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Abstract 
Markov models allows medical prognosis to be modeled with health state transitions over 
time and is particularly useful for decisions regarding diseases where uncertain events 
and outcomes may occur. To provide sufficient detail for operations researchers to carry 
out a Markov analysis, we present a detailed example of a Markov model with five health 
states with monthly transitions with stationary transition probabilities between states to 
model the cost and effectiveness of two treatments for advanced cervical cancer. A 
different approach uses survival curves to directly model the fraction of patients in each 
state at each time period without the Markov property. We use this alternative method to 
analyze the cervical cancer case and compare the Markov and non-Markov approaches. 
These models provide useful insights about both the effectiveness of treatments and the 
associated costs for healthcare decision makers. 
Keywords: Cost-effectiveness analysis, Markov process, Survival analysis, Stationary 
probabilities, Time-dependent probabilities 
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1. Introduction 
The progress of medicine, both in the prevention and in the diagnosis and treatment of 
diseases, has significantly increased life expectancy by curing or at least alleviating many 
ailments that had no remedy in the past. The downside of this progress is that health 
spending has increased dramatically in all countries. Thus, identifying whether the 
benefit a new treatment brings compensates for its cost remains a fundamental challenge 
faced by those involved in health policy decision making. Furthermore, the 
acknowledgement that resources are limited has further intensified pressure to identify 
health interventions that provide the greatest benefit at a reasonable cost (i.e. those that 
are cost-effective). 
Since in many cases there is not enough information to estimate the cost and 
effectiveness of an intervention directly, it is necessary to use mathematical models to 
project the data from clinical and epidemiological studies across a patient's life span and 
compute summary measures for the entire patient population. 
Disease status can often be characterized as a set of recurrent discrete states assessed over 
time. This natural history of the disease transitions is frequently modeled using 
Markovian transition models, as they provide a reasonably flexible class of models which 
can be fitted to the data. Such models are based on the Markov property, meaning that the 
conditional probabilities of transitioning from one state to another are independent of the 
past visited states and independent of the time spent in those states. Some recent 
examples in healthcare include progressions over time in psychiatric disorders, multiple 
sclerosis, hepatitis C, Alzheimer’s disease, and psoriatic arthritis ([1], [2], [3], [4], [5]). A 
different approach uses survival curves to directly model the fraction of patients in each 
state at each time period without the Markov property.  
Cost-effectiveness analysis (CEA) of medical treatments provides patients and doctors 
with better understanding of the performance of treatments. The aim of this paper is to 
demonstrate Markov and non-Markov alternatives for CEA and discuss the advantages 
and disadvantages of the alternative analyses using the cost-effectiveness evaluation of 
chemotherapy combined with bevacizumab in advanced cervical cancer patients as a case 
example.  This provides a suitable example to demonstrate the issues most researchers 
might encounter when modeling disease evolution.  Since there is always a gap between a 
model and the real world, narrowing this gap with more accurate and insightful models 
can help provide valid suggestions on treatment selection and thus improve life quality of 
patients. 
The patients’ length of survival is calculated using the transition probabilities of a 
Markovian process or via the direct estimation of percentages of patients surviving at 
different time periods.  Besides examining the effectiveness of treatment in terms of 
survival time, we examine medical costs and the assignment of health utilities like, for 
example, Minion et al. [6] does for results on quality adjusted life months living with 
cervical cancer and Hazen [7] for multiple attribute quality adjusted life years. 
Our paper differs from the literature as we consider the case when individual patient data 
(IPD) are not available. 
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The structure of this paper is as follows. In section two we briefly review the past 
literature on Markov models for medical decision making. Section three presents the 
specific cervical cancer case that will be used as an example throughout this paper. 
Section four specifies the Markov states, their transition probabilities from one discrete 
time period to the next and the expected outcomes. A way to deal with uncertainty using 
probabilistic analysis is considered in section five, while section six contains some other 
issues to consider when using a Markov model. In section seven, we study how to deal 
with non-stationarity in probabilities with a different modeling approach without Markov 
state transition modeling. Section eight covers the advantages and disadvantages of both 
approaches. Appendices cover added details for those less familiar with these methods. 
Unless otherwise noted, all the calculations and graphs were done using R v.3.5.2, 
packages “markovchain” (Spedicato et al. [8]) and “survival” (Thernaeu [9]). Also, 
calculations for costs and months were done with up to eight decimal places and then 
rounded to four to facilitate readability. 

2. Background 

In this study, we present a detailed example of a Markov model with five health states 
with monthly transitions with stationary transition probabilities between states to model 
the cost and effectiveness of two treatments for advanced cervical cancer.  
When limited to available published data, that does not usually include individual patient 
data, it is challenging to directly derive time-dependent (non-stationary) transition 
probabilities. Therefore, the time-dependent Markov model, where the transitions 
probabilities vary with time, is not considered in the following. Instead, an alternative 
approach based on the published Kaplan-Meier curves will be presented. 
We provide more modeling detail than is typical in a medical journal, for operations 
research modelers. 
2.1. Markov Models 
Markov models are recursive (repetitive) representations of randomly changing processes 
that have events (health states, in the case of a disease evolution) that may occur 
repeatedly over time and whose chance of occurrence depends only on the most recently 
occurring event and not on the entire history of the process (exhibiting the memory-less 
Markov property).  
Since the 1983 Beck and Pauker paper [10], where the use of Markov models for 
determining prognosis in medical applications was first described, there is a stream of 
literature aiming at building bridges between healthcare specific models and reality. A 
Markov model is able to represent a given process when a list of the possible states of 
that process, the possible transition paths between those states (often of fixed duration, 
e.g., weeks, months or years), and the rate/probabilities of those transitions (representing 
transition likelihoods) can be given.  
For further background, there have been several reviews of Markovian process 
methodology (e.g. see Naimark et al. [11] or Sonnenberg and Beck [12]) that provide an 
introduction to basic concepts and problems. A much more detailed description of 
methods related to Markov cost-effectiveness analysis and the rationale behind them, 
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with proposed exercises at the end of each chapter, can be found in Briggs et al. [13] and 
Gray et al. [14]. Furthermore, O’Mahony et al. [15] discuss several time-related 
methodological aspects of health economic evaluation models, like intervention duration, 
implementation period, analytic horizon, cycle length and changing the cycle length, as 
well as other issues like cohort selection or discounting future costs. 
Finally, recently, a tutorial on how to carry out cost-effectiveness analysis using R (with 
all the code provided) for multi-state models (models of a continuous-time stochastic 
process with a finite number of states) usable when IPD are available is in Williams et al. 
[16]. However, that is not usually the case for most researchers, where their problems are 
time discrete (patients are observed every cycle) and IPD are not available. R has many 
advantages over packages like TreeAge or spreadsheets, like Microsoft Excel, not the 
least of which is its versatility and free availability under the GNU General Public 
License. For Markov chain analysis using the statistical package R, see for example Bai 
et al. [17]. 
2.2. Non-Markov Models 
Sometimes reporting of survival outcomes from clinical trials is limited to information on 
median survival times, hazard ratios, Kaplan-Meier curves and numbers at risk, making it 
challenging to conduct a cost-effectiveness analysis based on a Markov model. In that 
case, a possible procedure is to estimate the state probabilities, which can be time 
dependent, through the fitting of a non-linear model to the given Kaplan Meier curve. 
Hoyle and Henley [18] and Guyot et al. [19] have developed methods to estimate 
individual patient data from published Kaplan Meier curves, data that can be used to 
directly estimate non-linear survival curves. This approach does not model Markov 
transitions from period to period, it just directly computes the fraction of patients in each 
state in each period. Because it is not constrained to depict period-by-period transitions, 
the non-Markov approach is more flexible, but it loses the clinical insight gainable from 
period-by-period transition patterns. We use this alternative method to analyze the 
cervical cancer case and compare the Markov and non-Markov approaches. 

3. Base Case: Bevacizumab in Advanced Cervical Cancer Patients 

Our analysis builds upon a published clinical trial GOG240 study in Tewari et al. [20] 
whose objective was to evaluate the effectiveness of combining the angiogenesis 
inhibitor1  bevacizumab, whose brand name is Avastin, with non-platinum based 
chemotherapy versus using chemotherapy alone in patients with recurrent, persistent, or 
metastatic cervical cancer being treated in several medical centers worldwide between 
April 2009 and January 2012. In the clinical trial, 452 patients were randomly assigned to 
the two treatment groups (225 in the chemotherapy-alone group and 227 in the 
chemotherapy-plus-bevacizumab group). The results of the study indicate that after a 
median follow up of 20.8 months in both arms of the trial, there was a significant median 
overall survival gain of 3.7 months (17 months vs. 13.3 months) as well as a progression-
free survival gain (8.2 vs. 5.9 months) when using bevacizumab with chemotherapy  
rather than just chemotherapy . 

                                                 
1 An angiogenesis inhibitor is a drug that slows the growth of new blood vessels. 
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The trial showed that chemotherapy combined with bevacizumab led to improved 
survival, but costs still had to be included in the analysis. Therefore, a trial-based 
economic evaluation was undertaken by Minion et al. [6], through a discrete-time 
Markovian model using the TreeAge Pro Healthcare software, to estimate the cost-
effectiveness of chemotherapy plus bevacizumab versus chemotherapy alone based on 
the previously mentioned trial results [20] plus some updated data provided by the 
physician co-authors in [6]. A standard decision tree to decide between the two treatment 
arms was converted to a Markov decision tree by adding Markov nodes which can be 
revisited as time passes. See the online supplementary material in [6] for the Markov 
decision tree. 
The CEA base case reported a significant mean survival gain for chemotherapy plus 
bevacizumab compared to chemotherapy alone (the expected life months until death were 
calculated to be 18.5 months for chemotherapy plus bevacizumab and 15 months for 
chemotherapy alone), and found that chemotherapy plus bevacizumab was also more 
costly compared to chemotherapy alone (for each patient, the estimated total life-time 
cost of chemotherapy plus bevacizumab is $79,844 and of chemotherapy alone is 
$6,053).  
As in many cases, the individual-level data are not available. The data we obtained from 
the clinical trial report includes the number of adverse events, response rate and 
progression rate every six months, Kaplan-Meier curves for progression-free survival, 
overall survival, and costs of treatments. 

4. Markov Modeling 

4.1. State Modeling 
The first step when constructing a health-related Markov model is to determine a set of 
health states that patients might reasonably experience and that are mutually exclusive, 
because each patient must be in one and only one state at all times in the model.  
The specific characteristics of the disease natural history and the treatment under 
consideration guide the determination of the number of states, from the most commonly 
used three-state healthy-sick-dead model to the process with an infinite number of states. 
Also, it is very common that models include a Dead state, which is called an “absorbing” 
state, because from that state there is no possible transition to any other state. In clinical 
trials involving deadly diseases, the survival time from the start of the trial until death is 
often the key measure of treatment effectiveness. 
In the Markov model used in [6], five possible health states were identified: respond (to 
treatment), progress (to be sicker), limited complications (hypertension), severe 
complications (fistula or thromboembolism, but not both), and dead, denoted by R, P, 
LC, SC and D respectively. The states and characteristics are similar to those used in 
Refaat et al. [21] for breast cancer treatment, with the only difference that their health 
state of complications was now divided into limited complications and severe 
complications. That division was necessary as patients in each of those two states behave 
very differently: those with the limited complication of hypertension are treated for those 
complications while still receiving the chemotherapy treatment before going back to the 
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respond state in the next cycle, whereas those with severe complications stop receiving 
chemotherapy and transition to progress or stay in severe complications.  
A patient was modelled as being in one state during a month, and she could transition to a 
different state with some probability in the following month. The cycle length was 
estimated to be a month since each round of chemotherapy treatment begins roughly a 
month apart. 

--- Insert Figure 1 around here --- 
A finite-state Markov chain is usually described by a square matrix P, of transition 
probabilities, whose dimension is determined by the number of states. Such a finite-state 
stationary Markov process is also often described by a directed graph as in Figure 1 for 
the cervical cancer case. In this graphical representation, there is one node for each state 
and a directed arc for each non-zero one-month transition probability, otherwise the arc is 
omitted. Calculating those probabilities is the aim of the next subsection. 
4.2. Determining Stationary Probabilities 
We use a discrete-time stationary Markov process as it is common in most health-related 
Markov analyses. Estimating the transition probabilities for a stationary Markov process, 
i.e. where the individual probabilities of going from state i to state j in one cycle do not 
change with time (pij(t) = pij), is a relatively straightforward process, if data on counts of 
patients in each state at different points in time are available. Observing the illness state 
of a group of patients at the beginning and at the end of the cycle, the probability of 
moving from one state i to another j can be estimated by calculating the simple ratio of 
the number of patients that began the cycle in state i and ended up in state j divided by 
the total number of patients that began in state i. That estimator is a maximum-likelihood 
estimator of pij (see Anderson and Goodman[22]). 
Published clinical trial data provides some information for a Markov model, upon which 
other calculations can be done to complete the model, with some further assumptions or 
judgments possibly being needed. The cervical cancer data in [20] were reported at 6-
month intervals, and they were used to derive one-month transition probabilities. Please 
refer to Appendix A for more information on how to obtain the 6-month transition 
probabilities for the chemotherapy plus bevacizumab treatment, and to Appendix B on 
information on how to transform that 6-month matrix to the one-month transition 
probabilities matrix needed for our model. The resulting one-month transition 
probabilities for the chemotherapy plus bevacizumab arm of treatment are in Table 1. 
Note that the probabilities in a row sum to 1 since all patients who begin a month in that 
state will either stay there or move to a different state. 

--- Insert Table 1 around here --- 
A similar procedure can be followed to obtain the stationary probabilities for the 
chemotherapy-only arm of treatment (Table 2). Note that bevacizumab treatment has a 
slightly higher probability to stay in the respond state, along with higher probabilities of 
complications. See the concluding section for some possible biases in calculating these 
stationary probabilities. 

--- Insert Table 2 around here --- 
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For patients starting a month in the respond state (getting treatment for cervical cancer), 
80.22% of those treated with chemotherapy alone would still be in the respond state at the 
beginning of the next month, since PRR = 0.8022. In contrast, 82.56% of the 
chemotherapy plus bevacizumab patients would still be in the respond state. 
A half-cycle correction is very often used to compensate for the fact that state 
membership is only known at the beginning and at the end of each cycle, but not in 
between, making state membership systematically overestimated or underestimated [14]. 
However, this is not a significant problem in our case as the chosen one-month cycle 
length is very short. Thus, no half-cycle correction has been used. 
4.3. Calculate the Expected Outcome Values 
Assuming all patients start in the respond state, 60 monthly cycles of each treatment can 
be calculated with month-by-month Markov transitions, keeping track of the cost of 
being in each health state for a month and how long patients live.  The two therapies 
(using chemotherapy alone or replacing it with chemotherapy plus bevacizumab) can be 
compared by the incremental cost-effectiveness ratio (ICER), representing the cost per 
incremental unit of effectiveness (the extra cost per month gained with chemotherapy 
plus bevacizumab replacing chemotherapy alone):  

ICER = ∆C /∆E = [C(Beva) − C(Chemo)] / [E(Beva) − E(Chemo)]  
where C(Beva) and C(Chemo) are the mean costs in the chemotherapy plus bevacizumab 
and chemotherapy alone arms of the trial, respectively, and E(Beva) and E(Chemo) are 
their respective mean health effects in expected months of life. These can be calculated 
with the Markov decision tree in the Treeage software or in R. 
Cost values, for both chemotherapy plus bevacizumab and chemotherapy alone, are 
presented in Table 3. Note that bevacizumab treatment costs about $7,000/month more 
than chemotherapy alone when the patient is getting the clinical trial cancer treatment (in 
the Respond or Limited Complications states).  

--- Insert Table 3 around here --- 
Utilities can be assigned representing the effectiveness of the treatment or the life quality 
during a month, so that if a patient moves to a worse health state the life quality is 
adjusted downward for that month. They are assumed to be the same for both arms of the 
study trial with values of 1 for response, 0.75 for limited complications, 0.5 for progress 
and severe complications and 0 for dead [21]. Note that for these advanced cervical 
cancer patients, getting a utility of 1 in one month means living with and responding to 
advanced cervical cancer treatment.  Unlike traditional quality adjusted life years 
(QALYs), where a 1 means living in perfect health for one year, the choice to scale the 
measure in months (QALMccs) of cervical cancer life allows a focus on the relatively 
few remaining months of life for these patients, and the reality that the best health level 
possible is responding to the treatment (not a cure).  For a more extended explanation of 
how the utilities were obtained see [6] or for a general approach for multiattribute quality 
adjusted life years see [7]. 
The long-term behavior of a Markov chain is depicted in each cycle by a probability 
distribution or probability vector over the set of states (a row vector whose entries are 
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non-negative and sum to 1). The ith component of that probability vector represents the 
probability that the chain starts in state i at the beginning of the cycle. At the beginning of 
the cervical cancer clinical trial case, since all patients are in the respond state, the initial 
probability vector is (1,0,0,0,0). 
For each Markov cycle, the expected cost per month of care for a patient is found by 
multiplying the probability of each Markov state (obtained from the Markov model) by 
the appropriate cost and summing across the four living Markov states, with no cost 
assigned to the death state. By summing these costs per cycle over 60 cycles, the total 
expected cost of care for a patient was derived.  
A total average cost of $44,444 was obtained for the chemotherapy plus bevacizumab 
treatment arm while a $2,903 average cost was obtained for chemotherapy only. The 
expected remaining durations of life from the beginning of the study onward were 
E(Beva) = 9.5965 months versus E(Chemo) = 7.8193 months. The quality adjusted life 
months living with cervical cancer were QALMcc(Beva) = 7.1409 months versus 
QALMcc(Chemo) = 5.4161 months.  The incremental cost-effectiveness ratio (ICER) was 
calculated to be ($44,444 – 2,903) / (9.5965 – 7.8193) = $23,374.4092/month of life or 
$24,084.5315 /QALMcc. Thus, the added cost for an added month of survival or an 
added quality adjusted month when treated with bevacizumab added to the baseline 
chemotherapy is around $23,000-24,000. Even though the addition of bevacizumab only 
costs $7,016 per month, the patient has to be on the treatment and incur the excess cost 
each month for the rest of her life to get the increase in survival. 
Note that the different modelling assumptions in [6] led to higher transition probabilities 
from respond to respond, for both chemotherapy plus bevacizumab and chemotherapy 
alone treatment arms, thus higher months of remaining life and thus higher costs, but a 
similar ICER to what is found with the current analysis.  

5. Probabilistic Modeling of Parameters in Markov Model 

Due to the inherent imperfect information, even of a randomized trial sample of an 
intervention, there is a possibility that decisions based on the cost and effectiveness of the 
available information of the intervention under evaluation will be incorrect. That problem 
might be overcome by using probabilistic techniques (e.g., Monte Carlo simulation) to 
generate the sampling distribution of the joint mean cost and efficacy so that a 
quantification of the uncertainty surrounding those estimates can be obtained. 
In this section we present a technique that fits functional forms to model parameters to 
conduct a Monte Carlo simulation. Monte Carlo (see for example Robert and Casella 
[24]) is a computational technique whose core idea is to generate other possible samples 
of the system under study (in the present case patients receiving chemotherapy combined 
with bevacizumab vs. patients receiving only chemotherapy) to learn about its behavior. 
Another standard simulation approach (Bootstrap), like the one TreeAge software uses, 
takes the specified Markov decision tree’s probabilities as fixed parameters and randomly 
samples patients from the pre-set discrete probability distributions. In contrast, in this 
approach a cloud of averages is calculated after sampling from possible parameter values 
to set a Markov decision tree’s probability distribution, calculating the result, and then 
repeating to conduct another sample and set a different Markov decision tree’s 
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probability distribution, etc. Therefore, for each treatment arm, other possible evolutions 
are studied by generating different sets of probable transition frequencies for our Markov 
model. 
In order to do so, the parameters of interest (data counts, in the present case) are ascribed 
a probability distribution reflecting the uncertainty concerning their true value. In most 
cases the form of the data, the type of parameter and the estimation process would only 
point to one or two different distributions that, for mathematical convenience (Rice [23]), 
is conjugate to the likelihood function based on the observed data.  
In our case, only the first row and second row frequencies of the transition frequency 
matrices need to be sampled (see Table A.3 in Appendix A). Following Briggs et al. [13] 
(pp. 116-118) on how to characterize the uncertainty of input parameters using 
probability distributions, we have a dichotomous transition in the second row (progress to 
progress, or progress to death) that can, therefore, be characterized by a binomial 
distribution. However, in the first row we have a three transitions case (response to 
response, response to progress, or response to death) that it is naturally characterized by a 
multinomial distribution. Hence, the multinomial transition probabilities from response 
(R) to response, progress and dead are represented by a Dirichlet distribution (the 
conjugate of the Multinomial distribution), while the choice for the transition 
probabilities from progress (P) to progress and dead are represented by a Beta 
distribution (the conjugate of the Binomial probability distribution). Thus, the considered 
distributions for the data obtained from Tewari et al. [20] as explained in Appendix A, 
are: 

• For chemotherapy plus bevacizumab: Dirichlet distribution Dir(233,169,55) for 
transitions from R to R, P and D, and Beta distribution β(12, 162) for transitions 
from P to P and D, where the respective parameters are the total counts that 
appear in first and second row, respectively, of Table A.3, Appendix A. 

• For chemotherapy alone: Dirichlet distribution Dir(166,155,67) for transitions 
from R, and Beta distribution β(10, 150) for transitions from P, where the 
parameters for the first and second row of the frequency transition matrix are the 
corresponding counts in Appendix A. 

Next, Monte Carlo simulation values were sampled at random from the previously 
deduced probability distributions and 3x3 6-month transition matrices were obtained for 
each of the generated values. For each of these matrices, the process detailed in Appendix 
A for calculating the stationary transition probabilities was carried out, to include the 
complications states, allowing the repeated calculation of the incremental cost and 
effectiveness for all of the "what-if" chemotherapy plus bevacizumab and chemotherapy-
only generated scenarios.  
Each set of samples is called an iteration, and the resulting outcome from that sample is 
recorded and plotted on the cost-effectiveness plane [25], where the incremental effects 
(in months) are measured on the horizontal axis and incremental costs are measured on 
the vertical axis. The axis selection is not arbitrary, having the advantage that the slope of 
the line joining any point of the plane with the origin is precisely the ICER [13]. Points 
along a given ray from the origin correspond to the same ICER. See in Figure 2 the range 



11 
 

of possible outcomes that results from 1,000 Monte Carlo simulations as well as the base 
case model value (in pink in Figure 2). 

--- Insert Figure 2 around here --- 
As it can be seen from Figure 2 only a few points do not fall in the northeast quadrant of 
the plane, where both added costs and added health effects are positive, meaning a 
bevacizumab patient lives months longer at a higher cost, compared to having 
chemotherapy only. So there is a tradeoff in this situation where chemotherapy plus 
bevacizumab may be cost-effective compared with chemotherapy-only treatment, 
depending upon whether the ICER is above or below a given value the payer is able or 
willing to pay, taking into account that all ICER values are over $11,300 (see the line in 
Figure 2). The “cloud” of possible outcomes in the figure visually demonstrates that the 
ICER would differ for each clinical trial’s sample of patients. 
The advantage of this approach is that functional forms for distributions are specified 
prior to running simulations, reflecting the inherent uncertainties. 

6. Additional Challenges in Markov Modeling 

In the Markov analysis in the previous sections, by estimating the transition probability 
matrix from the patient counts, problems can be encountered when the number of 
transitions is small, usually caused by small population size. Discreteness effects will 
lead to noise in the transition probabilities. At times, this does not matter. Since some 
transitions are less important than others, they will have little impact on final average 
results. However, it is a factor to be aware of. 
It has to be noted that the numbers in Table A.2 (Appendix A) are underestimated since 
6-month data were used and also because the value for progression-free survival was 
used when calculating the number of patients in the respond state. And this value actually 
includes the number of complications. Similarly, the transition probabilities from respond 
to limited complications were calculated in a conservative way by computing total 
observations divided by total possible transitions. 
Usually individual-level data are hard to get, especially for some disease states like 
complications. In many studies, like the present one, the only data available for 
complications is the aggregate number of patients who developed a complication any 
time during the treatment. Because of this, a further assumption is made that 
complications are independent and mutually exclusive to each other and have stationary 
transition probabilities. 
However, as a matter of fact, some complications may be very likely to occur together. 
For example, nausea and vomiting often occur together. The independence assumption 
will result in a positive bias in the overestimation of the one-cycle transition probability 
from one state to another one, and may further induce underestimation in transition 
probabilities to other states.  
Another feature of cancer treatment is that usually the total treatment time lasts many 
months and patients may switch from the initial treatment to another one, maybe just 
because they develop complications from the drugs they are taking. Failing to consider 
the patients switching treatment may lead to underestimating the difference in the 
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outcomes. One way to deal with that is to not include these patients at the beginning of 
the study, but this may increase bias in the estimators. Another way is to consider the 
patients who switched as if they progressed, which may overestimate the progression 
rate. A third way is to model the process as multiple therapy lines (or at least a two-stage 
decision problem). 
Some cancers, like ovarian cancer, have high relapse rates. For these kinds of cancer, 
patients may have multiple therapy lines, which means that the patient may respond to an 
initial treatment at first, but relapse after several months. Then that initial treatment is not 
effective anymore and the patient needs to change to another treatment, which is called a 
second line therapy. The process may continue until the patient recovers or dies. Usually, 
clinical researchers compare the treatments independently, regardless of the line and of 
what the previous lines of therapy were. However, the effect of different lines on the 
response rate is significant, Hanker et al. [26]. And the treatment effect may correlate 
with previous treatments. The combination of treatments should be compared as a whole 
rather than simply comparing each treatment independently in different therapy lines. A 
multi-stage decision model is needed in this scenario. 

7. Non-Markovian Method: Direct Calculation of State Probabilities 

The discrete time Markov chain model used in the previous sections to model the 
evolution of a disease is based on the assumption that the transition probabilities remain 
constant over time. But this assumption might be a little too restrictive and nonstationary 
(time dependent) behavior might be more appropriate to represent the transitions between 
states in each cycle. In our case, the difference of the outcomes for survival and 
progression free survival (PFS), for chemotherapy plus bevacizumab treatment arm 
patients, estimated from the Markov state modeling with stationary transition 
probabilities in Table 1 with 30 cycles and the real data, obtained from [20], is relatively 
large (see Table 4). That fact suggests the stationary process assumption is not 
completely adequate. 

--- Insert Table 4 around here --- 
In this section an alternative non-Markovian approach that allows time dependence is 
described as deriving the time dependent transition probabilities for a Markov model can 
be a challenging process (see Bai et al. [27], for a description of that method). This 
method does not require specification of month-to-month transition probabilities, instead 
it specifies the number of patients in each state in each month. 
The percentage of patients in each health state at each successive cycle is now going to be 
determined by using the survival curve data. Therefore, using the so-called “area under 
the curve” method, there is no requirement to calculate the probabilities of monthly 
transitions between health states since the numbers in each state each month are directly 
derived from the overall and progression-free survival curves. (See Appendix D for a 
graphical interpretation of the area under the curve method.) 
The overall and progression-free survival curves for chemotherapy plus bevacizumab and 
chemotherapy alone were estimated using the method proposed in [18]. The authors fit 
survival curves from the Kaplan-Meier curve and the data of the number of people at risk 
that usually comes alongside the graph in most published research. This new method 
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takes into account an estimation of the censored data (patients dropped out of the trial) 
and improves the accuracy compared to traditional methods (e.g. regression or least 
squares). 
GetData Graph Digitizer v. 2.24 was used to extract the original (x,y) Kaplan-Meier 
curve values from the scanned figure 3 in [20]. Those values were used as input to 
estimate the overall and progression-free survival curves for both arms of treatment, 
obtaining the best fit (lowest) Akaike information criterion (AIC) for the following 
models (Kalbfleisch and Prentice [28]), all of them with significant parameters: 

• For chemotherapy plus bevacizumab overall survival, to the every six month data 
points, the best fit is a Weibull model with parameters p = 1.3882 and λ = 0.0144. 
Therefore, the number of surviving patients at time t is  
Sbeva(t) = exp[-0.0144·t1.3882]. 

• For chemotherapy alone overall survival, the best fit is a Log-logistic model with 
parameters p = 1.6653 and λ = 0.0138. However a Weibull model with 
parameters p = 1.2673 and λ = 0.0245, whose AIC is very similar to the Log-
logistic model, was chosen since it fits better in later months. Therefore, the 
number of patients Schemo(t) = exp[-0.024526·t1.267266]. As can be seen in Figure 3, 
the fit is not totally adequate due to the misfit in the tail (since patients have a 
soon-to-be fatal disease), also caused because of lack of data towards the end. 

• For chemotherapy plus bevacizumab progress-free survival, the best fit is a 
Lognormal model with parameters p = 1.1148 and λ = 0.0894. Therefore 
PFSbeva(t) = 1 - Φ(1.1148·log(0.0894·t)), with Φ being the normal N(0,1) density 
function. 

• For chemotherapy only progress-free survival, the best fit is a Log-logistic model 
with parameters p = 1.6686 and λ = 0.0442. Therefore PFSchemo(t) =  
1/(1+0.0442·t1.6653). 

--- Insert Figure 3 around here --- 
Thus, the probability of being in the respond state at each successive cycle and for both 
chemotherapy-only treatment and chemotherapy plus bevacizumab can be estimated by 
πR(t) = PFS(t), the probability for Progression by πP(t) = S(t) - PFS(t) and for Dead by 
πD(t) = 1- S(t). Regarding the complications, both limited and severe, the only available 
information is the number of complications throughout the total period of the study trial. 
Therefore, it is going to be assumed that those events occur independently and their 
probability remains constant over the 30-month study period. For chemotherapy plus 
bevacizumab the number of limited complications and severe complications are, 
respectively, 54 and 31 (out of the total number of patients in respond through the study, 
obtained by summing over the expected number of patients in respond in each cycle, 
which yields 1,416), whereas for chemotherapy alone the number of limited and severe 
complications is 4 (out of the expected number of patients in respond in each cycle, 
which yields 1,148) 

• For chemotherapy plus bevacizumab, πLC(t) = 0.0381 and πSC(t) = 0.0219 
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• For chemotherapy alone, πLC(t) =  πSC(t) = 0.0035 
Therefore, the estimates of the average effects and costs for the chemotherapy plus 
bevacizumab treatment arm are, respectively, E(Beva) = 19.7164 months; Cost(Beva) = 
$112,680, QALMcc(Beva) = 15.8914 months living with cervical cancer. For the 
chemotherapy-only treatment arm, the results are E(Chemo) = 17.6994 months; 
Cost(Chemo) = $7,861; QALMcc(Chemo) = 13.3137 months living with cervical cancer. 
Hence an ICER of $52,017 per additional month is obtained as the summary of the 
chemotherapy plus bevacizumab intervention. 

8. Advantages and Disadvantages of the Approaches 

Two distinct methods for modeling the cost-effectiveness of cancer treatment were 
presented for a cervical cancer case. First, we provided details of how to build a Markov 
decision process with stationary transition probabilities between monthly health states. 
Second, an alternative non-Markov method to directly estimate the fraction of patients in 
each health state at different time periods was presented. Although both methods enable 
us to conjecture about future outcomes, there are, nevertheless, some observations and 
caveats that the users need to keep in mind (see also Woods et al. [38]). 
A benefit of using Markov models compared to traditional survival curve methods used 
to report clinical trial outcomes is that they provide supplementary information in 
addition to expected survival time. Under a Markov model the transition probabilities are 
provided measuring how likely patients will stay at the same status, get better or get 
worse after one cycle and utilities and/or costs for staying in one state for one cycle can 
be incorporated.  
Our Markov model chronicles monthly transitions between cervical cancer health states, 
so the path a patient takes over the months can be represented, helping analysts and 
health care providers understand the path a patient might take period-by-period. The 
disadvantage is that it has stationary transition probabilities. While Markov models can 
be specified with non-stationary probabilities, that can be challenging [27]. However, if 
the problem does not have cyclical patterns and uncertainties over time, we should not 
use a Markov model. 
The method in section 5 of probabilistically modeling the parameters of the Markov 
model allows for the creation of a visual display (e.g., Figure 2) of the possible 
incremental cost effectiveness ratio amounts that would result, imagining different 
samples of clinical trial patients were drawn, following the existing data. This method 
helps emphasize that model results depend on the sample, and could easily vary for a 
different sample drawn for the same population. 
While using a Markov model, one problem is that the number of transitions increases 
quadratically with the number of states. It is hard to estimate transition probabilities 
without detailed individual level data. Further, the Markov modeling analysis conducted 
in this study required a conversion of available data points from every six months to 
every month, to approximately match the cycle of a Chemotherapy treatment. Another 
problem is that a Markov model has some restrictive assumptions, such as constant 
transition probabilities and the “lack of memory” property. A relaxation of the constant 
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transition probability assumption to allow for non-stationary transition probability 
requires more accurate individual level data, which are often not available. In addition, 
for the medical problems where the transition probabilities depend on the health 
experiences, tunnel states could be used to fix the problem (for more information see, for 
example, Sonnenberg and Beck [12]).  
The alternative non-Markov approach, by directly using the Kaplan-Meier curves to 
compute the number of patients in each state at each time period has the benefit that, like 
other traditional statistical methods, it is easy to use and to present to the audience and it 
allows a wider range of models with multiple parameter implementation. Also, we do not 
need individual level data to fit the curve. Thus, there is no need to model the 
probabilistic transitions period-by-period as well as it is unaffected by possibly 
unrealistic Markov modeling assumptions. Furthermore, it does allow the analyst to 
determine the number of people in each state in a period, so the aggregated cost can be 
calculated. However, there are some drawbacks. First, we do not model the underlying 
process when fitting the survival curve, thus no monthly transitions are modeled, and the 
patient’s path period-by-period is lost. Consequently, total cost for a single person cannot 
be obtained as only the costs for the aggregated group are available. Also, the Kaplan-
Meier curves are derived from censored data, fitting such a curve may result in 
inaccuracies especially for the case when we do not have the original patient treatment 
records.  
When choosing a modeling approach to represent the natural process of a disease, the 
issue is not whether that evolution is stationary or non-stationary (because they are 
always non-stationary) but, rather, whether the non-stationarity is substantial enough to 
require a complex characterization of the process, or whether a comparatively simple 
stationary stochastic model can accurately represent the process.  
 
Looking at the representation in Figure 4 of the raw survival percentages extracted from 
the Kaplan-Meier curve and their approximation using the stationary Markov transition 
probabilities versus the non-stationary survival fitted percentages in each state in each 
time period, it seems that the Markov model somewhat underestimates those percentages 
in the cervical cancer case, while the survival fitted percentages mimic more accurately 
the actual patients' evolution. Also, the Mean squared error between the model and the 
clinical trial data is smaller in the case of the non-Markov survival fitted model (see table 
5) for both arms of treatment (0.0005 non-Markov vs. 0.0053 Markov for Chemotherapy 
plus bevacizumab, 0.0013 non-Markov vs. 0.0864 Markov for Chemotherapy alone). 

--- Insert Figure 4 around here --- 
Researchers need to decide whether using the stationary transition Markov probability 
model with its appealing insights for clinicians about prognosis period-by-period will 
suffice or if the greater flexibility from directly fitting survival percentages at each time 
point in a non-Markov model or deriving non-stationary probabilities for Markov model 
is warranted. We also recommend any researcher to do a comparison of better fit to the 
actual data, like for example the one presented here in Figure 4 and a calculation of the 
Mean Squared Error. 

--- Insert Table 5 around here --- 



16 
 

For this case study, there is a sizable difference between the results obtained from the 
non-Markov direct calculation of percentages method (section 7) and the results obtained 
by calculating the expected outcome values in the Markov model (section 5) supposing 
the probabilities are stationary (see Table 5 for a comparison of both).  
Mean life expectancy in the Markov model is about half as long as with the non-Markov 
model.  With shorter lives, there are lower costs. It can be deduced from Figure 4 that the 
non-Markovian approach mimics more accurately the actual behavior of the sample. So, 
it seems that in the cervical cancer treatment case, the non-Markov modeling approach 
gives a more accurate result compared to the clinical trial data, but that is not always true, 
as sometimes the results with both methods will be very similar. For example, while the 
means differ from the two baseline modeling approaches, Figure 2 visibly depicts how a 
range of incremental cost effectiveness ratio values would result when modeled with the 
Markov approach if different clinical trial samples are simulated (see section 5 for this 
approach). 
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Tables 
 
Table 1. Chemotherapy plus bevacizumab treatment’s one-month transition probabilities 
pij of going from the health state in row i to the one in column j in the following month 

 R LC P SC D 
R 0.8256 0.0231 0.1444 0.0069 0 

LC 1 0 0 0 0 
P 0 0 0.6404 0 0.3596 

SC 0 0 0.9 0.1 0 
D 0 0 0 0 1 
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Table 2. Chemotherapy alone treatment’s one-month transition probabilities pij  

 R LC P SC D 

R 0.8022 0.0017 0.1944 0.0017 0 

LC 1 0 0 0 0 

P 0 0 0.63 0 0.37 

SC 0 0 0.9 0.1 0 

D 0 0 0 0 1 
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Table 3. Monthly costs depending on treatment and health state 
 
State 

Chemotherapy 
+ bevacizumab 

Chemotherapy 
alone 

Respond $7,540 $524 
Limited Complications $7,825 $809 
Progress $262 $262 
Severe Complications $4,240 $4,076 
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Table 4. Estimated and real number of patients for chemo+beva treatment arm 

 Time t (months) 0 6 12 18 24 30 

Real data Survival 227 184 121 69 30 10 
Respond(PFS) 227 132 70 22 6 3 

Outcomes from 
Markov state 

modeling 

Survival 227 133 51 19 7 2 

Respond(PFS) 227 82 30 11 4 1 
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Table 5. Comparison of results  

  Markov     
model 

Non Markov 
model 

Chemotherapy plus 
bevacizumab 

Total expected cost $44,444 $112,780 

Expected remaining 
duration of life 9.5965 months 19.7164 months 

Quality adjusted life 
months 7.1409 months 15.8914 months 

Mean squared error 
(MSE) compared with 
clinical trial data 

0.0053 0.0005 

Chemotherapy alone 

Total expected cost $2,903 $7,861 

Expected remaining 
duration of life 7.8193 months 17.6994 months 

Quality adjusted life 
months 5.4161 months 13.3137 months 

Mean squared error 
(MSE) compared with 
clinical trial data 

0.0864 0.0013 

Incremental cost-
effectiveness ratio (ICER) 

$ per extra month of 
life with bevacizumab 
treatment 

$23,375 $52,017 
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Figure Legends 
 
Figure 1. 1-month state transition diagram 
Figure 2. Cost-Effectiveness plane for chemotherapy + bevacizumab replacing 
chemotherapy alone 
Figure 3. Overall survival fit for chemotherapy alone 
Figure 4. Probability of survival for both arms of treatment 
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Appendix A. Calculation of 6-month transition probabilities matrix 
Enough detail is provided in these appendices so both decision analyst and health 
economist newcomers could conduct a similar study using only the usually available 
information with no individual data available for each patient separately. 
Consider the data about survival and progress-free survival (PFS) that appear in the 
Kaplan-Meier survivor curves in Figures 3A and 3B in [20] p. 740, as well as the number 
of patients at risk, every 6 months, for both chemotherapy-only treatment and 
chemotherapy plus bevacizumab entered below the x-axis in those figures. That data for 
bevacizumab with chemotherapy is listed below in Table A.1 in the boxes for survival 
and respond (which is the same thing as progression-free survival). For the time being, 
disregard the complications states. At time 0 of the clinical trial, all 227 patients who 
receive bevacizumab treatment are in the respond state, so they are all surviving at time 0 
and responding to treatment (in progression-free survival) at that time.  
Table A.1 shows the steps for deriving patient counts, disregarding complications states. 
Clinical data are in a bold font, while derived data are in a regular font. 
First, we can fill into Table A.1 the known clinical data S(t) for counts of patients 
Surviving at each time period and R(t) for those Responding to treatment at time t. 
Assume that those Responding at time t came from the Respond state at time t-6 months, 
denoted “R(t-6)toR(t)”. 
Beginning at time t = 6 months, we can fill in Table A.1 step by step. 
a. Determine those in Dead categories. 

Step a.1. Derive D(t), the number Dead at time t = N total patients – Patients 
Surviving S(t) at time t: D(6) = 227 – 184 = 43 patients. 
Step a.2. Look up D(t-6), those already dead before time t.  Those already dead 
patients remained in the (absorbing) Dead state moving from time t-6 to time t, 
denoted “D(t-6)toD(t)”: D(t-6)toD(t) = D(t-6), so D(0)toD(6) = D(0) = 0 patients. 
Step a.3. Assume the newly dead (D(t)-D(t-6)) come from those in Progress in the 
prior period as much as feasible, since those patients are worse off than those in 
the Respond state. If the newly dead exceed those in Progress in the prior period, 
step a.4 will draw from those in Respond in the prior period. Derive those newly 
dead who moved from Progress at time t-6 to dead at time t, denoted “P(t-
6)toD(t)”:   
Min (P(t-6), newly dead D(t)-D(t-6)) = min (0, 43-0) = 0 patients. 
Step a.4. Find those moving from Respond to Dead, denoted “R(t-6)toD(t)”: 
R(0)toD(6) = a.1 answer – (a.2 answer+a.3 answer) = 43-(0+0) = 43 patients. 
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Table A.1.  Bevacizumab with chemotherapy patient counts in different health states 
derived iteratively, beginning at time 6 months. Clinical data are in bold font, derived 
data are in regular font. (N = 227 total patients) 

0 months 6 months 12 months 

Survival 
S(0) 
227 

Respond 
R(0) 
227 

Survival 
S(6) 
184 

Respond R(6) 
R(0)toR(6) 

132 
Survival 

S(12) 
121 

Respond R(12) 
R(6)toR(12) 

70 

Progress 
P(0) 

0 

 
Step b.1 
Progress 

P(6) 
52 

Step b.2 
P(0)toP(6) 

0 
Step b.1 
Progress 

P(12) 
51 

Step b.2 
P(6)toP(12) 

0 
 Step b.3 

R(0)toP(6) 
52 

Step b.3 
R(6)toP(12) 

51 

Dead 
D(0) 

0 

 

Step a.1 
Dead 
D(6) 
43 

Step a.2 
Already dead 
D(0)toD(6) 

0 Step a.1 
Dead 
D(12) 
106 

Step a.2 
Already dead 
D(6)toD(12) 

43 
  Step a.3 

P(0)toD(6) 
0 

Step a.3 
P(6)toD(12) 

52 
 Step a.4 

R(0)toD(6) 
43 

Step a.4 
R(6)toD(12) 

11 

 
b. Determine those in Progress categories. 

Step b.1. Derive P(t), the total number in Progress at time t = S(t) - R(t); so P(6) = 
S(6) - R(6) = 184 - 132 = 52 patients. 
Step b.2. Find those going from Progress at time t-6 to Progress at time t, denoted 
“P(t-6)toP(t)”. In step a.3, we filled the newly dead from those in Progress in the 
prior period as much as feasible.  Anyone left over in the Progress group after step 
a.3 shows up here: 
P(0)toP(6) = max (0, P(t-6) - [newly dead D(t) - D(t-6)]) = (0, 0 - [43-0]) = 0 
patients. 
Step b.3. Find those moving from Respond in the prior period to Progress in the 
current period t, denoted “R(t-6)toP(t)”: R(0)toP(6) = b.1 answer - b.2 answer = 
52 – 0 = 52 patients. 

Move to the next time period 6 months later and repeat steps a and b. The answers for the 
12 months time period are shown in Table A.1. The results for the entire study are in 
Table A.2. 
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Table A.2. Number of patients in each 6 month transition group for chemotherapy + 
bevacizumab 

Time t (months) 0 6 12 18 24 30 
Survival 227 184 121 69 30 10 

Respond(PFS) 227 132 70 22 6 3 
 R(t-6)toR(t) 132 70 22 6 3 
 R(t-6)toP(t) 52 51 47 16 3 
 R(t-6)toD(t) 43 11 1 0 0 
 P(t-6)toP(t) 0 0 0 8 4 
 P(t-6)toD(t) 0 52 51 39 20 
 D(t-6)toD(t) 0 43 106 158 197 

 
Now from the data in Table A.2, the transition frequencies nij can be calculated and 
entered in a two-way 3x3 table (Table A.3). For example, the Respond to Respond 
transition frequency is 233 in Table A.3.  This means that over the course of the study, 
there were 233 times a patient went from Respond to Respond over a single 6 month time 
span. This is calculated by just adding up the Respond to Respond transition patients 
from 6 months onward in Table A.2 (132+70+22+6+3). For example, at 6 months there 
were 132 patients in Respond, so those 132 patients transitioned from R at the beginning 
of the study to stay in R at 6 months. 

Table A.3. Transition frequencies nij 
for chemotherapy plus bevacizumab  

 Table A.4. Six-month stationary 
probabilities qij for chemotherapy plus 
bevacizumab 

 R P D   R P D 
R 233 169 55  R 0.5098 0.3698 0.1204 
P  0 12 162  P 0 0.0690 0.9310 
D 0 0 504  D 0 0 1 

The stationary estimates of six-month stationary probabilities qij (values in Table A.4) are 
the respective i,jth entry of the table of nij's (Table A.3) divided by the sum of the 
corresponding entries in the ith row. 
The same process can be followed for the chemotherapy alone arm of treatment, 
obtaining the following matrices. 

Table A.5. Transition frequencies nij 
for chemotherapy alone  

 Table A.6. Six-month stationary 
probabilities qij for chemotherapy alone 

 R P D   R P D 
R 166 155 67   0.4278 0.3995 0.1727 
P  0 10 150   0 0.0625 0.9375 
D 0 0 577   0 0 1 
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Appendix B. Change cycle in a transition probability matrix from 
six months to one month 

Transition probabilities are usually derived from an intervention cohort observed at 
specific follow-up times. But those follow-up intervals are oftentimes different from the 
model cycle length, so a conversion is required. Traditionally transition probabilities 
were converted to different cycle lengths using the relationship between probabilities and 
rates but, as Chhatwal et al. prove [29][30], this is not the correct way to compute the 
model transition probabilities. 
In most cases the correct calculation of those transition probabilities for the desired cycle 
length is quite straightforward from the spectral decomposition of the estimated follow-
up transition matrix (the decomposition into its eigenvalues and eigenvectors). For more 
details on the spectral decomposition of a matrix see, for example, Strang [31]. However, 
the problem becomes more cumbersome in the not unlikely case of some of those 
eigenvalues being negative. Since their appropriate (even) n-th root would be complex it 
is necessary to use another method. As this is not our case, we will not discuss it further 
in this appendix, but we provide references in Appendix C. 
For the cervical cancer case, the transition cycles have been established as monthly, so 
the obtained 6-month transition probabilities have to be transformed accordingly. 
Therefore, to calculate the sixth root of the previous matrix (TableA.4), its spectral 
decomposition was calculated obtaining the following eigenvalues: 1, 0.5968, and 
0.0690. As all the eigenvalues are positive, the sixth root of the 6-month transition matrix 
(S) is calculated using the formula S1/6 = V·T1/6·V-1, where T is the diagonal matrix 
consisting of the eigenvalues of matrix S, and V is the associated square matrix whose ith 
column is the corresponding eigenvector and V-1 is its inverse. The sixth root of the 
diagonal matrix, T, is found by simply taking the sixth root of the diagonal entries, i.e., 
the sixth root of the eigenvalues which yields: 1, 0.8938, 0.6404. 

S1/6=V·T1/6·V-1=�
0.5774 1 -0.6426
0.5774 0 0.7662
0.5774 0 0

��
1 0 0
0 0.5968 0
0 0 0.6404

��
0 0 1.7321
1 0.8388 -1.8388
0 1.3052 -1.3052

� 

          = �
0.8938 0.2126 -0.1064

0 0.6404 0.3596
0 0 1

� 

But, since row 1 has a negative number, this matrix is not stochastic (i.e. a valid transition 
probability matrix where all entries are non-negative and all rows sum to 1), so using the 
Kreinin and Sidelnikova algorithm [32], the obtained one month stochastic transition 
matrix is 

�
0.8406 0.1594 0

0 0.6404 0.3596
0 0 1

� 

We have therefore the transitions between respond, progression and dead in a one month 
unit, and now we have to incorporate the complications, both limited and severe.  
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The counts for the complications were obtained from [20] p. 742, taking into account that 
54 hypertension cases were considered as limited complications, while 31 cases of severe 
complications included thromboembolisms and fistulas, generally lasting one cycle, but 
with a chance of remaining in the severe complication state. The only path into both 
limited and severe complications comes from Respond, so the entry  in Table B.1 from R 
to LC is 54 divided by the total number of patients in respond through the study (obtained 
by summing over the expected number of patients in respond in each cycle, what yields 
1,416). Similarly, the number from R to SC is 31, representing the first cycle when a 
severe complication occurs. So, in Table B.1, the entry from R to SC is 31 divided by 
1,416. 
We also know, from the doctors’ experience [20], that a patient having limited 
complications will be treated within one month and return to the response state in the 
following month, so the probability 1 is entered from LC to R in Table B.1. However, the 
aforementioned doctors’ experience also states that for severe complications the patient 
remains in severe complications with a 0.1 probability or transitions to progression with a 
0.9 probability. 
Table B.1. Intermediate step in constructing one-month transition matrix for 
chemotherapy + bevacizumab 

 R LC P SC D 
R 0.8406 0.0381 0.1594 0.0219 0 

LC 1 0 0 0 0 
P 0 0 0.6404 0 0.3596 

SC 0 0 0.9 0.1 0 
D 0 0 0 0 1 

 
But this Table B.1 matrix is not stochastic (since adding the complications pushes the 
sum of the entries in first row above 1.0), so using again the Kreinin and Sidelnikova 
algorithm [32], the obtained stochastic matrix is in Table B.2. (This is Table 1 in the main 
part of the paper.)   
Table B.2. Final one-month chemotherapy + bevacizumab transition probabilities pij 

 R LC P SC D 
R 0.8256 0.0231 0.1444 0.0069 0 

LC 1 0 0 0 0 
P 0 0 0.6404 0 0.3596 

SC 0 0 0.9 0.1 0 
D 0 0 0 0 1 

A similar process is followed to determine Table 2 in the main of the paper with one-
month chemotherapy alone transition probabilities. 
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Appendix C. Dealing with Negative Eigenvalues 
There have been some recent papers which look at changing the cycle length when the 
spectral decomposition method fails, and although that is not our case we include a short 
review for those who have to deal with at least one negative eigenvalue in calculating an 
even nth root.  
First, Kreinin and Sidelnikova [32] find the nearest stochastic matrix to the actual 
appropriate nth root complex matrix using regularization techniques. The method operates 
separately on each row of the invalid short-interval transition matrix such that the norm of 
the difference between its power and the original transition probability matrix is at a 
minimum.  
Second, Charitos, de Waal and van der Gaag [33] also present a method based on 
regularization techniques and their algorithm’s optimal solution satisfies the Kuhn–Tucker 
conditions for each row.  
Third, Craig and Sendi [34] use the expectation–maximization EM algorithm (Dempster 
et al. [35]) to estimate the actual transition matrix. The drawback of this method is that 
convergence to the maximum likelihood estimator is not guaranteed so the method has to 
be repeated with several initial transition matrices.  
Fourth, Higham and Lin [36] and Lin [37] propose several algorithms based on Gaussian 
elimination with partial pivoting and compare their performance. 
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Appendix D.  
In computing the area under the curve (roughly a triangular shape for the living patients), 
one can think of it as adding up the height of thin vertical slices corresponding to living 
patients (each monthly cycle’s fraction of patients who are alive = the probability a 
patient is alive), see Figure D.1. 

Chemotherapy plus bevacizumab 

 
 

Chemotherapy alone 

 
Figure D.1. Predicted probabilities stacked bar for each state at each time period 

 
Another way to think of it is adding up thin horizontal slices, with some patients living a 
short time at the top of the triangle, and some living a long time at the bottom of the 
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triangle (Figure D.2). To find the average length of time of survival, geometrically 
imagine taking the small light colored (yellow) triangle in the right tail of the longest 
living patients, and flip it over to fill in a rectangle above the blue quadrilateral polygon. 
The width of the resulting yellow blue rectangle is the average length of time a patient 
survives. 

 
Figure D.2. Stylized graph of the fraction surviving at each time period (lower triangle, 
colored by blue on the left and yellow on the right), and the fraction who are dead (in 

black striped triangle) 










