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Abstract 
Various artificial compressibility methods for calculating the three-dimensional 
incompressible Navier-Stokes equations are compared. Each method is de- 
scribed and numerical solutions to test problems are conducted. A compari- 
son based on convergence behavior, accuracy, and robustness is given. 

1 Introduction 

The difEiculty in computing solutions to the incompressible Navier-Stokes sys- 
tem of PDEs lies m satisfying the divergence-free velocity condition. Artificial 
compressibility methods, developed by A. Chorin [I], provide a mechanism 
to march in pseudo-time towards the divergence-free velocity field such that 
mass and momentum are conserved in the pseudo steady-state. 

The classical artificial compressibility method transforms the mixed ellip 
tic/parabolic type equations into a system of hyperbolic or parabolic equa- 
tions in pseudo-time, which ca.n be numerically integrated. The method has 
been generalized to curvilinear coordinates and used for various applications, 
Kiris et. al. [3j. 

Since the publication of Chorin's original paper many alternative forms 
of artificial compressibility have been developed. These methods include a 
generalized preconditioning matrix to equalize the wave speeds and the use of 
merent id  preconditioning, Turkel and Radespiel [7], as well as the addition 
of artificial viscosity such as an artificial Lapiacian of pressure term in the 
continuity equation, Shen [6]. We present a direct comparison of four different 
versions of the artScial compressibility method on a series of test problems. 

2 Incompressible Equations and 
Coi-opT;essi~i:ity 

The governing equations for incompressible, constant density and constant 
viscosity flow written in conservative form in generalized coordinates with 
the density absorbed by the non-dimensionalization of the pressure term are 
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where, 

r 0 1 

Classical and Generalized Artificial Compressibility 

The classical artificial compressibility formulation is derived by introduc- 
ing an artificial compressibility relation in the continuity equation. This is 
achieved by adding a preconditioned pseudo-time derivative of the primitive 
variables Q to equation 1. The generalization of this approach is to  begin 
with the conserved variables W = ( p ,  pu, pv, p ~ ) ~  and use the chain rule to  
derive the generalized preconditioned pseudo-time derivative. The classical 
preconditioning matrix, r,, and the generalized preconditioning matrix, r,, 
are __ - 

L o 0 0  L o 0 0  
r,= [ ' . 1 0 0 ] ,  r,= [ - 1 0 0  1 

0 0 1 0  - 0 1 0  
0 0 0 1  - 0 0 1  

where p > 0 is the artificial compressibility parameter. 

Artificial Dissipation 

To assist in the dissipation of spurious prkssure waves we add an artificial 
Laplacian of pressure term to the right-hand side of the classical artificial 
compressibility continuity equation. This term is scaled by a parameter E 

and has the affect of adding a second difierence artificial dissipation term to 
the continuity equation. 

Differential Preconditioning 

The artificial dissipation described above manipulates the physical dissipation 
properties of the PDE system. Alternatively we can manipulate the convective 

derivative of the Laplacian of pressure can be added to the continuity equation 
along with the standard pseudo-time derivative of pressure. This term is 
also scaled by E and will have an effect of propagating the low-frequency 
components of error more quickly than the high-frequency components which 
will be dissipated by the discretization scheme. 

properties of t.he syst.em. Following Tbrke! a..nd R.a&spiel [?I 8 psel~do-time 
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CFL /3 
1 1220 

10 151 
100 242 

loo0 1212 
10 137 

100)238 

3 Numerical Results 

P = l P = 2  P=3 P=4 
E =  0.01 0.10 1.00 0.10 1.00 10.0 

209 325 1876 >WOO 269 875 6992 
160 158 266 1874 165 309 2290 
261 243 250 328 246 291 1093 

137 145 255 1863 137 137 131 
255 239 242 304 238 238 238 

202 314 1867 >9000 212 213 219 

The INS3D code [4],[5],[3] has been adapted to include each of the artificial 
compressibility methods described. An implicit line symmetric GaussSeidel 
relaxation scheme is used with fully-implicit boundary conditions. Iterations 
are performed until the residual of the nonlinear system has been reduced nine 
orders of magnitude in the l 2  norm. Results for p = 1,10,100 and CFL = 1 
and CFL = 1000 are provided. For the artificial dissipation method E values 
of 1.0-2, l .O-I, 1.0+' are used to scale the Laplacian term. The differential 
preconditioned method uses values of E = 1.0+', l . O + l .  For each test- 
case the inlet velocity is specified and a constant pressure is enforced at 
the outlet. P = 1,2,3,4 denotes the version of the artificial compressibility 
method. 
Test 1: Inviscid Flow in a Square Duct 
Each method is used to  calculate the inviscid flow in a square duct with 
dimensions 10 x 1 x 1 non-dimensional units. The exact solution is Q = 
(0,1, 0, O ) T .  A grid of dimension 33 x 9 x 9 is used. Table 1 displays the number 
of iterations required. Each of the methods computed the correct solution up 
to double precision. For = 1 the generalized preconditioned method has the 
best convergence. For ,O > 1, the classical has the best convergence rate with 
the exception of CFL = 1000 where the differential preconditioning scheme 
is slightly better. 

Test 2: Viscous Flow in a Circular Pipe 
A simple viscous flow in a circular pipe of radius one and length ten is com- 
puted. A Reynolds number of 1000 is used for which an exact solution is 
+&TT!lI?_. cJ-r.i& of &mpI;.ic?E 17 Y 9 Y 9, 33 Y 17 >< 17, SF; Y ' 3  Y 33 z p  *xed. 
Each method is verified to produce second order accurate results for ,O = 10. 
Figure 1 plots the normalized Z2 residual for varying ,O and CFL = 1000. 
Table 2 displays the number of iterations required to converge on the hes t  
mesh. The third and fourth methods fail to converge for low CFL numbers 
and the artificial dissipation scheme is especially sensitive to the E parameter. 
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For high C F L  and high p the differential preconditioning becomes effective, 
but a moderate ,B must be used for accuracy purposes. 

. 

Fig. 1. Viscous Straight Pipe (Grid 65 x 33 x 33, Re = 1000, C F L  = 1000): 
Comparison of the convergence between preconditioning methods for p = l(1eft) 
and ,B = 10 (right). o P = 1; 0 P = 2; x P = 3, E = 1.0-'; + P = 3, E = 1.0-l; 
* P = 3 , ~ = 1 . 0 + ~ ; 0  P = 4 , ~ = 1 . 0 - ~ ;  A P = 4 , ~ = 1 . 0 + ' ; *  P = 4 , ~ = 1 . 0 + ~ .  

Table 2. Viscous Straight Pipe: Number of iterations for residual reduction of 9 
orders of magnitude in the discrete L2 norm. 

P=l 'P=2 P=3 I p=4 -1-1 
CFL ,f3 E = 0.01 0.10 1.00 0.10 1.00 10.0 

1 1352 363 518 >2500 >2500 399 1233 >2500 
10 290 301 364 500 >2500 374 1577 >2500 

100 734 743 753 1044 1242 922 1130 >2500 
1000 1343  355 509 >2500 >2500 343 343 345 

10 281 286 362 503 >2500 281 283 295 
100 744 754 748 1030 1210 743 736 688 

Test 3: Viscous Flow in an L-shaped Duct 
A more complicated viscous flow in a square duct with a 90° bend is used for 
the final test. The geometry used is described in Humphrey [2], where exper- 
imental results were obtained for Reynolds number 790. A grid of dimension 
65 x 33 x 33 is used. Figure 2 plot the residual for varying ,B and CFL = 1000. 
Table 3 displays the number of iterations required. The symbol * * ** denotes 
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the method failed to converge.Figure 3 displays a comparison of the different 
computed solutions with the experimental data for p = 1,10,100 at 19 = 90" 
plane of the curved duct. Robustness is an issue for the third and fourth 
schemes. Comparing the experimental data with the computed solutions we 
observe that using p > 10 leads to poor solution accuracy and p = 1 is the 
most accurate. 

Fig. 2. Viscous Square Duct with 90" bend (Grid 65 x 33 x 33, Re = 790, CFL = 
1OOO): Comparison of the convergence between preconditioning methods for p = 1 
(left) and p = 10 (right). o P = 1; 0 P = 2; x P = 3 , ~  = 1.0-2; + P = 
3,E = 1.0-l; * P = 3 , E  = 1 . 0 + O ;  0 P = 4,€ = 1.0-I; a P = 4,€ = 1 . 0 + O ;  
* P = 4, E = LO+'. 

4 Conclusion 

Four variations of the artificial compressibility method have been imple- 
mented and compared on a series of test problems. The classical and gen- 
eralized art3cial compressibility methods have almost identical convergence 
rates on each test case for every combination of the CFL and p parameters. 
The artificial dissipation and differential preconditioning methods were not 
able to converge for all parameters on certain problems showing a lack of 
robustness for these methods. High values of p lead to poor accuracy for all 
the methods considered. For moderate values of 1 _< ,!? 5 10 the classical and 
generaiized versions appear to  be the most accurate. These two versions will 
be evaluated for more complicated engineering applications. 

r 



P = l P = 2  P=3 
CFL p E = 0.01 

1 1697 655 2764 
10 341 365 **** 

100 524 594 **** 
1000 1693 653 2760 

10 338 361 **** 
100 534 **** **** 

Fig. 3. Comparison of the solution at 0 = 90" and p = 1 (left), ,f3 = 10 (center), 
and = 100 (right). o Exper.; 0 P = 1; A P = 2; x P = 3; 0 P = 4. 

P=4 
0.10 1.00 0.10 1.00 10.0 
5481 9999 1141 **** **** 
**** **** 388 **** **** 
**** **** **** **** **** 
5483 9999 693 699 750 
**** **** 338 339 344 
**** **** 534 535 543 
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Abstract 

Various artificial compressibility methods for 
calculating the three-dimensional incompress- 
ible Navier-Stokes equations are compared. Eac 
method is described and numerical solutions 
t o  test problems are conducted. A comparison 
based on convergence behavior, accuracy, and 
robustness is given. 
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Introduction 

T h e  difficulty in computing solutions t o  the 
incompressible Navier-Stokes system of .PDEs 
lies in satisfying the divergence-free velocity 
condition. Artificial compressibility methods, 
developed by A. Chorin [l], provide a mech- 
anism to march in pseudo-time towards the 
divergence-free velocity field such tha t  mass 
and momentum are conserved in the  pseudo 
stea d y-s t  a t e. 

T h e  c I assica I a r t  if i ci a I co m pressi b i I i t y  method 
transforms the mixed elIiptic/parabolic type equa- 
tions into a system o f  hyperbolic or parabolic 
t=yudLiuiis in p ~ u u w - ~ i ~ i i e ,  Vvhich can be nu- 
merically integrated. T h e  method has been 
generalized t o  curvilinear coordinates and used 
for various applications, Kiris et .  al .  [ 2 ] .  

A h . .  .-&.-.-- - I - .  -I- A!.--  

- - .. .-~ . ... . .. . . - . 
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Since the  publication of  Chorin’s original paper 
many alternative forms of  artificial compress- 
ibility have been developed. These methods in- 
clude a generalized preconditioning matrix to  
equalize the wave speeds and the use of  dif- 
ferential preconditioning, Turkel and Radespiel 
[3 ] ,  as well as the  addition of artificial viscos- 
ity such .as an artificial Laplacian of  pressure 
term in the continuity equation, Shen [4]. We 
present a direct comparison of  four difrerent 
versions of the artificial compressibility method 
on a series of test  problems. These problems 
include inviscid flow in a square duct, viscous 
f l a v  in a circiiiar pipe, and viscous flow in a 
square duct with strong curvature. 

? 
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Governing Equations 

T h e  governing equations for incompressible, 
constant density and constant viscosity flow 
writ ten in conservative form in generalized co- 
ordinates wi th the density absorbed by the nondi- 
mensionalization of the pressure term are 

where, 

6 
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Artificial Compressiblity Methods 

T h e  artificial compressibility formulation is de- 
rived by i n t ro d u ci n g a n a r t  if i ci a l co m pressi b i l i ty  
relation, 

P p* = - 
P’ 

wherep is the pressure and P > 0 is the  artificial 
sound speed. Using this relation we may add 
a preconditioned pseudo-time derivative of the 
primitive variables Q t o  equation 1. Four forms 
of artificial compressiblity will be discussed. 

0 Classical Artificial Compressiblity 

Generalized Artificial Compressibility 

0 Artificial Dissipation 

DifFerentiaI Preconditioning 

7 
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Classics I Art if icia I Compressiblity 

The  c I assica I a r t  if icia I co m pressi b i I i ty m e t  h o d 
uses equation 2 only in t h e  continuity equation. 

This leads t o  the following preconditioned sys- 
tem of  equations, 

T h e  classical preconditioning matrix is given 

by, 

- rc - 
' L O O 0  P 
0 1 0 0  
0 0 1 0  
0 0 0 1  

8 
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Generafized Artificial Compressibf ity 

To generalize the above approach we s tar t  with 
the conserved variables W = (p ,  pu, pw, pw)? 
Using the chain rule and equation 2 we obtain, 

aw awao 

where 

rp = 

- 1  
P 
P 
P 
P 

U 

V 

W 

Substituting rp for rc 

0 
I 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

( 5 )  

we abtain t h e  generai- 
ized precondition system of  equations, 

9 



Art  if icial Dissipation 

Introducing a finite sound speed into the  in- 
corn pressi ble eq ua t ions creates a r t  if i cia I pres- 
sure wmes  which must be propagated ou t  of 
the solution domain in pseudo-time. 

Alternatively the artificial pressure waves can 
be dissipated by adding an artificial Laplacian 
o f  pressure t o  the modified continuity equation 
in equation 3. Where the viscous fluxes ,!? are 
replaced by, 

2 

p E ((vi W ) P &  + ( V e  0 t 2 ) P E 2  + mi * OE3)P[ , )  

- 1 ((eta a w ) v [ l  + ( 0 E i  * V E 2 ) V &  + (uti * Ot3)V[J 

-2- Re (mi VE1)WE1 + (oti * vE2)w<2 + (VCi - VJ3)wg) 

E; = 1 [ -2- Re ((vi * W)ql + (W * V J 2 ) U E 2  + (Op - V E 3 ) U & )  

R e  J 

To obtain, 
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Differential Preconditioning 

T h e  classical artificial compressibility method 
uses a standard pseudo-time derivative t o  con- 
vect the  artif icial pressure waves ou t  o f  the 
domain. So both high and low frequency er- 
rors are convected a t  constant wave speeds. 
Alternatively, the t ime derivative of  the Lapla- 
cian of  pressure term can be added t o  the  first 
equation in the system. This forces the  low 
frequecy errors t o  travel a t  faster speeds then 
there high frequency counterparts. T h e  high 
frequency errors will be damped by the dis- 
cretization and  relaxation schemes. 

Th is  produces a system o f  the form, 

where 

11 



Numerical Examples 

T h e  I N S 3 D  code has been adapted to  include each of  the  artifi- 

cial compressibility methods described. An implicit line symmetric 

Gauss-Seidel relaxation scheme is used w i th  fully-implicit boundary 

conditions. Iterations are performed unt i l  the residual has been 

reduced nine orders of magnitude in t h e  l 2  norm. Results for 

,8 = l,lO,lOO and C F L  = 1 and C F L  = 1000 are provided. For 

the artificial dissipation method E values of and 1.0-1 are 

used t o  scale the Laplacian term. T h e  differential preconditioned 

method uses values of E = 1.0-1 and 1.0? For each test-case the 

inlet velocity is specified and a constant pressure is enforced a t  the 

outlet.  

Inviscid Square Duct 

e viscous Circuiar Pipe 

Viscous Square Duct wi th Strong Curva- 
ture 

12- 



Inviscid Square Duct 

P=l  P=2 P=3 P=4 

242 261 243 25Q 246 1093 - 

CFL @ / E  E =  0.01 0.10 0.10 10.0 
325 1876 269 6992 
158 266 165 2290 

1 1 220 209 
10 151 160 

1000 1 212 202 314 1867 212 219 
10 137 137 145 255 137 131 

100 238 255 239 242 238 238 

Each method is used to  calculate the inviscid 
flow in a square duct with dimensions 10 x 1 x 1 
non-dimensional units. T h e  exact solution is 
Q = (0,1,0,  O ) T .  A grid o f  dimension 33 x 9 x 9 
is used T h e  table below displays t h e  num- 
ber of iterations required Each of the  meth- 
ods computed the  correct solution up to  dou- 
ble precision. For p = 1 the generalized pre- 
conditioned method has the best convergence. 
For ,O > 1, the classical has the best conver- 
gence rate wi th  the exception of C F L  = 1000 
where t h e  differential preconditioner scheme is 
slightly better. P = 1,2,3,4 denotes the  ver- 
sion of the artificial compressibility method. 

13 
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-1 0 I I I I I 

260 25; S G  t n  4 nn 4 c n  
J V  I uu I JU I) 

Iterations 

Grid 33 x 9 x 9, Re  = 1000, C F L  = 1000: Plot 
o f  normalized z 2  norm residual 0 = 1 
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E 
-1 

-4 

-3 

-4 

-5 

-6 

-7 

-8 1 

-gl 

I I 1 I 

0 p, 

X 

2 n 

P 
P,,&=l .o-z 

3 A 

0 P4,&=1.0-' * P,,&=l.O+' 

-10' I I 1 I I I 
0 50 100 150 200 250 300 . 

Iterations 

Grid 33 x 9 x 9, R e  = 1000, CFL = 1000: Plot 
of  normalized Z 2  norm residual 0- 10 
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n 

1 

@ 
-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 

-1 0 
0 

i 

I I I I 

A A m  

I uu . r n  
i 3u 

Iterations 
onn 250 3 V U  

Grid 33 x 9 x 9, R e  = 1000, C F L  = 1000: Plot 
o f  normalized l 2  norm residual p = 100 
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Viscous Circular Pipe 

P=l  P=2 P=3 

1 1 352 363 518 >2500 
C F L  P E =  0.01 0.10 

10 290 301 364 500 
100 734 743 753 1044 

10 281 286 362 503 
100 744 754 748 1030 

1000 1 343 355 509 >2500 

Viscous flow in a circular pipe of  radius one 
and length ten is computed. A Reynolds num- 
ber of 1000 is used for which an exact solution 
is derived A Grid o f  dimension 65 x 33 x 33 
is used. T h e  table below displays the number 
of iterations required to converge on the finest 
mesh. T h e  third and fourth methods fai l  t o  
converge for low C F L  numbers and the  artif i- 
cial dissipation scheme is especially sensitive t o  
the E parameter. For high C F L  and high p the 
d ifferen t ia I precon d it ion i ng becomes effective, 
but a moderate ,8 must be used for accuracy 
purposes. 

P=4 
0.10 10.0 
399 >2500 
374 >2500 
922 , >2500 
343 345 
281 295 
743 688 
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-10' I I I I I I I I I 
0 50 100 150 200 250 300 350 400 450 500 

Iterations 

Grid 65 x 33 x 33, R e  = 1000, C F L  = 1000: 
Plot o f  normalized Z 2  norm residual p = 1 
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c 
- 

I 
-1 

I 

-i 

-L 

- c 

-6 

-7 

-8 

-9 

I I I I I I I 

P 0 

X 

t 

* 0 

' 1  
P 
' 2  
P3,&=1 .o-2 4 

P3,&=l .o-' 
1 

51) 301) 3% 41)c 

Grid 65 x 33 x 33, Re = 1000, CFL = 1000: 
Plot of normalized Z2 norm residua! p = 10 
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i 

n 

4 

I 
-L 

r -< 

-c 

c - 

-6 

-7 

-8 

-9 

I I I I I I T 

0 
p2 

X P,,€=l .o-2 A 

+ P,,&=l.o-’ 
0 P4,€=1.0-’ * P,,E=l.o+’ 

-1 0 
0 100 200 300 400 500 

Iterations 
600 700 800 

Grid 65 x 33 x 33, R e  = 1000, C F L  = 1000: 
Plot o f  normalized Z 2  norm residual /? = 100 
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Viscous Square Duct with Strong 
Curvature 

CFL 
1 

1000 

Viscous flow in a square duct wi th a 90° bend 
is used for the final test. T h e  geometry used is 
described in Humphrey [SI, where experimen- 
t a l  results were obtained for Reynolds number 
790. A grid of dimension 65 x 33 x 33 is used. 
The  table below displays the number of  itera- 
tions required to  converge. T h e  symbol * * W B  

denotes the method failed to  converge. Ro- 
bustness is an issue for the  third and fourth 
schemes. Comparing the  experimental da ta  
with the computed soiutions we observe that  
using ,8 > 10 leads to  poor solution accuracy 
and 0- 1 is the most accurate. 

P= l  P=2 P=3 P=4 
P E : =  0.01 0.10 0.10 10.0 ’ 

1 697 655 2764 5481 1141 **** 
2 G K  **** **** . . .  1-  * * - a -  4- , 10 341 V V U  

100 524 594 **** **** **** **** 
1 693 653 2760 5483 693 750 

338 344 
534 543 

388 

**** **** 
**** **** 100 534 **** 10 338 361 
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-1 0 
0 

I I 

0 
0 
X 

t 

2 
P 
P3,&=l 
P3,&=I 

.o-2 
* 0-’ 

4 0 P,,&=l.O-’ * P,;&=I.o+’ 

100 200 300 400 500 
Iterations 

600 700 800 

Grid 65 x 33 x 33, Re = 1000, C F L  = 1000: 
Plot o f  normalized Z 2  norm residual p =  1 
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n - - 
0 
[L 

-2 - 

-3 - 

-4 - 

-5 - 

-7 

-a 

-9 

X 

t 

* 0 
P3,&=l 
P3,&=l 
P4,&=1 
P4,&=1 

.o-z 

.o-l 

.o-’ 

.0+’ 

-1 0 
2 52 4 nn 

IW 
i cn onn nrn 
I J U  L V V  L J W  

Iterations 

Grid 65 x 33 x 33, Re = 1000, C F L  = 1000: 
Plot of  normalized l2  norm residual ,6 = 10 
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-1 L 
0 

P 0 2  -2 
X P3,&=1 .o 

4 

f P3,&=I.0-I 4 

0 P4,&=1.0-’ * P,,&=l.O+’ 

100 200 300 
Iterations 

400 500 600 

Grid 65 x 33 x 33, Re = 1000, C F L  = 1000: 
Plot of  normalized Z2 norm residual p = 100 
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1 .I 

0.8 

0.6 

0.4 

0.2 

0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 'w' 
R 

Comparison o f  the solution a t  8 = 90° and 
p -  1. 
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2. 

# 
1 

1 .! 

1 

0.5 

I I I I I I I I I r 
p* 

, P4'&=1 .o-' 
1 0 Experimental 

R 

Comparison of t le solution a t  0 = 90' and 
/3= 10. 
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2 /  0 Experimental 

I 

I 

>" 

1 -  

I 

R 

Comparison of t h e  solution a t  6 = 90° and 
p =  100. 
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Conculsion 

Four variations of  the artificial compressibility 
method have been implemented and compared 
on a series o f  test problems. T h e  classical 
and generalized artificial compressibility meth- 
ods have almost identical convergence rates 
on each test case for every combination o f  the 
C F L  and p parameters. T h e  artificial dissipa- 
tion and differential preconditioning methods 
were not able to  converge for all parameters on 
certain problems showing a lack of  robustness 
for these methods. High values of  ,O lead to  

. poor accuracy for al l  the methods considered. 
For moderate values o f  1 < p < 10 the  classical 
and generalized versions appear t o  be the  most 
accurate. These two versions will be evaluated 
for more complicated engineering applications. 
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