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Abstract

Markov models allows medical prognosis to be modeled with health statc trans “ions over
time and is particularly useful for decisions regarding diseases where ur cc tain events
and outcomes may occur. To provide sufficient detail for operations r <ear hers to carry
out a Markov analysis, we present a detailed example of a Markov . ~del . -ith five health
states with monthly transitions with stationary transition probabiliti~s be. 7een states to
model the cost and effectiveness of two treatments for advanced .erv ..' cancer. A
different approach uses survival curves to directly model the frac..~ ( of patients in each
state at each time period without the Markov property. We us . wiis alwrnative method to
analyze the cervical cancer case and compare the Markov an 1 non-N ‘arkov approaches.
These models provide useful insights about both the effectiver.. ~= - ( treatments and the
associated costs for healthcare decision makers.

Keywords: Cost-effectiveness analysis, Markov proce.~ Survi- al analysis, Stationary
probabilities, Time-dependent probabilities



1. Introduction

The progress of medicine, both in the prevention and in the diagnosis and e “ment of
diseases, has significantly increased life expectancy by curing or at least ~'leviatiug many
ailments that had no remedy in the past. The downside of this progress 1s t} at health
spending has increased dramatically in all countries. Thus, identifying w. ~ther the
benefit a new treatment brings compensates for its cost remains a funa. ental challenge
faced by those involved in health policy decision making. Further.no, e the
acknowledgement that resources are limited has further intensifi. 1 r essure to identify
health interventions that provide the greatest benefit at a reaso=~ble ¢ <t (i.e. those that
are cost-effective).

Since in many cases there is not enough information to estimaw “*. cost and
effectiveness of an intervention directly, it is necessary t» us- u.thematical models to
project the data from clinical and epidemiological studies ucros: a patient's life span and
compute summary measures for the entire patient popula.. .

Disease status can often be characterized as a set of 1. ~irrer ¢ discrete states assessed over
time. This natural history of the disease transitions 1> “requently modeled using
Markovian transition models, as they provide a -...ouaudy flexible class of models which
can be fitted to the data. Such models are based on .»e Markov property, meaning that the
conditional probabilities of transitioning fro1. ovu. _*~te to another are independent of the
past visited states and independent of the time « - ent in those states. Some recent
examples in healthcare include progressioi.z «ver .ime in psychiatric disorders, multiple
sclerosis, hepatitis C, Alzheimer’s dise=se, ai.1 psoriatic arthritis ([1], [2], [3], [4], [5])- A
different approach uses survival curves w. directly model the fraction of patients in each
state at each time period without the Markov property.

Cost-effectiveness analysis (CEA , of me lical treatments provides patients and doctors
with better understanding of the pc. “orir unce of treatments. The aim of this paper is to
demonstrate Markov and non- vlarzov alternatives for CEA and discuss the advantages
and disadvantages of the alte, ~at ve 7 aalyses using the cost-effectiveness evaluation of
chemotherapy combined v .th bev. izumab in advanced cervical cancer patients as a case
example. This provides ‘. su. ~ble example to demonstrate the issues most researchers
might encounter when » ~deling disease evolution. Since there is always a gap between a
model and the real wr (Id, iarrowing this gap with more accurate and insightful models
can help provide va'id s. reestions on treatment selection and thus improve life quality of
patients.

The patients’ length . €s7 rvival is calculated using the transition probabilities of a
Markovian prr cess ¢ - via the direct estimation of percentages of patients surviving at
different time jeriods Besides examining the effectiveness of treatment in terms of
survival tir ., we vaamine medical costs and the assignment of health utilities like, for
example, Vlinion =t al. [6] does for results on quality adjusted life months living with
cervical ca. ~er » «d Hazen [7] for multiple attribute quality adjusted life years.

Our pa, er ».1u.ers from the literature as we consider the case when individual patient data
(IPD) are 1ot available.



The structure of this paper is as follows. In section two we briefly review th- past
literature on Markov models for medical decision making. Section three p . ~ents the
specific cervical cancer case that will be used as an example throughout tnis pay .
Section four specifies the Markov states, their transition probabilities f om yne discrete
time period to the next and the expected outcomes. A way to deal witl, 'n‘ ertainty using
probabilistic analysis is considered in section five, while section six « “ntaiu.  some other
issues to consider when using a Markov model. In section seven, v < stuay how to deal
with non-stationarity in probabilities with a different modeling 2 spre .cu vithout Markov
state transition modeling. Section eight covers the advantages ana .’ cadvantages of both
approaches. Appendices cover added details for those less fa .uliar -vitn these methods.

Unless otherwise noted, all the calculations and graphs were e v .ing R v.3.5.2,
packages “markovchain” (Spedicato et al. [8]) and “surv’va1” fThernaeu [9]). Also,
calculations for costs and months were done with up to ¢ 'o* . der imal places and then
rounded to four to facilitate readability.

2. Background

In this study, we present a detailed example of ~ **~-'-_ . model with five health states
with monthly transitions with stationary transition , vobabilities between states to model
the cost and effectiveness of two treatments . » .. ">"»nced cervical cancer.

When limited to available published data, “hat a es not usually include individual patient
data, it is challenging to directly derive timc -a. ~endent (non-stationary) transition
probabilities. Therefore, the time-depe . ~~t N'arkov model, where the transitions
probabilities vary with time, is not consiac.>d in the following. Instead, an alternative

approach based on the published Kanlan-Meier curves will be presented.

We provide more modeling deta’ than is typical in a medical journal, for operations
research modelers.

2.1. Markov Models

Markov models are recurs’ ve (repeutive) representations of randomly changing processes
that have events (health ¢ cates, ‘n the case of a disease evolution) that may occur
repeatedly over time ar . ~hose chance of occurrence depends only on the most recently
occurring event and r st o'. the entire history of the process (exhibiting the memory-less
Markov property).

Since the 1983 B <k - ad T auker paper [10], where the use of Markov models for
determining proenosi. v medical applications was first described, there is a stream of
literature aimi 1g at b "ilding bridges between healthcare specific models and reality. A
Markov mode. is able to represent a given process when a list of the possible states of
that procer ,, he possible transition paths between those states (often of fixed duration,
e.g., weelk 5, mont 1s or years), and the rate/probabilities of those transitions (representing
transition l.. ~li+ ,0ds) can be given.

For fur.~er oackground, there have been several reviews of Markovian process
methodol 2y (e.g. see Naimark et al. [11] or Sonnenberg and Beck [12]) that provide an
introduction to basic concepts and problems. A much more detailed description of
methods related to Markov cost-effectiveness analysis and the rationale behind them,



with proposed exercises at the end of each chapter, can be found in Briggs e al. [13] and
Gray et al. [14]. Furthermore, O’Mahony et al. [15] discuss several time-r . ted
methodological aspects of health economic evaluation models, like intervention 'uration,
implementation period, analytic horizon, cycle length and changing the cy< 'e length, as
well as other issues like cohort selection or discounting future costs.

Finally, recently, a tutorial on how to carry out cost-effectiveness analy. *s using R (with
all the code provided) for multi-state models (models of a contim vus time stochastic
process with a finite number of states) usable when IPD are ava. ~b] . is in Williams et al.
[16]. However, that is not usually the case for most researcher, whe, = their problems are
time discrete (patients are observed every cycle) and IPD ar¢ not av. ilable. R has many
advantages over packages like TreeAge or spreadsheets, like . Ticro- oft Excel, not the
least of which is its versatility and free availability under .ne (*NU General Public
License. For Markov chain analysis using the statistical , 2~’.age R, see for example Bai
etal. [17].

2.2. Non-Markov Models

Sometimes reporting of survival outcomes from clin. *2l trials is limited to information on
median survival times, hazard ratios, Kaplan-M ... cu.ves and numbers at risk, making it
challenging to conduct a cost-effectiveness analysi., hased on a Markov model. In that
case, a possible procedure is to estimate the . . ~habilities, which can be time
dependent, through the fitting of a non-linear n.- del to the given Kaplan Meier curve.

Hoyle and Henley [18] and Guyot et al. [19; ha "= developed methods to estimate
individual patient data from published ..'~n Meier curves, data that can be used to
directly estimate non-linear survival curves. This approach does not model Markov
transitions from period to period, it <t directly computes the fraction of patients in each
state in each period. Because it is aot co. strained to depict period-by-period transitions,
the non-Markov approach is more " ~xit e, but it loses the clinical insight gainable from
period-by-period transition pe cerrs. W use this alternative method to analyze the
cervical cancer case and com, °r the Markov and non-Markov approaches.

3. Base Case: Bevacizur .a. ‘'n Advanced Cervical Cancer Patients

Our analysis builds ur on ¢ published clinical trial GOG240 study in Tewari et al. [20]
whose objective was 1. ~ aluate the effectiveness of combining the angiogenesis
inhibitor' bevaciz'.ma", wi.ose brand name is Avastin, with non-platinum based
chemotherapy ve. s asir z chemotherapy alone in patients with recurrent, persistent, or
metastatic cervi~~l ca..> r being treated in several medical centers worldwide between
April 2009 an ( Janua 'y 2012. In the clinical trial, 452 patients were randomly assigned to
the two treatmu it gre ups (225 in the chemotherapy-alone group and 227 in the
chemother .py-plus-bevacizumab group). The results of the study indicate that after a
median fc 'low up of 20.8 months in both arms of the trial, there was a significant median
overall surv. ' gain of 3.7 months (17 months vs. 13.3 months) as well as a progression-
free su.viv. . 2ain (8.2 vs. 5.9 months) when using bevacizumab with chemotherapy
rather tha  just chemotherapy .

! An angiogenesis inhibitor is a drug that slows the growth of new blood vessels.



The trial showed that chemotherapy combined with bevacizumab led to imp -oved
survival, but costs still had to be included in the analysis. Therefore, a tria’ ~ased
economic evaluation was undertaken by Minion et al. [6], through a discrete-tin.
Markovian model using the TreeAge Pro Healthcare software, to estim .te e cost-
effectiveness of chemotherapy plus bevacizumab versus chemotherap, ~lr ne based on
the previously mentioned trial results [20] plus some updated data pi.7ideu “y the
physician co-authors in [6]. A standard decision tree to decide bet. . »n the two treatment
arms was converted to a Markov decision tree by adding Marko™ nor ¢s . hich can be
revisited as time passes. See the online supplementary material in | . ! for the Markov
decision tree.

The CEA base case reported a significant mean survival gain “»r ch- motherapy plus
bevacizumab compared to chemotherapy alone (the expe .ted *fe months until death were
calculated to be 18.5 months for chemotherapy plus bev. ~i- ama > and 15 months for
chemotherapy alone), and found that chemotherapy plu. bev. _..zumab was also more
costly compared to chemotherapy alone (for each patient, ti. > estimated total life-time
cost of chemotherapy plus bevacizumab is $79,844 ai.' of raemotherapy alone is
$6,053).

As in many cases, the individual-level data are n.* available. The data we obtained from
the clinical trial report includes the number ¢ ~dversc events, response rate and
progression rate every six months, Kaplan-Mc er curves for progression-free survival,
overall survival, and costs of treatments.

4. Markov Modeling

4.1. State Modeling

The first step when constructing - health related Markov model is to determine a set of
health states that patients migh’ reas. ~a",ly experience and that are mutually exclusive,
because each patient must be .n o".e and only one state at all times in the model.

The specific characteristics of the 77 sease natural history and the treatment under
consideration guide the d .« mination of the number of states, from the most commonly
used three-state healthy-<ick-deaJ model to the process with an infinite number of states.
Also, it is very commr a tt 1t models include a Dead state, which is called an “absorbing”
state, because from tha. = ate there is no possible transition to any other state. In clinical
trials involving der dly diseases, the survival time from the start of the trial until death is
often the key mec v of + eatment effectiveness.

In the Markov .node! used in [6], five possible health states were identified: respond (to
treatment), prc gress ( d be sicker), limited complications (hypertension), severe
complicatiors (1. 7*"a or thromboembolism, but not both), and dead, denoted by R, P,
LC, SC a1 d D re. vectively. The states and characteristics are similar to those used in
Refaat et . [211 .or breast cancer treatment, with the only difference that their health
state 0 ~ompuications was now divided into limited complications and severe

complic °ti sns. That division was necessary as patients in each of those two states behave
very diffe, ~ntly: those with the limited complication of hypertension are treated for those
complications while still receiving the chemotherapy treatment before going back to the



respond state in the next cycle, whereas those with severe complications sto'; receiving
chemotherapy and transition to progress or stay in severe complications.

A patient was modelled as being in one state during a month, and she ce ' transition to a
different state with some probability in the following month. The cycl len .th was
estimated to be a month since each round of chemotherapy treatment bey s roughly a
month apart.

--- Insert Figure 1 around here ---

A finite-state Markov chain is usually described by a square m=trix " of transition
probabilities, whose dimension is determined by the number of stat. s. Such a finite-state
stationary Markov process is also often described by a directc 1 grap 1 as in Figure 1 for
the cervical cancer case. In this graphical representation, .ucre is one node for each state
and a directed arc for each non-zero one-month transitio ' n~ ubai ility, otherwise the arc is
omitted. Calculating those probabilities is the aim of ti.~ nex* ~.bsection.

4.2. Determining Stationary Probabilities

We use a discrete-time stationary Markov process a. it is common in most health-related
Markov analyses. Estimating the transition prok~-*'"*"__ [or a stationary Markov process,
1.e. where the individual probabilities of going fro.. state i to state j in one cycle do not
change with time (pij(t) = pij), is a relatively . .. “*forward process, if data on counts of
patients in each state at different points in time ~ ¢ available. Observing the illness state
of a group of patients at the beginning ana . *he . nd of the cycle, the probability of
moving from one state i to another j can be e. timated by calculating the simple ratio of
the number of patients that began the cy.'= 1 state i and ended up in state j divided by
the total number of patients that began in staiwe i. That estimator is a maximum-likelihood
estimator of pjj (see Anderson and uoc 'man[22]).

Published clinical trial data proviu. - sor & information for a Markov model, upon which
other calculations can be done (o comp.ete the model, with some further assumptions or
judgments possibly being ne. Yec. Th . cervical cancer data in [20] were reported at 6-
month intervals, and they v ere us. 7 to derive one-month transition probabilities. Please
refer to Appendix A for r.o.. information on how to obtain the 6-month transition
probabilities for the chemotherapy plus bevacizumab treatment, and to Appendix B on
information on how tr trar sform that 6-month matrix to the one-month transition
probabilities matrix nec.' :d for our model. The resulting one-month transition
probabilities for th . ch >smowerapy plus bevacizumab arm of treatment are in Table 1.
Note that the prou. hi'ties 1 a row sum to 1 since all patients who begin a month in that
state will either _'ay tu. ¢ or move to a different state.

--- Insert Table 1 around here ---

A similar - rocedure can be followed to obtain the stationary probabilities for the
chemothe apy-on y arm of treatment (Table 2). Note that bevacizumab treatment has a
slightly higi._.~ ; .obability to stay in the respond state, along with higher probabilities of
compl: “aus ... See the concluding section for some possible biases in calculating these
stationar, orobabilities.

--- Insert Table 2 around here ---



For patients starting a month in the respond state (getting treatment for cerv’ zal cancer),
80.22% of those treated with chemotherapy alone would still be in the resr . ~d state at the
beginning of the next month, since Prr = 0.8022. In contrast, 82.56% of tne
chemotherapy plus bevacizumab patients would still be in the respond  catc

A half-cycle correction is very often used to compensate for the fact tha. rate
membership is only known at the beginning and at the end of each cyc,. bui not in
between, making state membership systematically overestimated sr v derestimated [14].
However, this is not a significant problem in our case as the chc. »n ne-month cycle
length is very short. Thus, no half-cycle correction has been ue~.

4.3. Calculate the Expected Outcome Values

Assuming all patients start in the respond state, 60 montk.y cvcles of each treatment can
be calculated with month-by-month Markov transitions, -ec sing track of the cost of
being in each health state for a month and how long pa.*ents ' ¢. The two therapies
(using chemotherapy alone or replacing it with chemothera, y plus bevacizumab) can be
compared by the incremental cost-effectiveness ratio ("CER j, representing the cost per
incremental unit of effectiveness (the extra cost per .. ~nth gained with chemotherapy
plus bevacizumab replacing chemotherapy alor .

ICER = AC /AE = [C(Beva) — C(Chemo)] / [F/Reva) - E(Chemo)]

where C(Beva) and C(Chemo) are the mean co. *s in the chemotherapy plus bevacizumab
and chemotherapy alone arms of the trial, . =, ~ect. vely, and E(Beva) and E(Chemo) are
their respective mean health effects in expeci d months of life. These can be calculated
with the Markov decision tree in the Treo ~ge software or in R.

Cost values, for both chemotherapv nlus bevacizumab and chemotherapy alone, are
presented in Table 3. Note that be vacizu mab treatment costs about $7,000/month more
than chemotherapy alone when the ~atie .t is getting the clinical trial cancer treatment (in
the Respond or Limited Comyr .ica*ions states).

--- "aser. Table 3 around here ---

Utilities can be assigned - ¢, ~senting the effectiveness of the treatment or the life quality
during a month, so that if a patic.it moves to a worse health state the life quality is
adjusted downward fc  the - month. They are assumed to be the same for both arms of the
study trial with values « € ( for response, 0.75 for limited complications, 0.5 for progress
and severe complir aticas and 0 for dead [21]. Note that for these advanced cervical
cancer patients, g.*tir g a ".tility of 1 in one month means living with and responding to
advanced cervic~' canc ~ treatment. Unlike traditional quality adjusted life years
(QALYs), wh re a 1 . 1eans living in perfect health for one year, the choice to scale the
measure in mo. *hs (¢, ALMccs) of cervical cancer life allows a focus on the relatively
few remai .ing months of life for these patients, and the reality that the best health level
possible i. respor ling to the treatment (not a cure). For a more extended explanation of
how the uti...-_ were obtained see [6] or for a general approach for multiattribute quality
adjuste ¥ 11 ., .ars see [7].

The long-. 'rm behavior of a Markov chain is depicted in each cycle by a probability
distribution or probability vector over the set of states (a row vector whose entries are



non-negative and sum to 1). The i component of that probability vector rer ‘esents the
probability that the chain starts in state i at the beginning of the cycle. At t'. > beginning of
the cervical cancer clinical trial case, since all patients are in the respond state, v = initial
probability vector is (1,0,0,0,0).

For each Markov cycle, the expected cost per month of care for a patien. "« found by
multiplying the probability of each Markov state (obtained from the M. *ov model) by
the appropriate cost and summing across the four living Markov «.atc = witn no cost
assigned to the death state. By summing these costs per cycle ov * € s cycles, the total
expected cost of care for a patient was derived.

A total average cost of $44,444 was obtained for the chemot. erapy ) lus bevacizumab
treatment arm while a $2,903 average cost was obtained fr~ che - .nerapy only. The
expected remaining durations of life from the beginning >f t_ s udy onward were
E(Beva) = 9.5965 months versus E(Chemo) = 7.8193 mou.ns. Tae quality adjusted life
months living with cervical cancer were QALMc.(Beva) 7.1409 months versus
QALMcc(Chemo) = 5.4161 months. The increment. ! cost-e fectiveness ratio (ICER) was
calculated to be ($44,444 —2,903) / (9.5965 — 7.8173) = 723,374.4092/month of life or
$24,084.5315 /QALMcc. Thus, the added cost for an a.” ‘ed month of survival or an
added quality adjusted month when treated with . ~vacizumab added to the baseline
chemotherapy is around $23,000-24,000. Ev -~ thoug.. the addition of bevacizumab only
costs $7,016 per month, the patient has to be ¢  t1e treatment and incur the excess cost
each month for the rest of her life to get tl . ‘ncrcse in survival.

Note that the different modelling assurmntion. in [6] led to higher transition probabilities
from respond to respond, for both chemo . ~erapy plus bevacizumab and chemotherapy
alone treatment arms, thus higher months of 1emaining life and thus higher costs, but a
similar [CER to what is found wit’, the ~urrent analysis.

5. Probabilistic Modeling of ¥ aran. ¢ rs in Markov Model

Due to the inherent imperfe~t .. “ormr ation, even of a randomized trial sample of an
intervention, there is a pos ‘ibility ti.at decisions based on the cost and effectiveness of the
available information of .he 1. rvention under evaluation will be incorrect. That problem
might be overcome by ., g probabilistic techniques (e.g., Monte Carlo simulation) to
generate the sampling dis’.1bution of the joint mean cost and efficacy so that a
quantification of th- unce. “2inty surrounding those estimates can be obtained.

In this section we ~re ,ent .« technique that fits functional forms to model parameters to
conduct a Mont~ Zari. <.mulation. Monte Carlo (see for example Robert and Casella
[24]) is a com sutatio. al technique whose core idea is to generate other possible samples
of the system v ~der < ady (in the present case patients receiving chemotherapy combined
with bevar .zumeab vs. patients receiving only chemotherapy) to learn about its behavior.

Another s\ ndard simulation approach (Bootstrap), like the one TreeAge software uses,
takes t~ eneciried Markov decision tree’s probabilities as fixed parameters and randomly
samples »7.ients from the pre-set discrete probability distributions. In contrast, in this
approach ¢ cloud of averages is calculated after sampling from possible parameter values
to set a Markov decision tree’s probability distribution, calculating the result, and then
repeating to conduct another sample and set a different Markov decision tree’s



probability distribution, etc. Therefore, for each treatment arm, other possib’ 2 evolutions
are studied by generating different sets of probable transition frequencies f. - our Markov
model.

In order to do so, the parameters of interest (data counts, in the presen’ cas' ) are ascribed
a probability distribution reflecting the uncertainty concerning their true  2lue. In most
cases the form of the data, the type of parameter and the estimation pro. ~ss would only
point to one or two different distributions that, for mathematical ¢ onv >nience (Rice [23]),
is conjugate to the likelihood function based on the observed da.-

In our case, only the first row and second row frequencies of .e trensiion frequency
matrices need to be sampled (see Table A.3 in Appendix A). Follow ng Briggs et al. [13]
(pp- 116-118) on how to characterize the uncertainty of in»'1t po. -~ _.eters using
probability distributions, we have a dichotomous transiti »n i* u.> second row (progress to
progress, or progress to death) that can, therefore, be chaiacteri- od by a binomial
distribution. However, in the first row we have a three tra. <itions case (response to
response, response to progress, or response to deatk that it 1; naturally characterized by a
multinomial distribution. Hence, the multinomial .. "nsi.._ . probabilities from response
(R) to response, progress and dead are represented hv » Nirichlet distribution (the
conjugate of the Multinomial distribution), whilc “he choice for the transition
probabilities from progress (P) to progress ar * dead a.e represented by a Beta
distribution (the conjugate of the Binomial pr. %2 sility distribution). Thus, the considered
distributions for the data obtained from T\ . ari ¢ al. [20] as explained in Appendix A,
are:

* For chemotherapy plus bevacizui. ~b: uirichlet distribution Dir(233,169,55) for
transitions from R to R, P and D, and Beta distribution (12, 162) for transitions
from P to P and D, where ‘.ie rc. nective parameters are the total counts that
appear in first and seconu “ow, re ,pectively, of Table A.3, Appendix A.

* For chemotherapy alo’ e: I"irichiet distribution Dir(166,155,67) for transitions
from R, and Beta disu.™ dor 3(10, 150) for transitions from P, where the
parameters for the “rst ana Lecond row of the frequency transition matrix are the
corresponding cc .nts .~ Appendix A.

Next, Monte Carlo sir ala ‘on values were sampled at random from the previously
deduced probability . *r“yutions and 3x3 6-month transition matrices were obtained for
each of the generat .d valuc.. For each of these matrices, the process detailed in Appendix
A for calculating ne < .atic aary transition probabilities was carried out, to include the
complications states, . 'Ir wing the repeated calculation of the incremental cost and
effectiveness “or all « £ the "what-if" chemotherapy plus bevacizumab and chemotherapy-
only generatec. scenar .os.

Each set ¢. samg 'es is called an iteration, and the resulting outcome from that sample is
recorded «1d plot ed on the cost-effectiveness plane [25], where the incremental effects
(in months) a« measured on the horizontal axis and incremental costs are measured on
the ver. ~a' axis. The axis selection is not arbitrary, having the advantage that the slope of
the line jo ning any point of the plane with the origin is precisely the ICER [13]. Points
along a given ray from the origin correspond to the same ICER. See in Figure 2 the range

10



of possible outcomes that results from 1,000 Monte Carlo simulations as we’l as the base
case model value (in pink in Figure 2).

--- Insert Figure 2 around here ---

As it can be seen from Figure 2 only a few points do not fall in the no. *her st quadrant of
the plane, where both added costs and added health effects are posit. . mc ning a
bevacizumab patient lives months longer at a higher cost, compare~ o ha “ng
chemotherapy only. So there is a tradeoff in this situation where _her .o srapy plus
bevacizumab may be cost-effective compared with chemotherapy- - ily treatment,
depending upon whether the ICER is above or below a given vaiue the payer is able or
willing to pay, taking into account that all ICER values are ¢ 7er $11 300 (see the line in
Figure 2). The “cloud” of possible outcomes in the figure *#sua.';" .emonstrates that the
ICER would differ for each clinical trial’s sample of pat’ 2nts

The advantage of this approach is that functional form. for d*<*.ibutions are specified
prior to running simulations, reflecting the inherent uncerta. 1ties.

6. Additional Challenges in Markov Modeling

In the Markov analysis in the previous sections, b, °stimating the transition probability
matrix from the patient counts, problems car L. ~ncountered when the number of
transitions is small, usually caused by small pc v .1ation size. Discreteness effects will
lead to noise in the transition probabilities. . * tit. =s, this does not matter. Since some
transitions are less important than others, the 7 w.ll have little impact on final average
results. However, it is a factor to be aw. ™= .

It has to be noted that the numbers in Table A.2 (Appendix A) are underestimated since
6-month data were used and also ' ecau. > the value for progression-free survival was
used when calculating the numbe. ~f pat 2nts in the respond state. And this value actually
includes the number of compl’ ;atinns. ",imilarly, the transition probabilities from respond
to limited complications wer ca’:ula ed in a conservative way by computing total
observations divided by tof .l pos.* ¢ transitions.

Usually individual-level iata . -e hard to get, especially for some disease states like
complications. In manv .. *dies, like the present one, the only data available for
complications is the 7 rgre sate number of patients who developed a complication any
time during the trea*men.. Because of this, a further assumption is made that
complications are .nde pendent and mutually exclusive to each other and have stationary
transition probabili.” s.

However, as e matte. of fact, some complications may be very likely to occur together.
For example, 1.7usea .nd vomiting often occur together. The independence assumption
will result "1 a posiave bias in the overestimation of the one-cycle transition probability
from one 'tate to nother one, and may further induce underestimation in transition
probabilitic. *~ - cher states.

Anothe. fe .ture of cancer treatment is that usually the total treatment time lasts many
months ai. 1 patients may switch from the initial treatment to another one, maybe just
because they develop complications from the drugs they are taking. Failing to consider
the patients switching treatment may lead to underestimating the difference in the
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outcomes. One way to deal with that is to not include these patients at the br ginning of
the study, but this may increase bias in the estimators. Another way is to ¢ , *<ider the
patients who switched as if they progressed, which may overestimate the progre. ~ion
rate. A third way is to model the process as multiple therapy lines (or a’ le« it a two-stage
decision problem).

Some cancers, like ovarian cancer, have high relapse rates. For these k.. 1s of cancer,
patients may have multiple therapy lines, which means that the pr ae1 t may respond to an
initial treatment at first, but relapse after several months. Then t. ~t j .itial treatment is not
effective anymore and the patient needs to change to another t=~2tme. * which is called a
second line therapy. The process may continue until the patic nt recc rers or dies. Usually,
clinical researchers compare the treatments independently, re, 2rdler s of the line and of
what the previous lines of therapy were. However, the efcct of ditferent lines on the
response rate is significant, Hanker et al. [26]. And the t.>»*.nen effect may correlate
with previous treatments. The combination of treatmen.~ shc -2u be compared as a whole
rather than simply comparing each treatment independently ‘n different therapy lines. A
multi-stage decision model is needed in this scenario.

7. Non-Markovian Method: Direct Calculati . .. C.aie Probabilities

The discrete time Markov chain model used . ...~ ~revious sections to model the
evolution of a disease is based on the assumpti. *. that the transition probabilities remain
constant over time. But this assumption m.~.* be 1 little too restrictive and nonstationary
(time dependent) behavior might be more ap, ropriate to represent the transitions between
states in each cycle. In our case, the ditic *ence of the outcomes for survival and
progression free survival (PFS), for chemothcrapy plus bevacizumab treatment arm
patients, estimated from the Markr v s.. *¢ modeling with stationary transition
probabilities in Table 1 with 30 ¢ _rcles ar 1 the real data, obtained from [20], is relatively
large (see Table 4). That fact s* gges.. *'.e stationary process assumption is not
completely adequate.

-—- 1. <.t Table 4 around here ---

In this section an alternauve n. ~-Markovian approach that allows time dependence is
described as deriving t'.c . 'me dependent transition probabilities for a Markov model can
be a challenging proc 'ss /,ee Bai et al. [27], for a description of that method). This
method does not rer uire s, =cification of month-to-month transition probabilities, instead
it specifies the nu-.abe of natients in each state in each month.

The percentage ~* pau. s in each health state at each successive cycle is now going to be
determined by using ‘e survival curve data. Therefore, using the so-called “area under
the curve” meu. od, tF cre is no requirement to calculate the probabilities of monthly
transitions oetween health states since the numbers in each state each month are directly
derived fit ym the iverall and progression-free survival curves. (See Appendix D for a
graphical in..~~_ctation of the area under the curve method.)

The ove al” and progression-free survival curves for chemotherapy plus bevacizumab and
chemothe. ‘oy alone were estimated using the method proposed in [18]. The authors fit
survival curves from the Kaplan-Meier curve and the data of the number of people at risk
that usually comes alongside the graph in most published research. This new method
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takes into account an estimation of the censored data (patients dropped out ¢ { the trial)
and improves the accuracy compared to traditional methods (e.g. regressic . nr least
squares).

GetData Graph Digitizer v. 2.24 was used to extract the original (x,y) ".ap! in-Meier
curve values from the scanned figure 3 in [20]. Those values were used a. input to
estimate the overall and progression-free survival curves for both arms « © treatment,
obtaining the best fit (lowest) Akaike information criterion (AIC" for “..~ following
models (Kalbfleisch and Prentice [28]), all of them with significa. © jarameters:

* For chemotherapy plus bevacizumab overall survival to the =very six month data
points, the best fit is a Weibull model with parameters n =1 ,882 and A = 0.0144.
Therefore, the number of surviving patients at tin- o v is
Sbeva(t) = exp[-0.0144-t!3882],

* For chemotherapy alone overall survival, the bes. 4t 1s a Log-logistic model with
parameters p = 1.6653 and A = 0.0138. How ~ver a W eibull model with
parameters p = 1.2673 and A = 0.0245, whe "= A.C s very similar to the Log-
logistic model, was chosen since it fits better in “~ter months. Therefore, the
number of patients Schemo(t) = exp[-0.024.26-t267266] ' As can be seen in Figure 3,
the fit is not totally adequate due to t' ~ misfit .n the tail (since patients have a
soon-to-be fatal disease), also caused v ~c .use of lack of data towards the end.

* For chemotherapy plus bevacizuma™ | ~og. ess-free survival, the best fit is a
Lognormal model with parame*=rs p = 1.1148 and A = 0.0894. Therefore
PFSpeva(t) = 1 - ©(1.1148-10g(0.04°4-1)), with @ being the normal N(0,1) density
function.

* For chemotherapy only p- ogress- tee survival, the best fit is a Log-logistic model
with parameters p = 1.6586 «.~d ". = 0.0442. Therefore PFSchemo(t) =
1/(1+0.0442 116653,

--- ™eert Figure 3 around here ---

Thus, the probability of F eing n the respond state at each successive cycle and for both
chemotherapy-only tres .. ~ent and chemotherapy plus bevacizumab can be estimated by
nr(t) = PFS(t), the prv nab ity for Progression by mp(t) = S(t) - PFS(t) and for Dead by
nip(t) = 1- S(t). Reg’ rding *he complications, both limited and severe, the only available
information is the aun oer of complications throughout the total period of the study trial.
Therefore, it is gow.,_ to ¢ assumed that those events occur independently and their
probability rer.ains constant over the 30-month study period. For chemotherapy plus
bevacizumab e nun ser of limited complications and severe complications are,
respectivelv 54 .=~ 51 (out of the total number of patients in respond through the study,
obtained I y sum. 1ing over the expected number of patients in respond in each cycle,
which yiei 's 1,47 6), whereas for chemotherapy alone the number of limited and severe
compl ~~tians 1s 4 (out of the expected number of patients in respond in each cycle,
which y =] is 1,148)

* For chemutherapy plus bevacizumab, mrc(t) = 0.0381 and msc(t) = 0.0219
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* For chemotherapy alone, mic(t) = msc(t) = 0.0035

Therefore, the estimates of the average effects and costs for the chemothe ap, ~lus
bevacizumab treatment arm are, respectively, E(Beva) = 19.7164 month-, Cost(Beva) =
$112,680, QALMcc(Beva) = 15.8914 months living with cervical can' er. ! or the
chemotherapy-only treatment arm, the results are E(Chemo) = 17.6994 1.. nths;
Cost(Chemo) = $7,861; QALMcc(Chemo) = 13.3137 months living wi.> cervical cancer.
Hence an ICER of $52,017 per additional month is obtained as tb > su »mary of the
chemotherapy plus bevacizumab intervention.

8. Advantages and Disadvantages of the Approaches

Two distinct methods for modeling the cost-effectiveness ui cancer treatment were
presented for a cervical cancer case. First, we provided ¢ 2t2".s o "how to build a Markov
decision process with stationary transition probabilitie. betw=s . monthly health states.
Second, an alternative non-Markov method to directly esti. ate the fraction of patients in
each health state at different time periods was presen. 1. Al nough both methods enable
us to conjecture about future outcomes, there are, nc ~>rtheless, some observations and
caveats that the users need to keep in mind (see ~'-_ oouds et al. [38]).

A benefit of using Markov models compared fo traai. onal survival curve methods used
to report clinical trial outcomes is that they p1 vir.e supplementary information in
addition to expected survival time. Under - Mai.-ov model the transition probabilities are
provided measuring how likely patients wil. sw.;” at the same status, get better or get
worse after one cycle and utilities and/ . >~<ts for staying in one state for one cycle can
be incorporated.

Our Markov model chronicles mo’ ., transitions between cervical cancer health states,
so the path a patient takes over t} = montl s can be represented, helping analysts and
health care providers understar 1 the | 2t'1 a patient might take period-by-period. The
disadvantage is that it has sta‘.ons .y transition probabilities. While Markov models can
be specified with non-staticnai, oro! abilities, that can be challenging [27]. However, if
the problem does not have ~vclical patterns and uncertainties over time, we should not
use a Markov model.

The method in sectior 5 o probabilistically modeling the parameters of the Markov
model allows for the ci.~.ion of a visual display (e.g., Figure 2) of the possible
incremental cost ef.ect'vencss ratio amounts that would result, imagining different
samples of clinic..' tr" 4l pr dents were drawn, following the existing data. This method
helps emphasiz~ “hat ..~ el results depend on the sample, and could easily vary for a
different samj le draw 1 for the same population.

While usine » Mo uv model, one problem is that the number of transitions increases
quadratic: tly wiv» the number of states. It is hard to estimate transition probabilities
without de ailed “adividual level data. Further, the Markov modeling analysis conducted
in this ~=*dv required a conversion of available data points from every six months to
every m Y n, to approximately match the cycle of a Chemotherapy treatment. Another
problem is that a Markov model has some restrictive assumptions, such as constant
transition probabilities and the “lack of memory” property. A relaxation of the constant
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transition probability assumption to allow for non-stationary transition prob- bility
requires more accurate individual level data, which are often not available - addition,
for the medical problems where the transition probabilities depend on the healti,
experiences, tunnel states could be used to fix the problem (for more ir .on ation see, for
example, Sonnenberg and Beck [12]).

The alternative non-Markov approach, by directly using the Kaplan-Mc ~»r curves to
compute the number of patients in each state at each time period '.as he benefit that, like
other traditional statistical methods, it is easy to use and to presc °t tr the audience and it
allows a wider range of models with multiple parameter imple=-2nta..~n. Also, we do not
need individual level data to fit the curve. Thus, there is no r :ed to . 10del the

probabilistic transitions period-by-period as well as it is unaftc ~ted Ly possibly
unrealistic Markov modeling assumptions. Furthermore, it dr .. allow the analyst to
determine the number of people in each state in a period, . the iggregated cost can be
calculated. However, there are some drawbacks. First, w. 1o not model the underlying
process when fitting the survival curve, thus no morthly traj sitions are modeled, and the
patient’s path period-by-period is lost. Consequen.'v, to.~! Cost for a single person cannot
be obtained as only the costs for the aggregated group .= available. Also, the Kaplan-
Meier curves are derived from censored data, fi... g such a curve may result in
inaccuracies especially for the case when we 40 not n..ve the original patient treatment
records.

When choosing a modeling approach to re, . ~en. the natural process of a disease, the
issue is not whether that evolution is stationa.v or non-stationary (because they are
always non-stationary) but, rather, wheu. r tnc non-stationarity is substantial enough to
require a complex characterization of the process, or whether a comparatively simple
stationary stochastic model can ac .ura.~ly represent the process.

Looking at the representation i'. Figu.~ « of the raw survival percentages extracted from
the Kaplan-Meier curve and * ieir approximation using the stationary Markov transition
probabilities versus the nor sta. "na y survival fitted percentages in each state in each
time period, it seems that - ~= Markov model somewhat underestimates those percentages
in the cervical cancer case, whi.~ the survival fitted percentages mimic more accurately
the actual patients' eve ati n. Also, the Mean squared error between the model and the
clinical trial data is si. 1l r in the case of the non-Markov survival fitted model (see table
5) for both arms of .reatmc *t (0.0005 non-Markov vs. 0.0053 Markov for Chemotherapy
plus bevacizumal 0. J13 non-Markov vs. 0.0864 Markov for Chemotherapy alone).

--- Insert Figure 4 around here ---

Researchers n ed to ¢ :cide whether using the stationary transition Markov probability
model with “*5 ap,. -uiing insights for clinicians about prognosis period-by-period will
suffice or (f the g eater flexibility from directly fitting survival percentages at each time
point in a 1. "n-M .rkov model or deriving non-stationary probabilities for Markov model
is war .-“~d We also recommend any researcher to do a comparison of better fit to the
actual a.*7, like for example the one presented here in Figure 4 and a calculation of the
Mean Squ. “ed Error.

--- Insert Table 5 around here ---
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For this case study, there is a sizable difference between the results obtained from the
non-Markov direct calculation of percentages method (section 7) and the r..mlts obtained
by calculating the expected outcome values in the Markov model (section 5) sup ~osing
the probabilities are stationary (see Table 5 for a comparison of both).

Mean life expectancy in the Markov model is about half as long as with . @ non-Markov
model. With shorter lives, there are lower costs. It can be deduced froi. Figure 4 that the
non-Markovian approach mimics more accurately the actual behz /10, ~f the sample. So,
it seems that in the cervical cancer treatment case, the non-Mark ~v r .odeling approach
gives a more accurate result compared to the clinical trial data -ut tu. * is not always true,
as sometimes the results with both methods will be very sim iar. Fo. example, while the
means differ from the two baseline modeling approaches, Fig. ve 2 v isibly depicts how a
range of incremental cost effectiveness ratio values woul 1 res!'t when modeled with the
Markov approach if different clinical trial samples are si.vated (see section 5 for this
approach).
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Tables

Table 1. Chemotherapy plus bevacizumab treatment’s one-month trans.tio1 probabilities
pij of going from the health state in row i to the one in column j in the 1."! s wing month

R 'Lc | P | sc| D
R 10,8256 0.0231]0.1444]0.0060
Lc| 1 0 0 0 ;
P 0 0 |06404] 0 | 1359
sC| 0 0 | 09 | 0 H
D 0 0 0 0 |
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Table 2. Chemotherapy alone treatment’s one-month transition probabilities pij

R LC P SC | D
R 10.8022|0.0017(0.1944/0.0017| 0O
LC| 1 0 0 0 0
P 0 0 0.63 0 10.37
SC| 0 0 0.9 0.1 0
D 0 0 0 0 1
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Table 3. Monthly costs depending on treatment and health state
Chemotherapy = Chemotb _ra,

State + bevacizumab ale-~
Respond $7,540 €524
Limited Complications $7,825 $8uL.
Progress $262 $z7
Severe Complications $4,240 $:.276
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Table 4. Estimated and real number of patients for chemo-+beva treatn ent arm

Timet(months) 0 6 12 18 ‘.4 30 |
Real data Survival 227 184 121 69 20 10
Respond(PFS) 227 132 70 22 ¢ 3
Outcomes from Survival 227 133 51 9 7 2
Markov state Respond(PFS) 227 82 30 .1 o 1
modeling oy




ACCEPTED MANUSCRIPT

Table 5. Comparison of results
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Figure Legends

Figure 1. 1-month state transition diagram

Figure 2. Cost-Effectiveness plane for chemotherapy + bevacizu aab ., 'acing
chemotherapy alone

Figure 3. Overall survival fit for chemotherapy alone

Figure 4. Probability of survival for both arms of treatment
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Appendix A. Calculation of 6-month transition probabili’ies matrix

Enough detail is provided in these appendices so both decision analyst an. hea.*h
economist newcomers could conduct a similar study using only the usu .., available
information with no individual data available for each patient separate v.

Consider the data about survival and progress-free survival (PFS) tha. ~npea. in the
Kaplan-Meier survivor curves in Figures 3A and 3B in [20] p. 747, o wew as the number
of patients at risk, every 6 months, for both chemotherapy-only * ‘eat.aen. and
chemotherapy plus bevacizumab entered below the x-axis in those .. -ures. That data for
bevacizumab with chemotherapy is listed below in Table A." in thc boxes for survival
and respond (which is the same thing as progression-free sur ival). ! or the time being,
disregard the complications states. At time 0 of the clinic .. .rial, ait 227 patients who
receive bevacizumab treatment are in the respond state, . o ! ¢y : re all surviving at time 0
and responding to treatment (in progression-free survi 1) at th .c time.

Table A.1 shows the steps for deriving patient counts, disreg arding complications states.
Clinical data are in a bold font, while derived data are .. = - cgular font.

First, we can fill into Table A.1 the known clini~=! 4~*~ 7(t) for counts of patients
Surviving at each time period and R(t) for those n.“nonding to treatment at time t.
Assume that those Responding at time t cam  ~ the Respond state at time t-6 months,
denoted “R(t-6)toR(t)”.

Beginning at time t = 6 months, we can fill ‘'n Table A.1 step by step.
a. Determine those in Dead categories.

Step a.1. Derive D(t), the number Dead at time t = N total patients — Patients
Surviving S(t) at time t: Do) = 227 — 184 = 43 patients.

Step a.2. Look up D(t-6), ti.. ~e 2 ready dead before time t. Those already dead
patients remained in t} ¢ (a'ssorbing) Dead state moving from time t-6 to time t,
denoted “D(t-6)toD(t) " T/(t-€ stoD(t) = D(t-6), so D(0)toD(6) = D(0) = 0 patients.

Step a.3. Assume ‘. » newly dead (D(t)-D(t-6)) come from those in Progress in the
prior period as much as ™asible, since those patients are worse off than those in
the Respond st'.ce. 'f the newly dead exceed those in Progress in the prior period,
step a.4 will a.~w (rom those in Respond in the prior period. Derive those newly
dead who " oved 1.. m Progress at time t-6 to dead at time t, denoted “P(t-
6)toD(t)”:

Min (P J), ne. ..y dead D(t)-D(t-6)) = min (0, 43-0) = 0 patients.

Step a.t. Find -hose moving from Respond to Dead, denoted “R(t-6)toD(t)”:

R(”)toD(b) = a.1 answer — (a.2 answer+a.3 answer) = 43-(0+0) = 43 patients.
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Table A.1. Bevacizumab with chemotherapy patient counts in different hea'th states
derived iteratively, beginning at time 6 months. Clinical data are in bold fr. ¢ derived
data are in regular font. (N = 227 total patients)

0 months 6 months 1" mo iths
Respond Respond R(6) ’ K. -nond R(12)
R(0) R(0)toR(6) l2(6)toR(12)
227 132 }»

Survival Survival Stepb.2 | Surviy ! Step b.2
S(0) P S(6) Stepb.1 | P(0)toP(6) | SO™ | _2pb.1 | P(6)toP(12)
227 rl(;g(gess 184 | Progress 0 21 | Progress 0

E) ) P(6) Step b.3 ’ P(12) Step b.3
52 R(0)toP(6) R(6)toP(12)
52 51
Step a.2 | Step a.2
Already dead Already dead
D(0)toD(6) D(6)toD(12)
Step a.1 0 otep a.l 43
DDGE?);I Dead Step a.3 N Dead Step a.3
0 D(6) P(0)toLn O} D(12) P(6)toD(12)
43 n 106 52
Step 1.4 Step a.4
R“MtoL 6) R(6)toD(12)
4. 11

b. Determine those in Progress categories.

Step b.1. Derive P(t), the “otal nu nber in Progress at time t = S(t) - R(t); so P(6) =
S(6) - R(6) =184 - 132 = 5_ nati .nts.

Step b.2. Find those g »ing from Progress at time t-6 to Progress at time t, denoted
“P(t-6)toP(t)”. In strp a.. wr filled the newly dead from those in Progress in the

prior period as mv . as feasible. Anyone left over in the Progress group after step
a.3 shows up here:

P(0)toP(6) =r.ax (), P(t-6) - [newly dead D(t) - D(t-6)]) = (0, O -
patients.

[43-0]) =0

Step b.3. Find .nos> moving from Respond in the prior period to Progress in the
current perio. t. ¢enoted “R(t-6)toP(t)”: R(0)toP(6) =b.1 answer - b.2 answer =
52 -0 =52 potients.

Move to the ne."t tim . period 6 months later and repeat steps a and b. The answers for the
12 months ame neriod are shown in Table A.1. The results for the entire study are in

Table A.Z
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Table A.2. Number of patients in each 6 month transition group for chemot} erapy +
bevacizumab

Time t (months) 0 6 12 18 24 °1 |
Survival 227 184 121 69 30 1¢
Respond(PFS) 227 132 70 22 ¢

R(t-6)toR(t) 132 70 22 6
R(t-6)toP(t) 52 51 47 16
R(t-6)toD(t) 43 11 1
Pt-6)toP(t) O O ~ &
P(t-6)toD(t) O 52 51 5 20
D(t-6)toD(t) 0 43 124 1.8 197

O W N

Now from the data in Table A.2, the transition frequer ~ies nii c-.n be calculated and
entered in a two-way 3x3 table (Table A.3). For example, ."e Respond to Respond
transition frequency is 233 in Table A.3. This meai. that o' er the course of the study,
there were 233 times a patient went from Respona .~ Respond over a single 6 month time
span. This is calculated by just adding up the Resnond - Respond transition patients
from 6 months onward in Table A.2 (132+70+22- ~+3). For example, at 6 months there
were 132 patients in Respond, so those 132 ; .. ~~t< transitioned from R at the beginning
of the study to stay in R at 6 months.

Table A.3. Transition frequencies nj; Tac'= A.4. Six-month stationary
for chemotherapy plus bevacizumal ~ . babilities qjj for chemotherapy plus
hevacizumab
R P v R P D
R 233 169 28 R 0.5098 0.3698 0.1204
P 0 12 1352 P 0 0.0690 0.9310
D 0 0 ‘ <04 D 0 0 1

The stationary estimates of si. month stationary probabilities qgij (values in Table A.4) are
the respective i,j entrs . the table of njj's (Table A.3) divided by the sum of the

corresponding entries mn t' e i row.

The same process r an he 1. lowed for the chemotherapy alone arm of treatment,
obtaining the foll wir g m .trices.

Table A.5. 7 cansit* 01? frequencies nj; Table A.6. Six-month stationary

for chemot. erapy i lone probabilities qgjj for chemotherapy alone
R | P D R P D

R 166 155 67 0.4278 0.3995 0.1727

P — 10 150 0 0.0625 0.9375

D | 0 0 577 0 0 1
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Appendix B. Change cycle in a transition probability ma‘rix from
six months to one month

Transition probabilities are usually derived from an intervention cohor* ob: >rved at
specific follow-up times. But those follow-up intervals are oftentimes . #f_.rent from the
model cycle length, so a conversion is required. Traditionally transitic ~ oro. abilities
were converted to different cycle lengths using the relationship be.w “en p.ubabilities and
rates but, as Chhatwal et al. prove [29][30], this is not the correc wa' to compute the
model transition probabilities.

In most cases the correct calculation of those transition prob bilities for the desired cycle
length is quite straightforward from the spectral decompositic.> of ' ¢ estimated follow-
up transition matrix (the decomposition into its eigenvalr es ar eigenvectors). For more
details on the spectral decomposition of a matrix see, for ~ amp e, Strang [31]. However,
the problem becomes more cumbersome in the not unlu.~ly c.oe of some of those
eigenvalues being negative. Since their appropriate (even) n th root would be complex it
is necessary to use another method. As this is not ~ur «. “e ve will not discuss it further
in this appendix, but we provide references in Appen..’~ C.

For the cervical cancer case, the transition cycles . ave been established as monthly, so
the obtained 6-month transition probabilities  ~= to ve transformed accordingly.
Therefore, to calculate the sixth root of the pre 71 ,us matrix (TableA.4), its spectral
decomposition was calculated obtaining t. . “ollc ving eigenvalues: 1, 0.5968, and
0.0690. As all the eigenvalues are positive, 1.°e >.xth root of the 6-month transition matrix
(S) is calculated using the formula S1/v = v T /6-V-1, where T is the diagonal matrix
consisting of the eigenvalues of matrix S, ai.' V is the associated square matrix whose ith
column is the corresponding eigen™ ..‘~r and V-1 is its inverse. The sixth root of the
diagonal matrix, T, is found by s” nply ta ting the sixth root of the diagonal entries, i.e.,
the sixth root of the eigenvalue~ wn. *h v (elds: 1, 0.8938, 0.6404.

0.5774 ~ -.6426\ /1 0 0 0 0 1.7321
Sto=y.TV.v=( 05774 0 27,62 ||0 0.5968 0 1 0.8388 -1.8388

0.577/ 0 0 0 0 0.6404/ \0 1.3052 -1.3052
<0.8938 0.2126 -L1064>

0 0.6 v~ 0.3596
0 0 1

But, since row 1 h7 s a nega.ive number, this matrix is not stochastic (i.e. a valid transition
probability matri: wt :re 7.l entries are non-negative and all rows sum to 1), so using the
Kreinin and Sidelnike = algorithm [32], the obtained one month stochastic transition
matrix is

0 0.6404 0.3596

(0.8406 0.1594 0 )
0 0 1

We hav. t'.erefore the transitions between respond, progression and dead in a one month
unit, and 1. "w we have to incorporate the complications, both limited and severe.
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The counts for the complications were obtained from [20] p. 742, taking intr account that
54 hypertension cases were considered as limited complications, while 31 _-<es of severe
complications included thromboembolisms and fistulas, generally lasting one cy e, but
with a chance of remaining in the severe complication state. The only r ath ‘nto both
limited and severe complications comes from Respond, so the entry i.. Teole B.1 from R
to LC is 54 divided by the total number of patients in respond throug. the . *dy (obtained
by summing over the expected number of patients in respond in er .. cyci. what yields
1,416). Similarly, the number from R to SC is 31, representing t' e fir st , cle when a
severe complication occurs. So, in Table B.1, the entry from R to . ' is 31 divided by
1,416.

We also know, from the doctors’ experience [20], that a patie. t hav'ag limited
complications will be treated within one month and retur . to th= response state in the
following month, so the probability 1 is entered from LC t~ & ir Table B.1. However, the
aforementioned doctors’ experience also states that for . »ver. _omplications the patient
remains in severe complications with a 0.1 probability or tre 1sitions to progression with a
0.9 probability.

Table B.1. Intermediate step in constructing one-monti. “~ansition matrix for
chemotherapy + bevacizumab

R | c| v | sc| D

R 0.8406[0.038  1.154/0.0219 0
Lc| 1 n | oo 0 0
P 0 0 'ne404] 0 0359
sC. 0 % 09 01| 0
D 0 0 0 0 1

But this Table B.1 matrix i, not s. >< aastic (since adding the complications pushes the
sum of the entries in first c0, - above 1.0), so using again the Kreinin and Sidelnikova
algorithm [32], the obtained stocaastic matrix is in Table B.2. (This is Table 1 in the main
part of the paper.)

Table B.2. Final on -mowu." chemotherapy + bevacizumab transition probabilities pjj

-

| R |lLc P sc | D
R 0.8256 0.02310.1444 1 0.0069 0
Lc 1 0 0 0 0

P 0 0 10.6404 0 0.3596
SC 0 0 0.9 0.1 0
D 0 0 0 0 1

A similar p1 ycess is followed to determine Table 2 in the main of the paper with one-
month chemotherapy alone transition probabilities.
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Appendix C. Dealing with Negative Eigenvalues

There have been some recent papers which look at changing the cycle length w..~n the
spectral decomposition method fails, and although that is not our case w. 1. ~lude a short
review for those who have to deal with at least one negative eigenvaluc in ralculating an
even nth root.

First, Kreinin and Sidelnikova [32] find the nearest stochastic matr.x .o the uctual
appropriate nth root complex matrix using regularization techniq -es. ". he inethod operates
separately on each row of the invalid short-interval transition matrix . rch that the norm of
the difference between its power and the original transition probabil ‘y matrix is at a
minimum.

Second, Charitos, de Waal and van der Gaag [33] also prr sent . method based on
regularization techniques and their algorithm’s optimal s¢ ™ .1on - atisfies the Kuhn—Tucker
conditions for each row.

Third, Craig and Sendi [34] use the expectation—max. nizatic a EM algorithm (Dempster
et al. [35]) to estimate the actual transition matrix. 1. = drawback of this method is that
convergence to the maximum likelihood estimator ic =~ uaranteed so the method has to
be repeated with several initial transition matrices.

Fourth, Higham and Lin [36] and Lin [37] pro,ros¢ oo veral algorithms based on Gaussian
elimination with partial pivoting and comp~re th 'r performance.
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Appendix D.

In computing the area under the curve (roughly a triangular shape for the .iving »atients),
one can think of it as adding up the height of thin vertical slices corresp i ing to living
patients (each monthly cycle’s fraction of patients who are alive = the ~rol ability a
patient is alive), see Figure D.1.
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F e D.1. Predicted probabilities stacked bar for each state at each time period

Another way to think of it is adding up thin horizontal slices, with some patients living a
short time at the top of the triangle, and some living a long time at the bottom of the
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triangle (Figure D.2). To find the average length of time of survival, geomet ically
imagine taking the small light colored (yellow) triangle in the right tail of ‘..~ longest
living patients, and flip it over to fill in a rectangle above the blue quadriiateral . ~lygon.
The width of the resulting yellow blue rectangle is the average length ¢ . tn ‘e a patient
survives.

Figure D.2. Stylized graph of the fraction surviving at eacn tir e period (lower triangle,
colored by blue on the left and yellow on the right), an< *he fraction who are dead (in
black striped triai.le)
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