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Abstract—Accurate channel models for predicting received
power under slow fading impairments are essential for planning
5G solutions due to the increased range of possible transmission
frequencies. The densification of base stations will pose an
increased number of complex coverage and capacity situations
where flexible and computational simple channel models are es-
sential. In this paper, we study state-of-the-art empirical channel
models, more specifically ITU-R M.2412 and 3GPP 38.901, and
their performance on experimental measurements at 2630 MHz
for LTE-A reference parameters such as RSRP. A crude ray-
tracing model is implemented for reference. The results show an
increase in the predictive performance of approximately 4 dB at
811 MHz compared to higher frequencies of 2630 MHz.

Index Terms—Radio propagation, Mobile communication, 5G
mobile communication, Channel models, Path loss

I. INTRODUCTION

The development and need for the fifth generation of mobile
networks, 5G, is justified by the rapid growth and demand for
wireless communication. Specifications have been put forward
to deal with the need for higher data rates, quality and overall
capacity. 5G, seek to take advantage of higher frequencies
to accommodate the increasing demands. Due to the low
penetration depth of higher frequencies, densification of base
stations is imminent. This is furthermore to ensure cost/energy-
efficiency while keeping the quality of service high. This is
known as Heterogeneous UltraDense Network (H-UDN) and
is expected to consider many different types of cells, such as
macro/micro/pico, deployed in a heterogeneous and layered
manner. The classic cellular architecture for coverage and
capacity will likely change from using Macro base stations
for both. Macro base stations will be expected to handle
mainly management data and wide-area coverage while the
majority of user data is to be handled by smaller cells.
Due to the short inter-site distance (and thus improved radio
conditions) between small cells higher frequencies such as
Millimeter Wave (mmWave) are considered. mmWave and
related frequencies have been subject to significant study in
recent years. The work by [1] investigates and compares
the recent channel models documented by 3GPP for higher
frequencies.

Small cells are also anticipated to heavily make use of
transmission frequencies in the range from 2-6 GHz due to
their favourable propagation properties. More so, offloading to
unlicensed bands in very dense urban scenarios is a foreseen

need. Specifically, frequencies at 3.5 GHz are already expected
released for use in LTE-A technologies and is furthermore
expected for use in New Radio (NR) [2].

Channel models are considered an important element in
cellular planning [3]. The accuracy of signal propagation
prediction models is important both early and late in the
planning process. An accurate signal propagation model needs
to account for many of the complex impairments induced by
the wireless channel and thus produce insight into the de-
ployment environment. Applying ray-tracing methods on-top
of constructed geographical models can offer realistic prop-
agation maps, however, this process is in general considered
time-consuming and thus expensive. Moreover, such methods
are computational complex. Instead, simplified models such
as stochastic/empirical models based on large measurement
studies or simplified ray-tracing models have proven to be
advantageous.

The purpose of this paper is to investigate and compare
the performance of recent channel models for commonly used
frequencies at 2 to 3 GHz. The focus is on LTE-A systems and
reference signals hereof. To the best of the author’s knowledge,
there exists a significant need for measurement studies in the
mentioned frequency range for outdoor-to-outdoor scenarios. It
is worth to mention the work done by the authors in [4], as they
document path loss models for a large range of frequencies (2
to 73 GHz). The measurement campaigns used in state-of-the-
art models such as 3GPP 38.901 and ITU-R M.2412 can be
found in [5]. It is observed that limited measurement studies
at 2 to 6 GHz have been conducted for outdoor-to-outdoor
Urban Macro or Micro-cell scenarios.

The paper is organised as follows. Channel modelling prin-
ciples are presented in Section II. A more detailed description
of the channel models can be found in related work by the
authors [6]. A brief overview of Ray-tracing and Stochas-
tic modelling techniques are given. Section III presents an
overview of the latest channel models and the supported prop-
agation scenarios. Additionally, the use of spatial correlation
principles is shown. A brief comparison of the most recent
channel models is given in Section III-C. Section IV details the
used experimental setup and the metrics captured. Comparative
results are shown in Section V for the discussed models and
a ray-tracing model. Section VI and Section VII provides a
discussion and conclusion respectively.
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II. WIRELESS CHANNEL MODELLING

Wireless channel models are commonly separated into two
classes of definition. Stochastic and Deterministic. Stochastic
channel models utilize statistics and probability captured from
measurement campaigns to provide a computational efficient
channel approximation. These models can also be seen as
empirical models that integrate stochastic principles for worst
and best case modelling. Deterministic channel models, on the
other hand, seek to compute the most dominant radio waves
and the resulting impairments induced by the propagation area.
This means computing such effects as scattering, diffraction
etc. In order to compute such effects and thus the resulting
channel conditions, the models require accurate and detailed
information of the propagation area.

Stochastic and deterministic models have since been trying
to fill this gap of accuracy and complexity for channel mod-
elling. A comprehensive study of wireless path loss prediction
methodologies can be found in [7].

A. Deterministic models

Ray-tracing is considered the principle behind deterministic
channel models. Such models require propagation specific data
such as buildings and their materials, type of vegetation etc.
and from this compute well-known propagation mechanics
such as reflection, diffraction and scattering. This means that
geographical data is required for utilizing ray-tracing in de-
ployment scenarios. Maintaining and obtaining such geograph-
ical data is considered complex and time-consuming, however,
when such data is obtained, modelling for new frequencies is
trivial. [8] For these reasons, ray-tracing is commonly used
for detailed propagation planning and link-level simulations,
and usually cases where deployments already are present.

B. Stochastic models

Stochastic models have proven useful due to their simplicity
while keeping satisfactory accuracy. These models are a tool
commonly used in the planning of greenfield deployments and
system evaluation since they rely on simple parameters.

These models are the product of large measurement studies
(and thus empirical) in different propagation scenarios, prob-
ably most famous is Okumura-Hata and COST231.

Stochastic models offer simple single-slope log-distance
expressions that are used to predict the mean path loss induced
at a given distance, d from the transmitter.

Formalizing shadowing and fast fading as stochastic pro-
cesses offer relatively simple models for path loss. The com-
bined path loss can then be modelled by the following [7]

PL = L(d) +Xσ + L(t) (1)

Where Xσ is shadowing and can be modelled as a log-
normal distribution, e.g. a Gaussian random variable on the
logarithmic scale with mean zero and some standard deviation
σF [9]. L(t) is fast fading and has been shown it can be
represented using distributions such as the Rayleigh with a
time dependency.

III. CHANNEL MODEL OVERVIEW

Many empirical path loss models have been developed in
order to deal with the use of a wide range of frequencies.
For instance, the original Okumura-Hata model was extended
with the Extended Okumura-Hata model to increase the range
of frequencies. The increasing range of used frequencies has
been a trend ever since and the development of LTE-A, and
recently NR/5G, which highlights the need for many different
frequencies for supplying coverage. [10]

Significant effort has been put into the study of channel
models over the recent years. The aim of these models is
to cover deployment scenarios for future solutions, however,
since the granularity required is partly unknown the channel
models aim to cover the majority of the possibilities. A few
recent studies and documents should be highlighted, these can
be listed as:

• METIS [11] (2015)
• 3GPP 38.901 [12] (2017)
• ITU-R M.2412 [13] (2017)

A large selection of models exists in literature, either as ex-
tensions to existing models e.g. calibration studies or original
works. A more detailed comparison and overview can be found
in [6]. The focus of further numerical comparisons in this
paper is on 3GPP 38.901 and ITU-R M.2412.

A. 3GPP 38.901

The Technical Report (TR) 38.901 from 3GPP contains a
detailed summary and overview of state of the art channel
models relevant for future 5G scenarios. A large selection of
the work done in the METIS project, ITU-R IMT-Advanced,
WINNER+, ITU-R M.2412 has been adopted in this docu-
ment. The TR contains some clear objectives to deal with
future channel modelling needs. These can be summarized
as 1) A large channel bandwidths, up to 10% of the centre
frequency but no larger than 2 GHz. 2) UT mobility, e.g.
mobility at the end of the link. 3) Large antenna arrays
and 4) Spatial consistency in Line-of-Sight (LOS) and Non-
Line-of-Sight (NLOS) states for large-scale and small-scale
parameters. All for a wide frequency range, from 0.5-100 GHz.

The main approach for providing path loss prediction by the
3GPP 3D model consists of selecting the propagation scenario
and assigning a LOS or NLOS state, as is the case with
IMT-Advanced. However, unlike IMT-Advanced, the model
recommends modelling spatial consistency when assigning
the LOS-state. So even though probability determines the
LOS-state, a spatial correlation between such states must be
considered. This can, however, result in hard transitions of the
channel response but can be circumvented by using an optional
soft LOS state.

An example of the mean path loss with added Shadow
Fading (SF) for the case of Urban Macro (UMa), that considers
spatial correlation can be seen in Fig. 1a. The LOS-state,
which has a large influence on the mean path loss and
magnitude of shadow fading is also modelled with spatial
correlation. This is seen in Fig. 1b.
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Fig. 1. Mean path loss with Gaussian distributed shadowing, σSF . Modeled
according to 3GPP 38.901/IMT-2020 with spatial correlation at 2.6 GHz.

B. ITU-R M. 2412

ITU-R M. 2412 is a technical document from ITU that
details guidelines for evaluation of radio interface technologies
of IMT-2020. It is thus a document on how to evaluate NR
solutions and is seen as an extension of IMT-Advanced.

Network layouts and configuration parameters for each
of the test environments are defined in the document. For
instance, Dense Urban-enhanced Mobile BroadBand (eMBB)
considers three different baseline configurations where param-
eters such as carrier frequency, BS antenna height, transmis-
sion power, number of antenna elements and more, are defined.
3D modelling of channel propagation is considered, thus both
azimuth and elevation at the transmitter and receiver antennas.
Spatial consistency is furthermore added to not only Large-
Scale Parameter (LSP), but also small-scale parameters, the
LOS-state, indoor/outdoor state and others.

C. Comparison

The path loss models used for the 3GPP 38.901 and ITU-
R M.2412 are similar and are based on the same studies,
however, small differences exist. ITU-R M.2412 offers two
channel models, A and B. Thus, for instance, the path loss
definition and shadow fading magnitude for UMa exists in
two versions, UMa A and UMa B. The latter is identical to
the definition offered by 3GPP. This is actually the case for the
entirety of model B defined in ITU-R M.2412. The majority
of the difference between the two channel models are based
on granularity. For instance, the path loss for UMa A consists
of two definitions based on frequency. One from 0.5 GHz to 6
GHz, and one from 6 GHz to 100 GHz. While UMa B offers
a single path loss model for the range of 0.5 GHz to 100 GHz.

It is of interest to investigate how the empirical path
loss models, UMa A and UMa B perform and compare to
experimental measurements. Additionally, it is of interest to
compare with deterministic models such as ray-tracing that
supposedly offer an improved and geographical determination
of the LOS-state.

IV. EXPERIMENTAL SETUP

The campus area of the Technical University of Denmark
was selected for conducting measurements as it consists of
suburban and urban characteristics such as large vegetation

Fig. 2. Map of the Technical University of Denmark campus. Location of
base stations and the route used for measurements is highlighted.

and condensed collections of 3 story tall buildings. Map of
the area can be observed in Fig. 2.

Radio measurements were obtained using a Rohde &
Schwarz TSMW. A GPS module is integrated allowing for
synchronization between radio measurements and GPS coor-
dinates. The radio measurements were focused on downlink
LTE-A frequencies, more specifically 811 Mhz and 2630 MHz
respectively. 811 MHz was selected as a baseline for further
comparisons. Three base stations transmitting from the same
position, but with different configurations were used. PCI 64
and 65 are both operating at band 20 but considered two
sectors of a cell site, while PCI 302 are operating at 2630
MHz and considered a single sector. 20 MHz of bandwidth is
considered.

The ray-tracing model implemented is considered crude in
terms of detail. LIDAR data is used to extract average building
heights and standard building materials are assumed for all
buildings. Thus a 3D model is constructed of the map seen
in Fig. 2. Additionally, detailed and updated vegetation/clutter
data is not considered in the implemented ray-tracing model.
This means, for instance, the vegetation is added as larger
dense areas, and not as individual trees and bushes. More
specifically, the ray-tracing model was constructed using the
following steps:

1) Obtained LIDAR scans of University Campus with a
resolution of 5 m. [14]

2) Obtained footprints of buildings in the study area from



Transmitter location

Measurement route

Vegetation areas

Fig. 3. Imported positions of drive-test measurements into a 3D ray-tracing
model. Buildings are added using LIDAR scans, and vegetation is added using
approximated geographical knowledge.

Reflections 6

Diffractions 1

Area Size 14 km2

Number of buildings 3917

Number of faces 16563

Building material Concrete/Brick

TABLE I
PROPERTIES OF THE RAY-TRACING MODEL IMPLEMENTED IN REMCOM.

OpenStreetMap [15]
3) Open-source software QGIS was used to extract vector

shapes of buildings and their respective height.
4) Vector shapes and terrain data was added to the 3D

model in the ray-tracing software. In this case, the
Remcom ray-tracing solution was used. [16]

5) Approximations of materials and their permittivity were
defined along with transmitter and receiver configura-
tions.

The properties of the model are outlined in Table I. The
permittivity of the building materials (Concrete/Brick) is 4.4 to
5.3 F/m. A full 3D ray-tracing approach is used, accelerated by
a GPU, thus the number of faces define the overall complexity.

LTE reference signals were measured along with wideband
power and Signal-to-Interference-plus-Noise Ratio (SINR) re-
sulting in the following metrics for measurements: Reference
Signal Received Power (RSRP), Reference Signal Received
Quality (RSRQ), SINR and Received Signal Strength Indica-
tor (RSSI). The resulting dataset consists of ∼ 60000 data
points with the above listed radio metrics. The route used is
highlighted in Fig. 2.

V. RESULTS

LTE parameters such as RSRP was used to evaluate the
site-specific received power. The measurements for 811 MHz
can be observed in Fig. 4 while the measurements for 2630
MHz can be observed in Fig. 5. Additionally, shown in
both figures, is the predicted received power provided by the
UMa A and UMa B models given NLOS. Furthermore, the

��
�

��
	

�&*+!("$��'�

/���

/���

/��

/��

/�

/��

/��

�
��

��
�#
�'

�

������.

�$!*,)$'$(+*
���������
�����! �
	����	��������!����! ��
��! ����! �����
�!-�+)!"&(%��μ�

Fig. 4. RSRP at 811 MHz for measurements and the predictive RSRP
provided by the channel models.
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Fig. 5. RSRP at 2630 MHz for measurements and the predictive RSRP
provided by the channel models.

predicted received power given a LOS-state is shown providing
a reference of the best-case. The ray-tracing results are also
shown, however, binned for the corresponding distance. Each
bin then considers the mean and the standard deviation. A ray-
tracing calculation is done for every measurement point and
synchronized based on the recorded GPS position.

The model accuracy is shown in Fig. 6 in terms of Root-
Mean-Squared-Error (RMSE). This is roughly equivalent to a
fading margin. The best performing model thus has the lowest
RMSE. The accuracy for both 811 and 2630 MHz is shown
for all 3 models, thus UMa A, UMa B and the ray-tracing. It
can be observed that the best performing model at 811 MHz
is the UMa A model, however with a similar magnitude of
error and within ∼ 1.5 dB of each other. At 2630 MHz the
error is similar for all three models, however, a slightly worse
performing model can be found in UMa B.

Comparing 811 MHz to 2630 MHz, an approximately 4 dB
difference is observed between all three models. This can be
seen in Fig. 6a and Fig. 6b. For instance, the error of UMa A
at 811 MHz is approximately 9.5 dB while the error at 2630
MHz is approximately 13.5 dB.
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Fig. 6. Model performance at 811 MHz and 2630 MHz for empirical-based
models and a crude ray-tracing model.

VI. DISCUSSION

The increased error in model performance at 2630 MHz,
compared to 811 MHz, for both the empirical-based models
and the implemented ray-tracing model illustrates the impact
of LOS and shadowing effects at higher frequencies. This is
further illustrated by the significant clusters observed at 2630
MHz. The crude ray-tracing model offers similar error perfor-
mance, but with a significant increase in data complexity and
processing power. The ray-tracing model was expected to out-
perform the empirical models, even considering a substantial
lack of detail in the model. However, as also documented by
[8], ray-tracing requires much detail for accurate predictions
of received power.

It is observed that the LOS-state of the models influence
heavily the path loss at both 811 MHz and 2630 MHz. It can
be seen that any way to determine the LOS-state at any given
measurement would significantly improve the predicted error
for both empirical models. This can be highlighted at 2630
MHz where a cluster is observed at a higher received power,
most likely because the transmission is LOS or partially LOS.
Using a stochastic approach for the LOS state and the LSP, a
probability distribution of the received power can be obtained.
This can assist in determining worst-case coverage and the
resulting capacity, which is a useful statistic for greenfield
deployment [3].

Determining the LOS-state of the propagation environment
is difficult and requires a detailed model of the propagation
scenario. Illustrated by the crude ray-tracing model, this is
not a trivial task and requires significant knowledge and
data of the geographical region. The proposed use of ray-
tracing principles for LOS-state determination in combination
with stochastic modelling principles, i.e. the hybrid model,
is thus not a simple model. Novel and simple solutions
for determining the LOS-state are of great interest for use
with such empirical models. The use of deep learning for
learning geographical information from simple data such as
satellite images have been demonstrated in [17] and documents
improved predictive performance for frequencies at 2.6 GHz.

VII. CONCLUSION

It is shown that empirical-based models of ITU-R M.2412,
offer satisfactory performance at 811 MHz in terms of mean
path loss. An increase in the predictive error of ∼ 4 dB at
2630 MHz is observed for both empirical models and the
ray-tracing implementation compared to that of 811 MHz. It
can be observed that in any case the empirical-based models,
UMa A and UMa B offer performance similar to that of
a simple ray-tracing model. The results illustrate the need
and requirement for using highly accurate and deterministic
geographical information at higher frequencies in order to
improve prediction accuracy.
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