-Net architecture. Although the CNN fault 

probability image exhibits less incoherent noise but also other non-fault related 

discontinuities than the image processing-based fault probability image. More fault 

anomalies can be observed in the CNN-based fault probability results. The image 

processing-based fault probability is after skeletonization, thus the faults in Figure 5b 

appear sharper than the faults in Figure 5c. Figure 6 shows time slice comparison. Note 

faults in both fault probability results are continuous. The residual footprint anomalies 

(blue arrow) can be observed on the image-processing based fault probability, but do not 

exist on the CNN-based result. 

Our second dataset is a early 3D single streamer marine data volume acquired on 

the Louisiana Shelf, US. These data are contaminated by acquisition footprint and the 

signal-to-noise ratio is low. The spectrum ranges between 10 Hz and 70 Hz. The major 

faults in this dataset are high angle dipping faults, which cut each other and penetrate from 

shallow to deep layers (Figure 7a). Figure 7b shows the vertical slice through seismic 

amplitude co-rendered with the image processing-based fault probability. Fault anomalies 

of Figure 7b exhibit strong “stairstep” artifacts (Lin and Marfurt, 20xx), which arise when 

the orientation of the seismic wavelet (always perpendicular to the reflector) is not aligned 

with the orientation of the fault. The size of the coherence computation was 50 m by 50 m 

by 20 ms. The size of the LoG filter was 150 m by 150 m by 50 ms, such that the algorithms 

do not “see” the larger fault pattern. Figure 7c shows the CNN-based fault probability. 



Compared with Figure 7b, faults are much more continuous, and few “stairstep” artifacts 

are observed. Here, the (noncentered) window size is 3200 m by 3200 m by 256 ms, such 

that the algorithm is able to “learn” the fault patterns using a larger image, much as a human 

interpreter does. By construction, smaller discontinuities – some associated with geology 

(channels and MTDs) and others associated with noise, are suppressed by the the CNN-

based fault probability. Figure 8 shows the comparison on time slices. The CNN-based 

fault probability clearly exhibits better fault resolution.  

The  third  data volume is a multistreamer survey acquired offshore Texas, US.  The 

bin size of this dataset is 37.5m × 12.5m such that the sides of the CNN data blocks have 

a different size Structural and stratigraphic features such as salt domes, mass transport 

deposits (MTDs), and undeformed sediment and shale, are major seismic facies in this area. 

The amplitude patterns associated with salt domes are in general low amplitude and chaotic, 

with discrete higher amplitude coherent multiples, converted waves, and migration artifacts 

as well.(Figure 9a). Because our image processing-based method requires the edge-

detection attribute (coherence) as the input, the chaotic salt domes and stratigraphic 

discontinuities internal to MTDs are preserved and also enhanced after the image 

processing (Figure 9b). On the CNN-based fault probability (Figure 9c), faults are well 

detected and more continuous than faults on the image processing-based fault probability 

(Figure 9b); however, “faults” are also predicted internal to the salt dome on the left.Figure 

10 show the time slices comparison. Away from the salt dome, the CNN algorithm provides 

superior results. Elsewhere, the CNN algorithm appears to interpret the edge of the salt 

dome as a fault (yellow arrow), which it might be, but also generates strata-bound faults 

internal to the MTD (cyan arrow) and “faults” internal to the salt dome (green arrows).   



The fourth data volume comes from onshore south Texas, US, and exhibits high 

angle listric faults that sole out into the deeper section.. This dataset is contaminated by 

migration artifacts and random noise resulting in a lower signal-to-noise ratio, especially 

in the deep area. Figure 11a show the vertical slices through the seismic amplitude volume. 

We first compute the image processing-based fault probability (Figure 11b). Here, the 

abundance of stairstep artifacts make the coherence image almost useless below t=1.8 s. 

Figure 11c show the CNN fault probability, where the fault images are surprisingly good. 

There are some obvious artifacts where the algorithm predicted faults subparallel to the 

sedimentary reflectors (yellow arrows). The algorithm also does not continue the listric 

fault on the right to region where it starts to sole out.  Although CNN still shows non-fault 

planar discontinuities, more of these artifacts are rejected compared with the image 

processing fault probability.  

We also compare the proposed CNN architecture with a simplified CNN 

architecture. We simplify our proposed CNN architecture by decreasing layer and filter 

number, which is similar to the one introduced by Wu et al. (2019). We train the new 

simplified CNN model with the same training data and hyperparameters. The simplified 

CNN result is shown in Figure 11d. Note that, the proposed complicated CNN workflow 

shows slightly more continuous faults (indicated by green arrows in Figure 11c) and less 

artifacts (indicated by orange arrows). Figure 12 compares time slices at t=1.52 s through 

the CNN-based fault probability volumes comparing with image processing result. The 

CNN result exhibits much better fault anomalies than the image processing-based result. 

Discussions 



We have compared the CNN method on fault detection with a more traditional fault 

analysis workflows based on seismic attributes and image processing. Although the 

synthetics we created to train the CNN mode are all normal faults, a common CNN practice 

is to augment the training data by rotating and flipping each image. Different types of noise 

are added to the synthetics to allow the algorithm to learn to see through the noise as a 

human interpreter does. We add 9 blocks and a large number of filters into the CNN 

architecture to extract fault features for fault detection on different dataset. The model is 

well-trained after 50 epochs, and no over-training existed. In contrast to CNN, the image 

processing “convolutions” have been predetermined based on geologic insight and 

concepts of signal analysis. The image processing workflow includes noise suppression, 

edge-detection attribute computation, image filter application, and image skeletonization. 

In the first field data test, the data quality is good, and frequencies range between 5 and 80 

Hz. The main challenge of fault detection in this dataset is to map faults penetrating through 

mass transport deposits. The second example compares the capacity of these methods on 

fault detection in the presence of strong seismic noise. This dataset is contaminated by  

strong footprint (in the shallow area), and incoherent noise. When we created our synthetic 

data, we explicitly included high angle dipping faults. For this reason, the CNN-based fault 

probability is able to “learn” these large scale (128 x 128 x 128 voxel) patterns and does 

not suffer from the stairstep artifacts associated with localized wavelet-by-wavelet 

coherence algorithms. The third test example is to detect faults from other discontinuous 

features. Salt edges, mass transport deposits, and stratigraphic discontinuities between 

sediments often exhibit as the similar coherent anomalies as faults do in the coherence 

attribute. The comparison shows that the CNN result is much less affected by other 



discontinuities, because there are only fault and non-fault labels in the training data.  Other 

attributes provide (such as structural curvature) produce unusable results internal to salt 

domes and other areas of random noise such as gas clouds. In these cases, the interpreter 

should mentally or explicitly mute out such areas from their analysis, perhaps by 

constructing some kind of mask. . The last example addresses the mapping of  listric faults, 

where coherence attributes almost always fail. Although we trained the CNN using simple, 

planar normal faults, the CNN method can still map much of the listric. We hypothesize 

that some of this capability is due to our having rotated the training data about the three 

cartesian axes  We also compared the proposed CNN model to a simplified CNN model. 

In the first three datasets, the simplified CNN model results in very similar results to the 

complicated CNN model, because the training samples for both models are identical. On 

the fourth example, we note that more layer and filter number help extract more 

complicated fault features. The complicated CNN architecture is probably 20% better than 

the results computed from the simplified CNN architecture. 

 Training the CNN model using 250 data subvolumes that were each rotated three 

times took 412 minutes. To compute the faults on a 1 GB data volume using an 8 Gb 

graphical processing unit with 512 core took less than one minute. The computation cost 

of the image processing method using 24 cores on an INTEL computer took 120 minutes.  

Both workflows scale linearly with the size of the data volume analyzed. Because of the 

simplicity of convolution and the computational power (and relatively low cost) of GPUs,  

fault detection by the CNN-based method will be extremely fast. 

 



Conclusions 

In this paper, we have introduced a U-Net architecture to fault detection and 

compared it to a more traditional attribute/image processing fault mapping workflow. We 

trained the CNN model using synthetic seismic amplitude and fault labels computed for 

normal faults. The U-Net architecture CNN performs well on fault detection without any 

human-computer interactive work beyond that of constructing the original suite of 

synthetic models. The computational cost of training a CNN model is high, but extremely 

low on data prediction. The CNN method was trained only to be sensitive to faults, 

resulting in two classes (fault and not-a-fault) which helped reject localized stratigraphic 

discontinuities and several types of noise. The image processing fault probability exhibits 

a better performance in detecting vertical normal faults in a higher signal-to-noise dataset. 

The CNN method performs better than image processing method in detecting high angle 

dipping faults, and performs better in detecting faults from other structural and stratigraphic 

discontinuities. The CNN-based method does a reasonable job in mapping listric faults 

even though no listric faults were used in the training. We suspect improved performance 

by adding such training data and increasing the size of the training blocks. 
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LIST OF FIGURE CAPTIONS 

Figure 1. The typical CNN deep learning workflow includes training and predicting stages. 

For training, training images and label images are fed together into the network. Most linear 

filters can be approximated by simple convolutional operators whereas nonlinear filters can 

be approximated by the addition of activation functions, both of which are included in each 

layer of CNN. These filters result in simple features that may or may not match the desired 

output (labeled) image. For this reason, the  CNN model parameters need to be updated to 

better match the desired output (labeled data), resulting in a earning algorithm. Once the 

parameters have been learned, the CNN is trained, and can be applied to the much larger 

application data volume. 



Figure 2. Inline, crossline, and time slices through (left) seismic amplitude synthetics and 

(right) corresponding (labeled) faults. Each voxel in the 128 by 128 by 128 sample data 

blocks is defined as either a fault (black) or not a fault (white). Thicker black zones indicate 

faults that are subparallel to the displayed slice. Fault data blocks (a) with little folding and 

high signal-to-noise ratio and (b) with moderate folding and lower signal-to-noise ratio.  

Figure 3. A nine-block U-net shaped architecture CNN model. The input data blocks are 

128×128×128. Note that concatenation is used to localize the extracted features. At the first 

layer, there is 32 filters, while at the bottom layer, there are 512 filters. We use zero padding 

following each convolution to fix the output to be the same 128×128×128 size as the input 

cube. 

Figure 4. The model (a) accuracy, and (b) the loss plots. We train the model using 50 

epochs (or iterations). Note the model is well-trained, and the accuracy stably increases 

after 30 epochs. 

Figure 5. Vertical slices through (a) seismic amplitude, (b) seismic amplitude co-rendered 

with image processing-based fault probability, and (c) co-rendered with the CNN-based 

fault probability. Note the image processing result exhibits sharper fault anomalies, but 

also finds many discontinuities in the mass transport deposit (MTD). Lighter shades of 

gray indicate either less confidence or lesser significance of a given discontinuity. In 

general, the CNN shows fewer features in the MTD. Cyan arrows indicate zones where the 

image processing based workflow shows better fault continuity whereas yellow arrows 

indicate zones where CNN-based fault images show better fault continuity. 



Figure 6. Time slices at t=1.08s through seismic amplitude co-rendered with (a) image 

processing-based fault probability, and (b) the CNN-based fault probability. Blue arrow 

indicate residual footprint on image processing-based result.  

Figure 7. Vertical slices through (a) seismic amplitude, (b) seismic amplitude co-rendered 

with image processing-based fault probability, and (c) co-rendered with the CNN-based 

fault probability. Note this dataset is noisier than the example shown in Figures 5 and 6, 

and the faults cut the relatively flat reflectors at relatively high angle. For this reason, faults 

imaged by coherence suffer from “stairstep” artifacts which are only partially fixed by 

image processing in (b).  

Figure 8. Time slices at t=1.24s through seismic amplitude co-rendered with (a) image 

processing-based fault probability, and (b) the CNN-based fault probability. Fault 

anomalies are more continuous and sharper on the CNN-based fault probability. The stair-

step anomalies seen in Figure 6b give rise to sewing-stitch appearance in (a). 

Figure 9. Vertical slices through (a) seismic amplitude, (b) seismic amplitude co-rendered 

with image processing-based fault probability, and (c) co-rendered with the CNN-based 

fault probability. Note other structural and stratigraphic discontinuities can be seen on this 

dataset. The image processing-based results exhibit strong chaotic noise on salt dome and 

mass transport deposits. Faults on (c) are better and with less noisy. 

Figure 10. Time slices at t=1.14s through seismic amplitude co-rendered with (a) image 

processing-based fault probability, and (b) the CNN-based fault probability. Fault 

anomalies are more continuous and sharper on the CNN-based fault probability. 



Figure 11. Vertical slices through (a) seismic amplitude, (b) seismic amplitude co-rendered 

with image processing-based fault probability, (c) co-rendered with the proposed (Figure 

3) CNN-based fault probability, and (d) co-rendered with a simplified CNN fault 

probability. Note the proposed complicated CNN model shows better fault continuities 

(indicated by green arrows) and less fake faults (artifacts indicated by yellow arrows). 

Figure 12. Time slices at t=1.52s through seismic amplitude co-rendered with (a) image 

processing-based fault probability, and (b) the proposed CNN-based fault probability. 
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