

Comparison of acoustic NDT for assessment of small stiffness changes during low temperature thermal treatment

Dan Ridley-Ellis¹, Barbara Keating², Carmen-Mihaela Popescu³

1 Edinburgh Napier University, Edinburgh, UK

2 University of Strathclyde, Glasgow, UK

3 "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania

Outline

- Scots pine and Douglas-fir
- Treated at low temperature (110 C) for several weeks
- Monitoring of longitudinal stiffness (E_{dyn}) and shear modulus (G_{dyn}) changes by nondestructive acoustic methods
- Can we measure these small changes?
- Do the ratios stay the same?

FLIROPE & SCOTLAND

Clear samples of

- Scots pine (*Pinus sylvestris*)
 20 x 93 x 300 mm
- Douglas-fir (Pseudotsuga menziesii)

– 18 x 70 x 300 mm

Samples

4 samples of each species cut from the same plank

EUROPE & SCOTLAND European Regional Development Fund Investing in your Future

23/05/2015 www.napier.ac.uk/fpri

Treatment

- Heated in an oven at 110 ±2.5 °C
- On a weekly basis (approximately)
 - Dry weight
 - Dimensions
 - Impulse excitation
 - Ultrasonic time of flight
- Total treatment time of 170 days (Time in oven)

Acoustic techniques

- Well established and commonly used
- But caution!
 - Relationships do vary
 - By technique
 - By moisture condition
 - By growth region
 - Piece to piece

- Underlying assumptions / simplifications

UNIVERSITY

Ultrasonic time-of-flight

 $E = \rho V^2 = \rho \left(\frac{L}{T}\right)^2$

24 kHz 54 kHz 150 kHz 250 kHz

Comment

lame	ame Date & Time			Mea	Measurement Type			Velocity Time 1						^				1	Time 2 Distance		Crac	Crack Depth		Correction Factor		Temperature	Com	pressive Strength	
	04/03	/2012	12:0	Dire	ect (d	efault)	5909	4	5 0.6 µ	s							().0 µs	0.29	99 m	0.00	0 m	1	.00		18.2 °C		
Signa	Signal curve																							Settings					
mplitude/[%]	10 < 5 0	t1 = 50.6µs						4	-+	0.	2%	€ 40	400%										-	€ 800 %	Pulse length: Probe frequence Pulse amplitude Rx probe gain: Calib. time offs Device name: Serial number: Software versio Hardware inde	y: e: et: n: c	9.3 μs 54 kHz 350V 5x -6.1 μs Pundit Lab+ PL02-001-0038 2.0.5 B0		
A	-5 -10 0	-5 10 0 5 10 1		15	20	25 30	30	35 40	40	45 5	50	55 (T	60 6. 'ime/[µ	5 7 Is]	0 7	75	30	85	90	95	100	105 :	110 1	15	120	125	Poisson's Ratio Density: Velocity 2: Poisson's Ratio E-Modulus:) + E-N	Modulus 0.0 kg/m3 0 m/s 0.00 0.00 MPa

51.6

5888

00

80

51.6

Ultrasonic time-of-flight

Measurement values Statistics of summary

Impulse excitation method

- Recording with a 16 bit 48 kHz USB microphone with 50 Hz to 19 kHz range
- Analysis using Sigview32 2.4.0 software which uses the Kiss FFT library
- Repeated strikes analysed together

The frequency accuracy of the equipment is unknown although a comparison was made between simultaneous sound recordings made with the USB microphone, an Apple iPhone 3GS (mpg4 65kbps) and an Olympus LS-20M digital sound recorder (24-bit, 96 KHz wav at 4608kbps) and, while they deferred in frequency range covered, all three gave the same peak frequencies to within the underlying experimental error (equating to $\pm 2\%$ in the measurement of E_{dyn} and G_{dyn})

Aspect ratios

• Scots pine: 20 x 93 x 300 mm

- L/t = 15.0 (<20: !flexural, !longitudinal)
- -L/b = 3.22
- -b/t = 4.65 (>2: !longitudinal)
- Douglas-fir: 18 x 70 x 300 mm
 - L/t = 16.7 (<20: !flexural, !longitudinal)</p>
 - -L/b = 4.29
 - -b/t = 3.89 (>2: !longitudinal)

Impulse excitation

EN 843-2 Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 2: Determination of Young's modulus, shear modulus and Poisson's ratio, CEN, 2006

ASTM E1876 Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, ASTM, 2009

Impulse excitation - longitudinal

Edinburgh Napier

UNIVERSITY

UNIVERSITY

Impulse excitation - flexural

$$E = 0.9465 \left(\frac{mf_f^2}{b}\right) \left(\frac{L^3}{t^3}\right) T$$

 $T_1 = 1.000 + 6.585(1 + 0.0752\mu + 0.8109\mu^2)(t/L)^2 - 0.868(t/L)^4$ $8.340(1+0.2023\mu+2.173\mu^2)(t/L)^4$ $\overline{1.000 + 6338(1 + 0.1408\mu + 1.536\mu^2)(t/L)^2}$

EUROPE & SCOTLAND

www.napier.ac.uk/fpri 23/05/2015

Impulse excitation - torsional

$$G = \frac{4Lmf_t^2}{bt} \left(\frac{B}{1+A}\right)$$

$$I = \left(\frac{0.5062 - 0.8776 (b/t) + 0.3504 (b/t)^2 - 0.0078 (b/t)^3}{12.03 (b/t) + 9.892 (b/t)^2}\right)$$
$$B = \left(\frac{b/t + t/b}{4 (t/b) - 2.52 (t/b)^2 + 0.21 (t/b)^6}\right)$$

EUROPE & SCOTLAND European Regional Development Fund Investing in your Future

23/05/2015 www.napier.ac.uk/fpri

Finite element modelling

- CalculiX for Windows 2.5
- 1600 quadratic solid elements
- (C3D20)
- Confirmation of frequencies for modes and calculation of mechanical properties

Scots pine

Douglas-fir

Treatment time (weeks)

Scots pine

🔺 🚵 🔳 SIRT

Summary

- Even at this relatively low temperature, the wood underwent thermal modification
- Losing mass (~0.02%/day for Scots pine and ~0.01%/day for Douglas-fir)
- And stiffness (~0.05%/day for Scots pine and ~0.04%/day for Douglas-fir).
- The change in E_{dyn} was similar to the change in G_{dyn} .

Summary

- The impulse excitation method is an effective and inexpensive way to track even small stiffness changes
- If the samples are the right size & shape
- But spectra can be hard to interpret
 - Repeated measurements
 - Finite element modelling
- Dimensions are the biggest source of error

This paper was supported by Historic Scotland and the Royal Society of Edinburgh.

