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ABSTRACT 

Computing the solutions to real life problems has become the need of the hour and has become a matter of utmost 

importance. In earlier times, it took days/months to compute and use algorithms to make things work, but as time passed 

on, computers became faster and more efficient, and these computations took less time. Now a days, new computation 

techniques are being invented. One such technique which will be discussed in this paper is Distributed Computation 

using Hadoop. Instead of using a single computer to solve problems, multiple virtual machines will be set up and will 

be used to prove quantitatively the time taken to execute one job using standard computation is much more than the 

time taken to execute the same job using Distributed Computation using Hadoop. This will help in faster computation 

and less time to perform tasks, as compared to standard methods which do not use cloud technology. 

Keywords: Algorithms, Computation techniques, Distributed Computing, Hadoop, Instances, Virtual 

Computers. 

1. INTRODUCTION 

Abbreviations: 

HDFS – Hadoop Distributed File System 

YARN – Yet Another Resource Negotiator 

LTS – Long Term Support 

EC2 – Elastic Compute Cloud 

SSH – Secure Shell 

SCP – Secure Copy Protocol 

The motivation for this project was to explore the 

field of Big data Analytics and to have hands-on 

experience to understand the importance of Big Data 

Analytics (i.e., when there is enormous amount of data). 

Big Data is a field that allows to methodically analyze 

and extract information from datasets which are deemed 

to be too large in volume to be processed by conventional 

data management tools. The motivation is to understand 

how this field of Big Data Analytics (in this case, using 

Hadoop) offers an advantage over traditional data 

management tools in terms of productivity, performance, 

and cost-effectiveness [2]. The true importance of Big 

Data Analytics will be realized once there can be 

comparison of traditional and distributed systems side-

by-side in terms of the way in which they process data. 

The sections below discuss the components that were 

involved in the development and working of the proposed 

method. 

1.1.  Hadoop 

Hadoop Ecosystem is a framework of different tools 

that provide a substantial performance advantage when 

carrying out analysis on enormous datasets. Hadoop 

achieves this performance advantage by performing the 

processes pertaining to data analysis (Big Data analysis) 

through distributed computing. Hence, Hadoop is 

essentially a powerful and highly scalable framework 

which enables carrying out complex operations on huge 

sets of data (i.e. Big Data). 

The Hadoop ecosystem consists of several distinct 

components. These are: Hadoop common, Hadoop 

YARN (Yet Another Resource Negotiator), HDFS 

(Hadoop Distributed File System) and Hadoop 

MapReduce [1]. Hadoop common ensures that all the 

required Java libraries, packages, and scripts along with 

other necessary files are available to run Hadoop. HDFS 

gives high throughput read and write access to data, and 

Hadoop MapReduce provides the structure for parallel 

processing of large datasets on different interconnected 

machines/nodes. 
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1.2.  Data Storage in Hadoop 

The data storage layer in Hadoop contains the 

Hadoop Distributed File System (HDFS), which is a file 

system based on Java which is very useful for storing 

large volumes of data on the networked machines, thus 

provided very high read/write throughput throughout the 

cluster by achieving high throughput from each node. 

Data pushed to HDFS is automatically duplicated and 

split into multiple chunks to provide high fault tolerance 

and availability. HDFS mainly consists of 2 main 

components: 

NameNode: This is the master node which maintains 

the entire file system, and is also in charge of resource 

management, job scheduling, and verifying whether the 

entire job has been completed or not. 

DataNodes: Also called slave nodes, they are the 

nodes which store the actual data and provide the results 

for any queries made by any client systems. They 

coordinate all file system operations between themselves. 

1.3.  Data Processing in Hadoop 

Yet Another Resource Negotiator (YARN) and 

Hadoop MapReduce are situated in the data processing 

layer. MapReduce is a software programming framework 

which is the kernel of Hadoop’s computing abilities. It 

enables distributed and parallel processing of large 

datasets on large clusters of machines. A MapReduce job 

divides the input data into smaller chunks of data which 

are then processed parallelly by the “mappers”. The 

“reducers” then put together the output of the mappers to 

produce a relevant output for the query. The MapReduce 

framework and HDFS reside on the same nodes, so that 

tasks can be efficiently scheduled on nodes where the 

data is already present to prevent overhead. YARN 

ensure proper resource allocation and resource utilization 

on Hadoop so that the user does not have to worry about 

manually increasing the resource utilization of each node 

to extract maximum value. YARN is also responsible for 

providing Hadoop with the advantage of scalability in 

data processing tasks. 

The purpose of this review was to understand the 

overall architecture and structure of the Hadoop 

ecosystem, and how different layers in this architecture 

work in tandem to form one big system which is Hadoop. 

It is clear from the research reviewed that the Hadoop 

ecosystem architecture is very different from the 

normal/standard mode of computation that is known. 

Along with this, there are some hints about why Hadoop 

could be better at performing data analysis tasks on large 

datasets than performing the said tasks on a standalone 

machine. Thus, it is important to conduct more research 

and studies to effectively quantify the actual advantage 

[5] gained by the user when choosing Hadoop over a 

standard means of computation. 

Also, here is a look at the Advantages and 

Disadvantages of Distributed Computing: (Refer Table 

1) 

1.4.  Problem Statement 

Create a Hadoop cluster, and perform data 

analysis/machine learning tasks on the created cluster. 

Finally, the obtained speedup will be compared with the 

standard computational power available. 

1.5.  Research Objectives 

To quantify the speedup and performance 

improvement achieved by running a data analytics task 

on Hadoop versus running it on a standalone machine 

(standard computational means). 

2. RELATED WORK 

In [1], Mehta et al., gave an overview on the newly 

invented and still in process of establishment technique 

of Hadoop Ecosystem. It also takes Hadoop as a 

combination of HDFS and MapReduce. It also considers 

the Hadoop modules for which there exist a variety of 

other projects that provide specialized services and are 

broadly used to make Hadoop more accessible and more 

user-friendly, which all together comprise of the Hadoop 

Ecosystem. In [2], helps to solve big data problems using 

Hadoop. Mainly this publication deals with the core of 

Hadoop, and   it’s working. It also talks about operational 

aspects of Hadoop and its applications in various fields 

nowadays. In [3] covers the characteristics in HDFS and 

MapReduce. This book attempts to build an open-source 

web program and helps to manage computations running 

on even a couple of computers. Once GFS and 

MapReduce papers were published by Google, the route 

became clear. In [4] Vliet, Programming Amazon EC2, 

O’Reilly Media, Inc., 2011 gave practical approaches for 

creating applications with AWS EC2 (Elastic Compute 

Cloud) and a number of other AWS tools, with an 

emphasis on crucial problems consisting of load 

balancing, monitoring, and automation.  It helped to 

realize the application’s roadmap and become aware of 

the AWS services needed. It gave a concept of how to 

create and run this software as part of the planning and 

implementation process. It helped relocate simple web 

applications to the cloud with EC2 and Amazon 

S3(Simple Storage Service). It gave explanations as to 

how Auto Scaling and Load Balancing provided by EC2 

helps to meet traffic demand. It helped to discover the 

right equipment to reduce downtime, enhance uptime, 

and manipulate this decoupled system. In [5], Fu et al., 

discussed about the changes in performance of a job in 

case more nodes are added to a Hadoop Computation, 

they found that this will result in faster computation of a 

job.  They also discussed and evaluated three methods for 

data redistribution in this use case and discuss their 

advantage and disadvantages. 
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In [6], Park et al., deduced a fast and scalable 

distributed algorithm called PACC (Partition Aware 

Connected Components) for performing connection 

component computation dependent on three key 

techniques which are, two-step processing of partitioning 

& computation, edge filtering, and sketching. In [7], n 

Husain et al., went through previous work in the domain 

of distributed computation and gave an overview of what 

Hadoop Cluster is capable of and how it overcomes many 

problems in the field of Big Data Analytics, and also 

discusses about the various drawbacks it comes with 

which can later be improved in the near future. In [8],  

Wei et al., developed a Hadoop Spark distribute 

framework supported on big-data technology, to 

accelerate the computation of typhoon rainfall prediction 

models. This study exploited deep neural networks 

(DNNs) and multiple linear regressions (MLRs) in 

machine learning, to ascertain rainfall prediction models 

and for rainfall prediction accuracy. For big-data 

technology, the Hadoop Spark distributed cluster-

computing framework was the used. In [9], Zhang et al., 

proposed MCRS as recommendation model and 

recommendation algorithm. MCRS is enforced on 

distributed computation framework. The basic algorithm 

of MCRS is distributed association rules mining 

algorithm. In [10], Alarabi et al., presented an expansive 

study on ST-Hadoop; the first full-fledged open-source 

MapReduce framework with a provincial support for 

spatio-temporal data. In [11], Lei et al., analyzed AIS 

data, a big data framework run on Hadoop, which 

extended the data type, storage, computing, and operation 

layer of traditional Hadoop to include trajectory data. In 

[12], Akaash et al., gave an overview on Spark and 

Hadoop architecture, their differences and compared 

their performance. In [13], Li  et al., deduced improved 

fringe image processing method based on the Hartley 

transform because the traditional Fourier transform is 

complex and takes a long time to get implemented. For 

more speed and computational power, they even used 

Hadoop. In [14], Nagesh et al., identified the factors 

affecting the performance of frequent item mining 

algorithm based on Hadoop MapReduce technology and 

proposed it as an approach for increasing the 

performance. In [15], Hemant Kumar Reddy et al., 

employed a data location aware application scheme that 

optimizes performance by reducing runtime overhead of 

data transfer among clusters. 

3. METHODS 

3.1.  System Architecture 

As stated before, the system architecture for this 

project consists of the following 4 instances/virtual 

machines, pro- cured from Amazon Web Services, 

specifically their EC2 product (Elastic Compute Cloud) 

[16]: 

 HadoopNameNode – This is the master node 

which runs the processes of NameNode and 

JobTracker. 

 SecondaryNameNode – This is a backup node for 

the master node, and its job is to store a snapshot 

of the contents of HadoopNameNode as backup. 

 Slave1 – This is the first slave node, which runs 2 

processes namely: TaskTracker and DataNode. 

TaskTracker reports to JobTracker in the master 

node, while DataNode reports to NameNode in the 

master node. 

 Slave2 – This is the second slave node, which runs 

2 processes namely: TaskTracker and DataNode. 

TaskTracker reports to JobTracker in the master 

node, while DataNode reports to NameNode in the 

master node [17-18]. 

 

Figure 1 System Architecture
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The JobTracker and the two TaskTracker processes 

are part of the MapReduce layer, while NameNode and 

the two DataNode processes are part of the HDFS layer.  

This sums up the whole architecture used for this 

project. 

(Refer Figure 1 for system architecture) 

3.2.  Algorithms/Techniques 

Following are few of the techniques and algorithms 

used while making the initial part of this project: 

SSH (Secure Shell) – This is a cryptographic 

network protocol used to use network services securely 

over an un- secured network. Typically, its usages 

include login, remote command-line, and remote 

command execution (all of which is used in this project). 

SSH achieves this secure channel by employing a client-

server architecture, coupling an SSH client with an SSH 

server. The SSH client that is used in this project is 

PuTTY [19]. 

SCP (Secure Copy Protocol) – This is a method to 

move computer file securely between a remote host and 

a local host or among 2 remote hosts. It is primarily built 

upon the SSH protocol. SCP is used in this project to 

transfer the Hadoop config files between machines to not 

have to make the same changes in the config files 

repeatedly, instead required changes can be made on one 

host, and then SCP can be used to transfer the files to the 

other host. The SCP client that is used in this project is 

WinSCP [20-21]. 

MapReduce – This is a computing/processing 

approach and a program model for distributed computing 

primarily built on Java [22]. It contains two essential 

tasks, specifically Map and subsequently, Reduce. Map 

takes a type of data and translates it into another type of 

data (tuples or key/value pairs) and Reduce aggregates 

the said tuples to provide an output. MapReduce 

programs will be used in this project to run jobs on the 

Hadoop cluster. 

Table 1. Advantages and Disadvantages of Distributed Computing 

Advantages Disadvantages 

Since computing takes place independently on every 

node, it is very handy and reasonably priced to feature 

extra nodes and capability anyplace necessary. 

A distributed system like a Hadoop cluster must decide 

which jobs have to run when and the job schedulers used 

in these systems (Hadoop uses YARN scheduler) have 

certain limitations which can lead to incomplete hardware 

usage or wastage (inefficient scheduling). 

Most distributed systems have a certain degree of 

redundancy as they are made up of multiple nodes that 

work together. If configured correctly, the system should 

not face any disruption in case a single machine fails (i.e., 

Reliability). 

In case of a very widely distributed system with many 

nodes, it can take a longer time for the nodes to 

communicate which in turn can slow down performance. 

Thus, the issue of latency arises. 

Workloads can be broken up and thus performance is 

greatly increased, and mostly performance in Hadoop 

clusters is less dependent on the CPU usage of each 

node, the main factor which determines performance is 

the memory usage. 

Gathering, processing, and monitoring the hardware 

usage data is difficult when using distributed systems 

(such as a Hadoop cluster). This is especially difficult when 

dealing with larger clusters. 

3.3.  Design Methodology 

The design methodology used in this project was the 

Waterfall model [2], as the requirements were mapped 

out first, which were – Four nodes (virtual 

machines/instances) to run the HDFS layer of Hadoop, 

and three nodes to run the MapReduce layer of Hadoop. 

Thus these requirements were used to proceed with the 

design of the system architecture (Four AWS EC2 

instances procured, and Hadoop configured according to 

the requirements) and now this paper shall be moving on 

to the implementation phase as regular jobs are run on the 

cluster [23-25]. 

3.4.  Setting up a Hadoop Cluster 

The steps what were followed in setting up the 

Hadoop cluster were: 

Acquiring and launching 4 instances of Amazon EC2 

(Elastic Compute Cloud) [5] virtual machines through an 

AWS (Amazon Web Services) account, with the said 

virtual machines running Ubuntu 18.04 LTS and 8 GB of 

memory [26].  These instances were named NameNode 
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(master), SecondaryNameNode, Slave1(data node) and 

Slave2(data node). 

Then client access is set up to the previously created 

EC2 instances, by using password-less SSH (Secure 

Shell) access among servers to set up the cluster. This 

gives remote access from master server to slave servers 

which enables master server to remotely and 

conveniently start the data node and task tracker services 

on the slave servers [27-28]. 

Then connect to the said EC2 instances, starting with 

the master node – NameNode, and then similarly connect 

to all the other nodes. Then enable public access in the 

nodes so that all the nodes can be accessed from the 

master node. 

Then install Java on all the nodes by using the 

following command: sudo apt install openjdk-11-jdk 

[29]. 

Then download Hadoop v1.2.1 from the Apache 

download page, and then we unzip the files, look through 

the package content, and rename the hadoop-1.2.1 

directory to just hadoop. 

Then setup the environment variables so that we do 

not have to specify the entire paths for Java and Hadoop 

whenever we run a command pertaining to them. 

Then add the AWS EC2 key pair provided, to the ssh-

agent program (ssh-agent is a background program that 

takes care of passwords for SSH private keys), to enable 

password-less SSH on the servers [30]. 

Then edit the required Hadoop config files 

(specifying the master node, the slave nodes etc.) on all 

the servers to get the cluster up and running [31]. 

Then start up all the hadoop daemons from the master 

node (A daemon is a process that runs in the background 

on a multi-tasking operating system) using the command: 

start- all.sh. This will start: 

NameNode, JobTracker and SecondaryNameNode 

die- mons on the master node and SecondaryNameNode 

daemons on the SecondaryNameNode, and also 

DataNode and TaskTracker daemons on the slave nodes. 

Now, a big text file with multiple words is uploaded 

onto the Hadoop cluster. The data in question is – “The 

Project Gutenberg eBook of The Adventures of Sherlock 

Holmes, by Arthur Conan Doyle” and then implement the 

Hadoop Mapper and Reducer classes for this file in order 

to find out the word count of each word. The written code 

is exported as a .jar file and also uploaded to the Hadoop 

cluster for execution, and then the job is executed on the 

cluster [32]. 

Simultaneously, standard Java code is written and 

executed to process this file and find out the word count 

on a standalone machine without Hadoop (thus no 

mappers or reducers needed). 

4. RESULTS 

Now, having set up the Hadoop cluster, it can be 

verified that it is running by visiting the various webUI 

pages of the different processes: 

The NameNode process webUI runs on port number 

50070 on the master node. 

The JobTracker process web UI runs on port number 

50030 on the master node. 

The TaskTracker processes run on port number 50060 

on both the slave nodes. 

The task using Hadoop is completed in approximately 

22 seconds: 6 seconds for the 2 mappers each (Refer 

Figure 2) + 10 seconds for the reducer (Refer Figure 3). 

IntWritable and LongWritable data types are used which 

are only available in Hadoop and are optimized for 

serialization and are thus much faster than the standard 

Java Integer and Long data types. 

On the other hand, the standard program using all 

standard Java classes, methods, and data types (Integer 

and Long) takes 353610 milliseconds just to read the text 

file. This is equal to roughly 353 seconds (Refer Figure 

4). 

 

Figure 2 Mapper Execution Time 

 

Figure 3 Reducer execution time 
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Figure 4 Time taken by standard Java code to read the 

file 

5. DISCUSSION 

5.1.  Source of input data 

The input text file for this project is the e-book “The 

Adventures of Sherlock Homes by Arthur Conan Doyle” 

obtained from the Project Gutenberg library of free e-

books. 

This e-book was chosen due to the fact that it contains 

roughly 128458 lines of text, which was considered to 

appropriate to carry out a comparison on. 

5.2.  Comparative Analysis

Table 2. Comparative Analysis of results 

METHOD LANGUAGE 
NUMBER 

OF NODES 

SIZE OF INPUT 

(in Megabytes) 

TIME TAKEN 

(in milliseconds) 

Method using Java Java 1 7 353610 

Method using Hadoop Java Hadoop 4 7 22000 

Gohil P. et al. Java Hadoop 5 600 192330 

Gohil P. et al. Java Hadoop 7 600 163670 

R. Yadav et al. Java 1 530 25840 

R. Yadav et al C# 1 530 22557 

R. Yadav et al. Java Hadoop 11 500 2143 

The rows in bold denote the methods which use Java 

Hadoop (Distributed Computation). 

In Gohil P. et al., Java Hadoop is used and the number 

of nodes used in two cases are 5 and 7, with the time 

decreasing as the nodes are increased (approximately 192 

seconds for 5 nodes and 163 seconds for 7 nodes, on a 

file of size 600MB). 

R. Yadav et al. uses two languages in addition to Java 

Hadoop, with a clear decrease in execution time seen 

when comparing Hadoop to C# and Standard Java 

(approximately 22 seconds for C# and 25 seconds for 

Java, while Java Hadoop takes 2 seconds). 

Thus, in all the cases, Java Hadoop using the 

MapReduce Framework greatly exceeds the time taken 

by standard single node execution. Also, it is noticed that 

as the number of nodes is increased, the execution time 

decreases which is in line with the findings of this paper 

as well. 

6. CONCLUSION 

6.1. Conclusion 

Thus, it is found that the time taken by the Hadoop 

cluster to give the required output is far less than the time 

required by the standalone machine even for a file which 

is considered small by today’s standards. This can be 

extrapolated with bigger file sizes and larger number of 

nodes in the cluster, subject to cost constraints. 

Clearly, the MapReduce distributed computation 

engine is superior in terms of time taken to complete a 

job when com- pared to standalone computation systems. 

Further, the results are quantified using the screenshots 

below. The performance is expected to increase much 

more rapidly in the case of Hadoop as higher 

specification machines and a greater number of nodes are 

obtained. This is because IntWritable and LongWritable 

data types are used which are only available in Hadoop 

and are optimized for serialization and are thus much 

faster than the standard Java Integer and Long data types. 

Thus, the advantage offered by the special Hadoop 

file I/O tools over standard tools when trying to perform 

tasks on files with greater amounts of data is clearly 

observed. 

6.2. Future Plan 

As it is known Hadoop is completely written in Java, 

a language widely used by end users, engineers as well as 

cyber criminals hence it can lead to numerous security 

breaches. In future with more developments, more 

programming languages can be used to write in Hadoop, 

even few languages specific to Hadoop can be created 

which will help to curb the afore- mentioned problem. 

Hadoop only ensures that the data job     is completed, but 
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it does not guarantee when the job will be complete. This 

can also be something which can be worked on in near 

future. 
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