Available online at www.scholarsresearchlibrary.com

Scholars Research Library

Annals of Biological Research, 2012, 3 (10):4636-4643 (http://scholarsresearchlibrary.com/archive.html)

Comparison of Natural Regeneration Density and Diversity in Beech-Hornbeem Type in Relation to Physiographic Conditions

¹Meysam Mojarabi, ¹Abbasali Nowbakht, ²Seyed Nasseredin Emadi, ²Mehran Moafi, ²Korosh Sharifi

¹Department of Forestry, Faculty of Natural Resource, University of Mazandarn, Iran. ²Department of Forestry, Faculty of Natural Resource, University of Olom and Tahghighat Tehran, Iran

ABSTRACT

Surveying the biodiversity and maintaining it is of the most important factors of achieving permanent development. Therefore surveying the influence of physiographic conditions on density and diversity of regeneration of woody species is very important. For this purpose, 160 sample plots with the Systematic-Random method, in 400 m² were surveyed in Gardeshi, Chachkam and Khalkheil districts of forest management plans of Mazandaran Wood and Paper Industries. In each sample plot the number of natural regeneration was 12.5^{cm} DBH and smaller than that was counted according to the distinction of the species. In this sample plots the slop percentage, aspect and altitude were also recorded. Heterogeneity indices consist of simpson, reciprocal of simpson, shannon and evenness indices including camargo, simpson and smith-wilson were used. After studying the data, 12 woody species were distinguished. Analysis of variance of the regeneration density in slope, aspect and altitude categories showed significant differences at the level of 99% in different categories and the least was 0-20% slope, south-east aspect and 1100-1200 altitude. Also Analysis of variance of biodiversity indices between altitude categories, showed significant differences in slope and aspect categories.

Keyword: Regeneration, Diversity, Slope, Aspect, Altitude

INTRODUCTION

With ever increasing population of the world and science and technology advance, the pressure of human' destruction on the nature has increased and the face of the nature is loosing its natural and initial form day after the day [10]. The main purpose in natural resources management is biodiversity maintenance in natural ecosystems [29]. Assessing biodiversity and the spatial structures of forest ecosystems are important for forestry and nature conservation [31]. Biodiversity maintenance is a universal concern which needs the implementation of stable management methods in local measure domain. Forest ecosystem are not exception in this respect and in IUFRO conference, it is mentioned to the subject of biodiversity and stable management of the forest [22]. In fact, maintaining the basic and initial structure of the forest is an important feature in forest ecosystem management. So that structural features of natural heaps (groups) and biodiversity maintenance at these heaps, will be used in

Scholars Research Library

determining ecological shelter (home) of the species, testing heterogeny and temporal dynamics of vegetations, measuring life renewal models and dynamics of the holes, expressing the diversity of microclimate and predicting wood production [32]. From the most important factors which influence diversity, we can mention to physiographical ones [18]. Hyrcanian forest ecosystem is considered to be one of the last remnants of natural deciduous forests in the world. In comparison to European broad-leaved forests, the hyrcanian forests seem to have remained from the Tertiary and to be relic ecosystem [12]. has properly showed that interior changes of the heap are related to topography, succession and the intensity of human interference. The forest of Iran, especially industrial forest of the northern part which their wood productivity role is significant among other forest is influenced by harmful activities of human. Here, topography has the most direct and indirect effect on plant cover [33]. Studying the effect of heap and topography parameters on species diversity of tree in a natural mixed forest in Turkey showed that there is no significant relation between species diversity and heap, slope and altitude parameters, but for the aspect there was a significant correlation [27]. In comparison, between regeneration density and diversity of wood species in relation with physiographical situations of south-side of Caspian Sea, concluded that the most regeneration density was seen in 80-100% slope and the least one was seen in 20-40% slope. The analysis of variances related to altitude and aspect categories didn't show significant difference in generation density, used diversity indices and different physiological categories [20]. In study to analyze biodiversity of woody species in oak bushes in Strait of Gibraltar and concluded that in the south side, richness of species and the number of local species are loss, and in the north side of the strait, dispersion of the species are more. Finally, they expressed incorrect management in the related zone and intensive pressure from grazing the ranch as the reason of difference in biodiversity [26]. In the analysis of natural generation of oak species in Canada, concluded that opening of the heap and shining light to the surface of the forest causes increase of renewal of the species [23].

The purpose of this research is to compare the natural regeneration density and diversity in relation to physiological condition of Beech-Hornbeem type. This plant population has involved a significant surface of the northern forest and study of biodiversity and evaluation of its generation situation plays an important role in better management of these heaps.

MATERIALS AND METHODS

ANALYSIS METHOD

Studied Zone:

This research was done in Gardeshi, Chachkam and Khalkhil districts of forest management located in south part of Sary. The forest of this area is located between 52° 50 to 53° 37 of east longitude and 36° 00 to 36° 27 of north longitude. According to Amberjhe climate viewer, Climatology studies showed that the climate of this zone is located in cold and wet part. The most amount of raining is 1094 mm and the least is 439 mm. Generally, the soil of the studied zone has the root of limy and Marny and in some parts, it is sandy lime and the soil has a tissue which is a little heavy.

These forests have fageto-carpinetum forest succession and other species such as Maple, Cappadocian Maple, Siberian Elm, Wych Elm, Lim-Tree, Caucasian Walnut, Oak, Alder, wild cherry and Date-Plum [1,2].

Study Method

This study was done in a surface of about 500 hectares and in 700-1200 altitude of south forest of Sary. Sampling was done through systematic-random method with a network of 200*150 meter and in general, 160 sample plots with 400 Sq. meters in area were implemented on the ground [4,19]. In each sample plot, the number of natural regeneration was 12.5 cm DBH and smaller than that was measured according to the distinction of the species. In theses sample plots, the slope percentage was recorded with the help of Sonto slope meter, the altitude was recorded with the use of Altimeter and different aspects were recorded, too. In relation to the current situations, the zone slope was divided into three classes (0-20%, 20-40%, 40-60%) and altitude categories were divided into five classes (700-800, 800-900, 900-1000, 1000-1100, and 1100-1200 meters). After gathering considered factors in the surface of sample plot, all data were recorded in SPSS 16 statistical software.

Data Analysis

To analyze regeneration density data in different categories of slope, aspect and altitude, we used one-side analysis of variance by using F-test and Tooki's multiple measurements. The number of regeneration of each species at this

4637

Scholars Research Library

research was used as a variable in the formula of heterogeny and evenness. For this purpose, heterogeny indices such as simpson. Reciprocal of Simpson and Shannon-winner and evenness indices including Camargo, Simpson and Smith-Wilson (table 1) were calculated from official software of Ecological Methodology ver. 6 and the amount obtained from these indices were analyzed in SPSS 16 software with F-test.

Equations	Parameters	Index name	Index
$1 - D = 1 - \sum (p_i)^2$	1-D = Simpson index of diversity p_i = Proportion of the species <i>i</i> in community	Simpson	
$\frac{1}{D} = \frac{1}{\sum p_i^2}$	$\frac{1}{D} = \text{Simpson}$ reciprocal diversity index $p_i = \text{Proportion of}$ species <i>i</i> in the community	Simpson reciprocal diversity index Hill) (index	Unevenness
$H' = \sum_{i=1}^{s} (P_i)(Log_2^{P_i})$	P_i = Proportion of species <i>i</i> To total sample S = Number of pecies	Shannon- wiener	
$E = 10 - \left[\sum_{i=1}^{s} \sum_{j=i+1}^{s} \left[\left P_i - Pj \right / S \right] \right]$	$E = \text{Camargo index of} \\ evenness \\ P_i = \text{Proportion of} \\ \text{species in } i \text{ total sample} \\ Pj = \text{Proportion of} \\ \text{species } j \text{ in total sample} \\ S = \text{number of species} \\ \text{in total sample} \\ \end{cases}$	Camargo	
$(E1/D) = \frac{1/D}{S}$	(E 1 / D) = Simpson evenness criteria D = Simpson index of diversity S = Number of species in sample	Simpson	Evenness
$E_{Var} = 1 - \left[\frac{2}{\pi}\right] \left[\arctan\left\{\frac{\sum_{i=1}^{s} \left[Log\sum_{e}^{(ni)} - \sum_{j=1}^{s} Log_{e}^{(nj)/S}\right]^{2}\right\}}{S}\right]$	E_{Var} = Smith and Wilson index ni = Number of individuals <i>i</i> in sample nj = Number of individuals <i>j</i> in sample	Smith and Wilson	

Table 1- Equations of evenness and unevenness index (Krebz, 1998)

RESULTS

The diversity of regeneration related to tree species was analyzed in different categories such as slope, aspect and altitude. Results showed new life for 12 wood species (table 10). For determining significance level, variance analysis was considered in different physiologic categories in relation to regeneration density. Variance analysis for different slope categories showed significant difference at the level of 99% among different categories (table 2 & 3). So that the most regenerating density was seen in 20-40% slope category and the least one was seen in 0-20% slope category (Fig. 1).

Scholars Research Library

Table 2- Analysis of variance of regeneration density in different slope gradients, slope directions and elevation at sea level

Variable	Degree of freedom	F value	Significant
Slope gradient	2	39.644	0.001**
Slope direction	6	5.266	0.001**
Elevation at sea level	4	14.629	0.001**

Slope classes	Regeneration density	Unevenness indices			Evenness indices		
Slope classes	Regelieration density	Simpson	Reciprocal Simpson	Shannon-wiener	Camargo	Smith and Wilson	Simpson
0-20	11.7±0.568	0.282±0.043	1.212±0.16	0.625±0.098	0.472±0.061	0.449±0.069	0.493±0.065 ^b
20-40	135.647±25.844	0.377±0.026	1.624 ± 0.108	0.794±0.057	0.565±0.033	0.563±0.037	0.593±0.036 ^a
40-60	111.862+16.859	0.326+0.056	1.3+0.213	0.724 ± 0.124	0.442 ± 0.072	0.438 ± 0.077	0.423+0.075 ^a

Means with different letter shows significant difference at probability level of 1%, ns: is not significant.

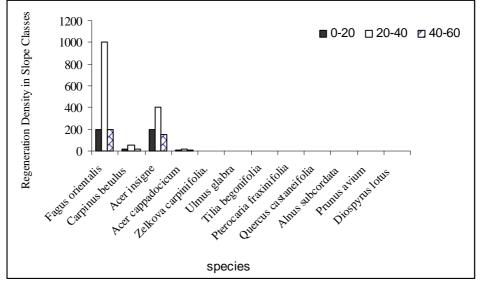


Fig. 1- Regenerating density of wood species in different slope categories.

Variance analysis for different categories of altitude showed significant difference at the level of 99% between different categories (table 2 & 4). So that the most regenerating density was seen in 900-1000 m altitude and the least one was seen at 1100-1200 m altitude.

Table 4 - The mean \pm standard error of regeneration density and diversity in elevation classes

Elevation	Regeneration		Unevenness indices			Evenness indices	
classes	density	Simpson	Reciprocal Simpson	Shannon- wiener	Camargo	Smith and Wilson	Simpson
700-800	116.741±15.868 ^a	0.415±0.048 ^a	1.735±0.188 ^a	0.945±0.112 ^a	0.595±0.053 ^a	0.602 ± 0.062^{a}	0.625±0.058 ^a
800-900	134.566±17.372 ^a	0.385±0.036 ^a	1.633±0.136 ^a	0.866 ± 0.082^{a}	0/583±0.046 ^a	0.574±0.053 ^a	0.611±0.049 ^a
900-1000	159.273±27.321 ^a	0.351±0.04 ^a	1.486 ± 0.16^{a}	0.814 ± 0.094^{a}	0.517±0.051 ^a	0.494 ± 0.054^{a}	0.544 ± 0.054^{a}
1000-1100	129±14.561 ^a	0.291±0.064 ^a	1.385±0.268 ^a	0.693±0.157 ^a	0.505 ± 0.081^{a}	0.485±0.091 ^a	0.525 ± 0.087^{a}
1100-1200	64.561±7.622	0 ^b	0^{b}	0 ^b	0 ^b	0b	0 ^b

Means with different letter shows significant difference at probability level of 1%, ns: is not significant.

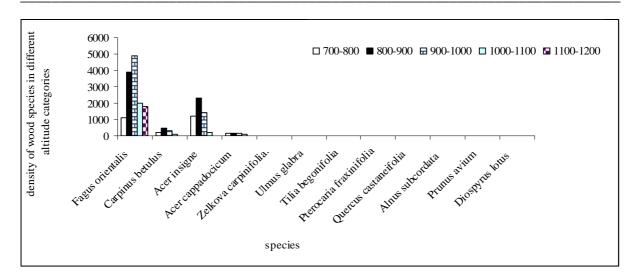


Fig. 2: Regenerating density of wood species in different altitude categories.

Variance analysis of regenerating density in different aspects showed significant difference in 99% level (table 2 & 5). So that the most regenerating density was seen in northern west aspect and the least one was seen at southern east aspect.

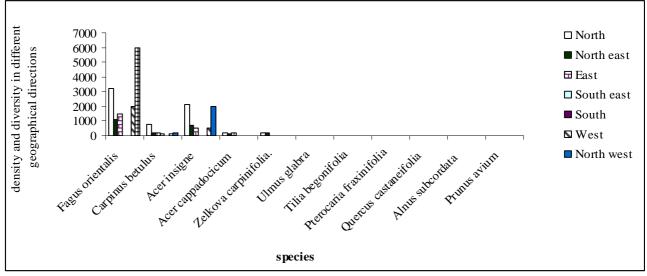


Fig. 3: Regenerating density for wood species in different aspects.

Slope direction	Paganaration dansity		Unevenness indices			Evenness indices	
slope direction	Regeneration density	Simpson	Reciprocal Simpson	Shannon-wiener	Camargo	Smith and Wilson	Simpson
North	152.174±14.049ab	0.398 ± 0.038	1.714±0.149	0.874 ± 0.086	0.568 ± 0.044	0.562±0.051	0.593±0.048
North east	101.6±15.629ab	0.338±0.049	1.384±0.183	0.728±0.107	0.542 ± 0.068	0.545±0.076	0.572±0.073
East	84.774±11.628ab	0.321±0.053	1.383±0.22	0.741±0.124	0.466 ± 0.067	0.471±0.073	0.489 ± 0.071
South east	20±6.928b	0.226±0.226	0.821±0.821	0.469 ± 0.469	0.25±0.25	0.261±0.261	0.274±0.274
South	44±24.331ab	0.289±0.161	1.141±0.594	0.561±0.295	0.561±0.295	0.557±0.294	0.571±0.297
West	158±26.753ab	0.29 ± 0.068	1.201±0.256	0.652±0.147	0.425±0.086	0.429±0.093	0.456±0.094
North west	269.454±50.456a	0.328 ± 0.043	1.39±0.164	0.726±0.095	0.525 ± 0.062	0.497±0.07	0.548 ± 0.065

Means with different letter shows significant difference at probability level of 1%, ns: is not significant.

Scholars Research Library

4640

Diversity in aspects:

Also, to analyze wood species diversity, we used different heterogeny and evenness indices. The amounts of these indices were examined in different categories of slope, aspect and altitude.

The implemented variance analysis among these indices and different physiographic categories showed that heterogeny indices (Simpson, reciprocal of Simpson and Shannon -Wiener) and evenness indices (Kamargo, Smith-Wilson and Simpson) have no significant difference at slope and different aspect categories (table 3-5-7-8).

Variables	Classes		Unevenness indic	es		Evenness indices	
variables	Classes	Simpson	Reciprocal Simpson	Shannon-wiener	Camargo	Smith and Wilson	Simpson
	0-20	0.281	1.211	0.625	0.472	0.449	0.492
Slope gradient	20-40	0.377	1.624	0.793	0.564	0.563	0.593
	40-60	0.325	1.300	0.723	0.442	0.437	0.423
	North	0.397	1.714	0.874	0.567	0.561	0.593
	North east	0.337	1.380	0.728	0.542	0.545	0.571
	East	0.320	1.380	0.74	0.46	0.471	0.482
Slope direction	South east	0.228	0.820	0.468	0.25	0.260	0.273
	South	0.432	1.712	0.842	0.841	0.836	0.856
	West	0.289	1.20	0.652	0.425	0.428	0.456
	North west	0.327	1.389	0.725	0.525	0.497	0.548
	700-800	0.415	1.734	0.945	0.594	0.601	0.624
	800-900	0.384	1.632	0.866	0.582	0.573	0.611
Elevation at sea level	900-1000	0.351	1.486	0.814	0.505	0.485	0.525
	1000-1100	0.291	1.385	0.692	0.516	0.494	0.543
	1100-1200	0	0	0	0	0	0

Table 6- The value of evenness and unevenness indices in different elevation classes, slope classes and geographical directions

Table 7- Analysis of variance for the evenness and unevenness indices of regeneration in slope classes

Index	df	F value	Significant		
Simpson	2	1.750	0.177 ^{ns}		
Reciprocal Simpson	2	2.626	0.088 ^{ns}		
Shannon-wiener	2	1.100	0.335 ^{ns}		
Camargo	2	1.852	0.160 ^{ns}		
Smith and Wilson	2	1.845	0.162 ^{ns}		
Simpson	2	2.719	0.069 ^{ns}		
ns: is not significant.					

Table 8- Analysis of variance for the evenness and unevenness indices of regeneration in different geographical directions

Index	df	F value	Significant		
Simpson	6	0.608	0.723 ^{ns}		
Reciprocal Simpson	6	0.937	0.470 ^{ns}		
Shannon-wiener	6	0.580	0.746 ^{ns}		
Camargo	6	0.806	0.566 ^{ns}		
Smith and Wilson	6	0.577	0.748 ^{ns}		
Simpson	6	0.699	0.651 ^{ns}		
ns: is not significant.					

Table 9- Analysis of variance for the evenness and unevenness indices of regeneration in different elevation at sea level

Index	df	F value	Significant
Simpson	4	6.387	0.000^{**}
Reciprocal Simpson	4	7.221	0.000^{**}
Shannon-wiener	4	6.032	0.000^{**}
Camargo	4	8.804	0.000^{**}
Smith and Wilson	4	6.932	0.000^{**}
Simpson	4	8.532	0.000^{**}

** significant at probability level of 1%.

Scholars Research Library

4641

Meysam Mojarabi *et al*

But implemented variance analysis among these indices and altitude categories shows significant difference in 99% assurance level (table 9). So that the amount of these indices with altitudes about 1100-1200m are different from other altitude classes.

no	Scientific name	Family
1	Fagus orientalis Lipsky	Fagaceae
2	Carpinus betulus L.	Betulaceae
3	Alnus subcordata C. A. M.	Betulaceae
4	Acer insigne B.	Aceraceae
5	Acer cappadocicum GLED.	Aceraceae
6	Tilia begonifolia STEV.	Tiliaceae
7	Zelkova carpinifolia Dipp.	Ulmaceae
8	Ulmus glabra H.	Ulmaceae
9	Quercus castaneifolia C. A. M.	Fagaceae
10	Prunus avium L.	Rosaceae
11	Pterocaria fraxinifolia (L.)	Juglandaceae
12	Diospyrus lotus L.	Ebenaceae

Table 10- List of natural regeneration in study area

DISCUSSION

The forest of northern part of Iran are one of the most precious and unique forest in the world. Diversity in physiographic structures of these woodlands and their expansion indifferent conditions have caused to creation of a diverse structure. So that, the regenerating density and diversity of plant species of these woodlands is so influenced by environmental factors. Hence, physiographic factors are counted as effective factors on dominance and diversity of trees, renewal of the life and continuity of the product in forest ecosystems [28]. At this research, factors such as slope, altitude and different aspects has significant effect on regeneration density among different categories. At this research, because fageto was the dominant species and preferred sunshade, it's most regenerating amount was seen in north-west part which had less sunlight. Altitude changes in the above said zone showed that if the altitude increases (more than 1000 meters), the most amount of regenerating is for fageto. So that, it created reduction in density, richness and evenness. The reason of this event is high competetive power of fagete specieswith the other species in high altitudes of these woodlands. These results are consistent with the findings of some researchers [6,7,13,15,30].

Some studies showed that with increase in altitude, the plant diversity is reduced but their frequency is increased [3,8,11,14,24,25]. So that, the most diversity and richness was seen at 800-1000 m of altitude, and also showed that the evenness amount in high altitudes is more, because the harsh climate will cause to dominance of some species[5,17]. In low altitudes, temperature increase will cause the increase of diversity and richness[9] These matters are consistent with the results of this research.

Like many other forest zones in northern part of Iran, the studied zone of this research was destroyed before by villagers who were living at the forest-side, and the presence of livestock in these fields had caused many tensions. Because the fields which has a slope less than 20% were easier to access for human and livestock trafficking, and because south and southeast aspects were more exposed to sunlight and had more provender, were more exposed to change and destruction. So that, soil grounding and foraging at these fields has made an inappropriate ground for natural regenerating. Some studies which were related to these findings showed that the most regenerating density is at slope class of 20-40% and in slopes less than 20%, because of easy access to forest and presence of wandering livestock, and easier traffic in low slopes, natural regenerating density and diversity is increased a lot. Also, because of cutting the trees and bringing them out of the forest and aggression of villagers who lived at forest-side, illegal and unmethodical explanation in theses zones had an additional impact on reduction of seeding amount [8,16,17,18,20].

In relation with this fact that Beech-Hornbeem forest type is one of the most important successions in northern forest of Iran and fageto species is the most industrial species of these woodlands. To achieve the goals of silvics which is near to the nature, we should do something to reduce h tension which is made at these fields. We can do this with exact protects of these woodlands and bring livestock out of them. Also, to make faster the process of forest

regeneration, executing exact notation according to silvics criteria which is near to the nature and enriching the field through planting some trees. Planting seeds and making scratch on the surface (of the soil) has a high importance.

REFRENCES

[1] Anonymous, Khalkheil Forest Management Planning, Organization of Forest and Range and Watershed Management, Islamic Republic of Iran, **1998**, 276p [In Persian].

[2] Anonymous, Gardeshi Forest Management Planning, Organization of Forest and Range and Watershed Management, Islamic Republic of Iran, **2001**, 320p [In Persian].

[3] S Aiba and K Kitayama, Plant Ecology, 1999, 140: 139-157.

[4] BV Barnes, Forest Ecology, John Wiley & Sons INC, **1998**, 773p.

[5] DG Brockway, Forest Ecology and Management, 1998, 109: 323-341.

[6] M Coroi, MS Skeffington, P Giller, C Smith, M Gormally and GO Donovan, *Forest Ecology and Management*, **2004**, 202: 39-57.

[7] JA Crytnes and OR Vetaas, The American Naturalist, 2002, 159: 294-304.

[8] M Fallah-chai and M Marvi-Mohajer, Iranian Journal of Natural Resources, 2005, 58: 523-532 (In Persian).

[9] MA Fisher and ZP Fuel, Forest Ecology and Management, 2004, 200:293-311.

[10] A Ghomi-Oili, SM Hosseini, A Mataji and SG Jalali, *Iraian Journal of Environmental Ecology*, **2007**, 43:101-106 (In Persian).

[11] A Hadi, M.Sc. Thesis of Forestry, Gilan University, 2001, 77p (In Persian).

[12] N Haghdoost, M Akbarinia, SM Hosseini and Y Kooch, Annals of Biological Research, 2011, 2(5): 385-399.

- [13] AK Hegazy, MA El-Demedesh and HA Hosni, Journal of Arid Environment, 1998, 3: 3-13.
- [14] J Homeier, SW Breckle, S Gunter, RT Rollenbeck and C Leuschner, *Biotropica*, 2010, 42(2): 140-148.

[15] SG Jalali, M.Sc. Thesis of Forestry, Tehran University, 1980, 89p (In Persian).

[16] SG Jalali and SM Hosseini, Iranian Journal of DANESHVAR, 2000, 8(31): 69-74 (In Persian).

[17] S Joseph, CS Reddy, C Pattanaik and S Sudhakar, Biological Lett, 2008, 45: 29-41.

[18] S Kibet, Forest Ecology and Management, 2011, 261(6): 949-957.

[19] Y Kooch, M.Sc. Thesis of Forestry, Mazandaran University, 2007, 130p (In Persian).

[20] Y Kooch, H Jalilvand, M Akbarinia and A Fallah, First Student Congress and the World's Modern Biology,

Gorgan University of Agricultural Sciences and Natural Resources, 2008, 13p (In Persian).

[21] CJ Krebs, 2nd. Edition, Manlo Park: Addison-Wesley, **1998**, 620 p.

[22] W Klenner, A Arsenault, EG Brockerhoff and A Vyse, Forest Ecology and Management, 2009, 258(1): s1-s4.

[23] DR Larsen, Canadian journal of forest research, 1997, 27:869-875.

[24] EGJr Leight, Tropical Forest Ecology, Oxford University Press, New York, 1999.

[25] JWF Silk, N Raes, S Aiba, FQ Brearley, CH Cannon, E Meijaard, H Nagamasu, R Nilus, G Paoli, AD Poulsen,

D Sheil, E Suzuki, JLCH Van valkenburg, CO Webb, P Wilkie and S Wulffraat, Divers Distrib, 2009, 15: 523-532.

[26] T Maranon, R Ajbilou, F Ojeda and J Arroya, Forest Ecology and Management, 1999, 115: 147-156.

[27] R Ozcelik, A Ugur Gul, J Merganic and K Merganicova, *Journal of Environmental Biology*, **2008**, 29(3): 291-298.

[28] HM Poulos and AE Camp, *Ecology*, **2010**, 91: 1140-1151.

[29] M Sadeghnezhad, M.Sc. Thesis of Range, Gorgan University of Agricultural Sciences and Natural Resources, **1998**, 55p [In Persian].

[30] M Sternberg and M Shoshang, *Ecological Research*, 2001, 16: 335-345.

[31] MB Uddin, MJ Steinbauer and C Beierkuhnlein, *Diversity*, **2011**, 3: 453-465.

[32] A Yongblooda, T Maxb and K Coe, Forest Ecology and management, 2004, 195:238-256.

[33] MA Zare Zardini, Journal of Forest and Rangeland, 20002, 48: 64-67 [In Persian].