Comparing Fractions: Same Numerator

Materials:

- Comparing Fractions
- Number Lines for Runners - optional

Prompt students to complete Comparing Fractions. Provide students a copy of Number Lines for Runners if needed.

Debriefing Questions:

- How did you determine who had the longest distance to run?
- What do you notice about the numerators of the fractions? What does that tell us about the relationship among the three fractions?
- How does the denominator help determine who has the longest distance to run when the numerators are the same?
- When comparing fractions with the same numerator, what determines the greater or lesser fraction?
- How did you determine who had run the longest distance?
- How does the distance left to run relate to the distance that the runner has completed?

Comparing Fractions

Natalie, Lamar, and Andrew were running a mile in gym class. After 15 minutes, each student had a different distance left to run.

- Natalie had $\frac{1}{4}$ mile left to run.
- Lamar had $\frac{1}{6}$ mile left to run.
- Andrew had $\frac{1}{8}$ mile left to run.

1 Who had the longest distance left to run? How do you know?

2 Who has run the longest distance? How do you know?

Number Lines for Runners

Andrew

Natalie

Lamar

Andrew

Pre-Assessment: Counting and Naming Fractional Parts

For all of the questions below, one whole equals:
\square

1 What fraction is represented by the shaded parts below? \qquad

2 What fraction is represented by the shaded parts below? \qquad

3 What fraction is represented by the shaded parts below? \qquad

Partitioning Sets of Objects

Materials:

- Sharing Brownies

Prompt students to complete Sharing Brownies.

Debriefing Questions:

- How did you share the brownies?
- Does everyone get the same amount? How do you know you shared the four brownies equally among the given number of people?
- What is the name of each of these parts?
- How can we write the name of this part?

Sharing Brownies

Three students are sharing 4 brownies equally with each other. How many brownies will each student receive?

Sharing Brownies

Three students are sharing 4 brownies equally with each other. How many brownies will each student receive?

Sharing Brownies: Anticipated Student Responses

- Model four different ways you anticipate students will answer the prompt. Possible misconceptions may be included.
- What understandings does each response communicate?

There are 3 students sharing 4 brownies equally with each other. How many brownies will each student receive?

Anticipated Student Response 1

Anticipated Student Response 3


```
Teacher:
``` \(\qquad\)

Class: \(\qquad\)
Date:
Foundations for Fractions: Student Interviews
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Sharing without considering the number of sharers or the amount to be shared} & \multicolumn{2}{|l|}{Partitioning each object by the number of sharers Sharing one part at a time} & \multicolumn{2}{|l|}{Considering how to partition the entire amount Distributing the appropriate amount to each sharer} & \multicolumn{2}{|l|}{Understanding the relationship between the number of sharers and the amount being shared} \\
\hline Student & Model & Fraction Label \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{Using Iterations}

\section*{Materials:}

\section*{- Sharing Licorice Recording Sheet}

One table set will provide materials for four students Table Set A:
- 8.5 inch strips of paper (white) - 4 strips
- 11 inch strips of paper (colored) - 4-6 strips
- Fraction Tasks Card

Table Set B:
- 11 inch strips of paper (white) -4 strips
- 14 inch strips of paper (colored) - 4-6 strips
- Fraction Tasks Card

Table Set C:
- 14 inch strips of paper (white) -4 strips
- 8.5 inch strips of paper (colored) - 4-6 strips
- Fraction Tasks Card
1. Distribute Sharing Licorice Recording Sheet to each student.
2. Divide class into groups of four students. Table sets may be repeated as needed.
3. Distribute a different table set to each group of students.
4. Prompt students to complete Fraction Tasks Card and Sharing Licorice Recording Sheet.

\section*{Task 1 Debrief:}
- What is the name of each part you created?
- How can you prove these are halves?
- How do you write one half using fraction notation?
- What does the numerator, the number above the fraction bar, tell you?
- What does the denominator, the number below the fraction bar, tell you?
- How many \(\frac{1}{2} \mathrm{~s}\) does it take to decompose the whole?
- Compare your strips of paper to a table with strips of a different length. What do you notice?
- Why can parts of different lengths all be called one-half?

Task 2 and Task 3 Debrief:
- How did you know if your first guess was too long or too short?
- How did you adjust your next guess if it was too long? Too short?
- How was this process of sharing different than when you folded the paper to make halves?
- What is the name of each part you created?
- How do you write one third using fraction notation? One-fourth? One-sixth? One-eighth? Why?
- How many \(\frac{1}{3} s\) did it take to compose the whole? \(\frac{1}{4} s\) ? \(\frac{1}{6} s ? \frac{1}{8} s\) ?
- Compare your strips of paper to a table with strips of a different length. What do you notice?
- Why can parts of different lengths all be called one-third? One-fourth? One-sixth? Oneeighth?
- What happened to the size of one part as we shared with more people?
- What connections do you see between the denominator and the number of parts of size \(\frac{1}{b}\) needed to compose the whole?

\section*{Fraction Tasks}

Task 1: Sharing with Two People
- One strip of paper represents one licorice stick.
- Fold your paper to show how you can share one licorice stick equally between two people.
- Draw a line on the fold to show each share.
- Use your strip of paper to answer the question on Sharing Licorice Recording Sheet.
- Label each share of the strip of paper and attach it to the back of Sharing Licorice Recording Sheet.

\section*{Task 2: Sharing with Three People}
- One strip of paper represents one licorice stick.
- Share one licorice stick equally among three people.
o You may NOT fold or use a ruler to equally share the licorice stick.
o You may use the colored paper, your fingers, or a pencil to help you equally share the licorice stick.
o Draw a line to show each share.
o Use your representation of a licorice stick to answer the question on Sharing Licorice Recording Sheet.
o Label each share of the licorice stick and attach it to the back of Sharing Licorice Recording Sheet.

\section*{Task 3: Sharing with More People}
- One strip of paper represents one licorice stick.
- Look at the size of the part when shared among two people and three people. Do you think each part will be longer or shorter when shared between four people? Six people? Eight people? Why?
- Share 1 licorice stick equally among four, six, or eight people.
o You may NOT fold or use a ruler to partition the licorice stick.
o You may use the colored paper, your fingers, or a pencil to help you equally share the licorice stick.
o Draw a line to show each share.
o Use your representation of a licorice stick to answer the question on Sharing Licorice Recording Sheet.
o Label each share of the licorice stick and attach it to the back of Sharing Licorice Recording Sheet.

Sharing Licorice Recording Sheet
\begin{tabular}{|c|c|c|c|}
\hline & Task 1: Sharing with Two People & Task 2: Sharing with Three People & Task 3: Sharing with More People \\
\hline What is the size of each share called? & & & \\
\hline Complete the statements & \begin{tabular}{l}
The size is "one- \(\qquad\) because the whole is equally divided into \(\qquad\) equal parts. \\
The whole is \(\qquad\) times as large as each share. \\
It takes exactly \(\qquad\) parts of size "one- \(\qquad\) " to compose the whole.
\end{tabular} & \begin{tabular}{l}
The size is "one- \(\qquad\) because the whole is equally divided into \(\qquad\) equal parts. \\
The whole is \(\qquad\) times as large as each share. \\
It takes exactly \(\qquad\) parts of size "one- \(\qquad\) " to compose the whole.
\end{tabular} & \begin{tabular}{l}
The size is "one- \(\qquad\) because the whole is equally divided into \(\qquad\) equal parts. \\
The whole is \(\qquad\) times as large as each share. \\
It takes exactly \(\qquad\) parts \\
of size "one- \(\qquad\) " to compose the whole.
\end{tabular} \\
\hline
\end{tabular}

\section*{Check Point: Using Iterations}

1 Which rod appears to be \(\frac{1}{4}\) of the rod shown above?

2 Complete the statement to describe the rod chosen in question 1.

The size of the shorter rod is "one- \(\qquad\) " because the whole is
\(\qquad\) times as large as each share. It takes exactly \(\qquad\) parts to compose the whole.

\section*{Paper Strips: 8.5 inches Long}

Cut along the dotted lines. Each strip is 8.5 inches long and 1 inch wide.

\section*{Paper Strips: 14 inches Long}

Cut along the dotted lines. Each strip is 14 inches long and 1 inch wide.

\section*{Building a Number Line}

Materials:
- Building a Number Line
- Cuisenaire \({ }^{\circledR}\) Rods
- Highlighters (optional)
1. Prompt students to form groups of two.
2. Prompt students to work with their partner to complete Building a Number Line.
3. Debrief the activity.

Note: The intent of the debriefing discussion is to transition students from iterating on a number line to writing an equation representing a fraction as a sum of unit fractions.
\(\left.\left.\begin{array}{|l|}\hline \begin{array}{l}\text { Iterate to } \\ \text { build a } \\ \text { whole on a } \\ \text { number line. }\end{array} \\ \hline\end{array} \longrightarrow \begin{array}{l}\text { Label the } \\ \text { number line } \\ \text { using fraction } \\ \text { notation. }\end{array}\right] \longrightarrow \begin{array}{l}\begin{array}{l}\text { Identify } \\ \text { fractions as } \\ \text { sums of unit } \\ \text { fractions. }\end{array} \\ \hline\end{array} \longrightarrow \begin{array}{l}\text { Write an equation } \\ \text { representing a } \\ \text { fraction as a sum of } \\ \text { unit fractions. }\end{array}\right]\)

Debriefing
Note: The debriefing sequence below is based on thirds as an example.
1. Partition a number line by iteration.
- How did you use the Cuisenaire \({ }^{\circledR}\) Rods to partition your number line?
- How did you label each tick mark of your number line?
- How do you know that you correctly identified the one-third piece?

Example:

2. Use the number line and unit fractions to compose a whole.
- Prompt students to shade the length between zero and one-third on the number line.
- Prompt students to shade the length between one-third and two-thirds using a different color.
- Label two-thirds on the number line using an expression representing the fraction as a sum of unit fractions, as shown below.
- Repeat for three-thirds.

Example:

- How many distances of \(\frac{1}{3}\) does it take to compose the whole?
- How many thirds does it take to compose a whole?
- How can we record this mathematically as a number sentence? \(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)

\section*{Building a Number Line}

1 Halves on a number line
a) Determine the Cuisenaire \({ }^{\circledR}\) Rod that is one-half of the whole represented below.
b) Use the one-half rod to partition the number line below into halves. Label the partition on the number line.

2 Fourths on a number line
a) Determine the Cuisenaire \({ }^{\circledR}\) Rod that is one-fourth of the whole represented below.
b) Use the one-fourth rod to partition the number line below into fourths. Label the partitions on the number line.

3 Eighths on a number line
a) Determine the Cuisenaire \({ }^{\circledR}\) Rod that is one-eighth of the whole represented below.
b) Use the one-eighth rod to partition the number line below into eighths. Label the partitions on the number line.

4 Thirds on a number line
a) Determine the Cuisenaire \({ }^{\circledR}\) Rod that is one-third of the whole represented below.
b) Use the one-third fraction rod to partition the number line below into thirds. Label the partitions on the number line.

5 Sixths on a number line
a) Determine the Cuisenaire \({ }^{\circledR}\) Rod that is one-sixth of the whole represented below.
b) Use the one-sixth fraction rod to partition the number line below into sixths. Label the partitions on the number line.

\section*{Comparing Fractions on a Number Line: Same Denominator}

\section*{Materials:}
- Comparing Fractions on a Number Line Same Denominator

Prompt students to complete Comparing Fractions on a Number Line Same Denominator

Debriefing Questions:
- How did you label the tick marks on each of the number lines? Why?
- How did you determine who ran the longest and shortest portions of the race?
- What do you notice about the denominators of each of the fractions? What does that tell us about the relationship among the three fractions?
- How does the numerator help determine who ran most/least when the denominators are the same? Why?
- When comparing fractions with the same denominator, what determines the greater or lesser fraction? Why?

\section*{Comparing Fractions on a Number Line Same Denominator}

Kyle, Lorena, and Vanessa were competing in a running race.
After 10 minutes, each runner had completed a different fraction of the race.
- Kyle completed \(\frac{6}{8}\) of the race.
- Lorena completed \(\frac{3}{8}\) of the race.
- Vanessa completed \(\frac{7}{8}\) of the race.

Label each number line below.
Shade each number line to represent the fraction of the race each runner had completed after 10 minutes.

Kyle

Lorena

Vanessa

1 Who completed the greatest distance after 10 minutes? How do you know?
\(\qquad\)
\(\qquad\)
\(\qquad\)

2 Who completed the shortest distance after 10 minutes? How do you know?
\(\qquad\)

\section*{Comparing Fractions on a Number Line: \\ Same Numerator}

Materials:
- Comparing Fractions on a Number Line Same Numerator

Prompt students to complete Comparing Fractions on a Number Line Same Numerator

Debriefing Questions:
- How did you label the tick marks on each of the number lines? Why?
- How did you determine who ran the longest and shortest portions of the race?
- What did you notice about the numerators of each of the fractions? What does that tell you about the relationship among the three fractions?
- How does the denominator help determine who ran the most/least when the numerators are the same? Why?
- When comparing fractions with the same numerator, what determines the greater or lesser fraction? Why?

\section*{Comparing Fractions on a Number Line Same Numerator}

Kirk, Ahmed, and Nina were competing in a running race. After 10 minutes, each runner had completed a different fraction of the race.
- Kirk completed \(\frac{2}{4}\) of the race.
- Ahmed completed \(\frac{2}{6}\) of the race.
- Nina completed \(\frac{2}{8}\) of the race.

Label each of the number lines below.
Shade each number line to represent the fraction of the race each runner had completed after 10 minutes.

Kirk

Ahmed

Nina

1 Who ran the greatest distance after 10 minutes? How do you know?
\(\qquad\)
\(\qquad\)
\(\qquad\)
2 Who ran the shortest distance after 10 minutes? How do you know?
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Check Point: Comparing Fractions on a Number Line}

\section*{Common Numerators}

1 When comparing fractions with common numerators, I need to think about . . .
\(\qquad\)

\section*{Representing Equivalent Fractions}

Materials:
- Representing Equivalent Fractions: Examples
- Representing Equivalent Fractions
- Prompt students to review the Representing Equivalent Fractions: Examples.
- Prompt students to use the examples to complete Representing Equivalent Fractions.

Debriefing Questions:
- What does it mean for two fractions to be equivalent?
- How did you determine which portions of the circle models to shade?
- How did you determine which portions of the area models to shade?
- How did you determine which points to label on the number line?
- How did you determine which portions to shade on the number line?
- How can you explain to a friend how to determine if two fractions are equivalent?

\section*{Representing Equivalent Fractions: Examples}

The following examples represent pairs of equivalent fractions.
Example 1

As shown in this example, \(\frac{1}{2}\) and \(\frac{2}{4}\) are equivalent fractions. They both represent the same portion of the same sized whole.

\section*{Example 2}

As shown in this example, \(\frac{1}{4}\) and \(\frac{2}{8}\) are equivalent fractions. They both represent the same portion of the same sized whole.

As shown in this example, \(\frac{4}{6}\) and \(\frac{2}{3}\) are equivalent fractions. They both represent the same distance from zero because the distance from zero to one is the same on both number lines.

\section*{Representing Equivalent Fractions}

Use the given models to represent the pairs of equivalent fractions. Write an explanation that describes why the fractions are equivalent.

The fractions \(\frac{6}{8}\) and \(\frac{3}{4}\) are equivalent fractions because_ \(\qquad\)
\(\qquad\)

The fractions \(\frac{3}{6}\) and \(\frac{4}{8}\) are equivalent fractions because \(\qquad\)
\(\qquad\) -

The fractions \(\frac{1}{3}\) and \(\frac{2}{6}\) are equivalent fractions because \(\qquad\)

\section*{Equivalent Fractions}

Materials:
- Equivalent Fractions
- Number Line Cards

Prompt students to use the Number Line Cards to complete Equivalent Fractions.

Debriefing Questions:
- How did you determine an example of an equivalent fraction?
- How did you determine a non-example of an equivalent fraction?

\section*{Equivalent Fractions}

Use the Number Line Cards to find one example and one non-example of an equivalent fraction for each given point.
- Label the new fractions above the number line.
- Fill in the blanks with the new fractions to make each statement true.

\section*{1}

The fractions \(\frac{3}{4}\) and \(\qquad\) are equivalent fractions because \(\qquad\)
\(\qquad\)
The fractions \(\frac{3}{4}\) and \(\qquad\) are not equivalent fractions because \(\qquad\)
\(\qquad\) .

2

The fractions \(\frac{2}{6}\) and \(\qquad\) are equivalent fractions because \(\qquad\)
\(\qquad\) .

The fractions \(\frac{2}{6}\) and ___-_- are not equivalent fractions because -----------
\(\qquad\)

\section*{3}

The fractions \(\frac{2}{8}\) and ____-__-_-_-_ are equivalent fractions because
\(\qquad\)

The fractions \(\frac{2}{8}\) and ___-_ are not equivalent fractions because ___-_-_-_
\(\qquad\)

4

The fractions \(\frac{1}{2}\) and __-_-_ are equivalent fractions because \(\qquad\)
\(\qquad\)

The fractions \(\frac{1}{2}\) and ____-_ are not equivalent fractions because \(\qquad\)
\(\qquad\)

\section*{Check Point: Equivalent Fractions}
\(1 \quad\) Fractions: \(\frac{4}{6}\) and \(\frac{2}{3}\)

Model:

Statement: \(\frac{4}{6}\) and \(\frac{2}{3} \underset{\text { (circle one) }}{\text { are }}\) are not equivalent fractions
because

2 Fractions: \(\frac{2}{4}\) and \(\frac{6}{8}\)

\section*{Model:}

\section*{Statement:}

\section*{Number Line Cards}

Fold along the dotted lines.

\(\qquad\)

\(\begin{array}{lllllllll}0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8} & \frac{4}{8} & \frac{5}{8} & \frac{6}{8} & \frac{7}{8} & 1\end{array}\)
\(\qquad\)

\(0 \quad \frac{1}{6}\)
\(\frac{2}{6}\)
\(\frac{3}{6}\)
\(\frac{4}{6}\)
1```

