

Comparison of Standard Computation Against

Distributed Computation Using Hadoop Cluster

Reet Rahul Ghosh1, *, Abhaya Kirtivasan2, Swati Srivastava3

1,2,3 Manipal University Jaipur, India
*Corresponding author. Email: reetghosh1@gmail.com

ABSTRACT

Computing the solutions to real life problems has become the need of the hour and has become a matter of utmost

importance. In earlier times, it took days/months to compute and use algorithms to make things work, but as time passed

on, computers became faster and more efficient, and these computations took less time. Now a days, new computation

techniques are being invented. One such technique which will be discussed in this paper is Distributed Computation

using Hadoop. Instead of using a single computer to solve problems, multiple virtual machines will be set up and will

be used to prove quantitatively the time taken to execute one job using standard computation is much more than the

time taken to execute the same job using Distributed Computation using Hadoop. This will help in faster computation

and less time to perform tasks, as compared to standard methods which do not use cloud technology.

Keywords: Algorithms, Computation techniques, Distributed Computing, Hadoop, Instances, Virtual

Computers.

1. INTRODUCTION

Abbreviations:

HDFS – Hadoop Distributed File System

YARN – Yet Another Resource Negotiator

LTS – Long Term Support

EC2 – Elastic Compute Cloud

SSH – Secure Shell

SCP – Secure Copy Protocol

The motivation for this project was to explore the

field of Big data Analytics and to have hands-on

experience to understand the importance of Big Data

Analytics (i.e., when there is enormous amount of data).

Big Data is a field that allows to methodically analyze

and extract information from datasets which are deemed

to be too large in volume to be processed by conventional

data management tools. The motivation is to understand

how this field of Big Data Analytics (in this case, using

Hadoop) offers an advantage over traditional data

management tools in terms of productivity, performance,

and cost-effectiveness [2]. The true importance of Big

Data Analytics will be realized once there can be

comparison of traditional and distributed systems side-

by-side in terms of the way in which they process data.

The sections below discuss the components that were

involved in the development and working of the proposed

method.

1.1. Hadoop

Hadoop Ecosystem is a framework of different tools

that provide a substantial performance advantage when

carrying out analysis on enormous datasets. Hadoop

achieves this performance advantage by performing the

processes pertaining to data analysis (Big Data analysis)

through distributed computing. Hence, Hadoop is

essentially a powerful and highly scalable framework

which enables carrying out complex operations on huge

sets of data (i.e. Big Data).

The Hadoop ecosystem consists of several distinct

components. These are: Hadoop common, Hadoop

YARN (Yet Another Resource Negotiator), HDFS

(Hadoop Distributed File System) and Hadoop

MapReduce [1]. Hadoop common ensures that all the

required Java libraries, packages, and scripts along with

other necessary files are available to run Hadoop. HDFS

gives high throughput read and write access to data, and

Hadoop MapReduce provides the structure for parallel

processing of large datasets on different interconnected

machines/nodes.

Atlantis Highlights in Computer Sciences, volume 4

Proceedings of the 3rd International Conference on Integrated Intelligent Computing

Communication & Security (ICIIC 2021)

Copyright © 2021 The Authors. Published by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 226

1.2. Data Storage in Hadoop

The data storage layer in Hadoop contains the

Hadoop Distributed File System (HDFS), which is a file

system based on Java which is very useful for storing

large volumes of data on the networked machines, thus

provided very high read/write throughput throughout the

cluster by achieving high throughput from each node.

Data pushed to HDFS is automatically duplicated and

split into multiple chunks to provide high fault tolerance

and availability. HDFS mainly consists of 2 main

components:

NameNode: This is the master node which maintains

the entire file system, and is also in charge of resource

management, job scheduling, and verifying whether the

entire job has been completed or not.

DataNodes: Also called slave nodes, they are the

nodes which store the actual data and provide the results

for any queries made by any client systems. They

coordinate all file system operations between themselves.

1.3. Data Processing in Hadoop

Yet Another Resource Negotiator (YARN) and

Hadoop MapReduce are situated in the data processing

layer. MapReduce is a software programming framework

which is the kernel of Hadoop’s computing abilities. It

enables distributed and parallel processing of large

datasets on large clusters of machines. A MapReduce job

divides the input data into smaller chunks of data which

are then processed parallelly by the “mappers”. The

“reducers” then put together the output of the mappers to

produce a relevant output for the query. The MapReduce

framework and HDFS reside on the same nodes, so that

tasks can be efficiently scheduled on nodes where the

data is already present to prevent overhead. YARN

ensure proper resource allocation and resource utilization

on Hadoop so that the user does not have to worry about

manually increasing the resource utilization of each node

to extract maximum value. YARN is also responsible for

providing Hadoop with the advantage of scalability in

data processing tasks.

The purpose of this review was to understand the

overall architecture and structure of the Hadoop

ecosystem, and how different layers in this architecture

work in tandem to form one big system which is Hadoop.

It is clear from the research reviewed that the Hadoop

ecosystem architecture is very different from the

normal/standard mode of computation that is known.

Along with this, there are some hints about why Hadoop

could be better at performing data analysis tasks on large

datasets than performing the said tasks on a standalone

machine. Thus, it is important to conduct more research

and studies to effectively quantify the actual advantage

[5] gained by the user when choosing Hadoop over a

standard means of computation.

Also, here is a look at the Advantages and

Disadvantages of Distributed Computing: (Refer Table

1)

1.4. Problem Statement

Create a Hadoop cluster, and perform data

analysis/machine learning tasks on the created cluster.

Finally, the obtained speedup will be compared with the

standard computational power available.

1.5. Research Objectives

To quantify the speedup and performance

improvement achieved by running a data analytics task

on Hadoop versus running it on a standalone machine

(standard computational means).

2. RELATED WORK

In [1], Mehta et al., gave an overview on the newly

invented and still in process of establishment technique

of Hadoop Ecosystem. It also takes Hadoop as a

combination of HDFS and MapReduce. It also considers

the Hadoop modules for which there exist a variety of

other projects that provide specialized services and are

broadly used to make Hadoop more accessible and more

user-friendly, which all together comprise of the Hadoop

Ecosystem. In [2], helps to solve big data problems using

Hadoop. Mainly this publication deals with the core of

Hadoop, and it’s working. It also talks about operational

aspects of Hadoop and its applications in various fields

nowadays. In [3] covers the characteristics in HDFS and

MapReduce. This book attempts to build an open-source

web program and helps to manage computations running

on even a couple of computers. Once GFS and

MapReduce papers were published by Google, the route

became clear. In [4] Vliet, Programming Amazon EC2,

O’Reilly Media, Inc., 2011 gave practical approaches for

creating applications with AWS EC2 (Elastic Compute

Cloud) and a number of other AWS tools, with an

emphasis on crucial problems consisting of load

balancing, monitoring, and automation. It helped to

realize the application’s roadmap and become aware of

the AWS services needed. It gave a concept of how to

create and run this software as part of the planning and

implementation process. It helped relocate simple web

applications to the cloud with EC2 and Amazon

S3(Simple Storage Service). It gave explanations as to

how Auto Scaling and Load Balancing provided by EC2

helps to meet traffic demand. It helped to discover the

right equipment to reduce downtime, enhance uptime,

and manipulate this decoupled system. In [5], Fu et al.,

discussed about the changes in performance of a job in

case more nodes are added to a Hadoop Computation,

they found that this will result in faster computation of a

job. They also discussed and evaluated three methods for

data redistribution in this use case and discuss their

advantage and disadvantages.

Atlantis Highlights in Computer Sciences, volume 4

227

In [6], Park et al., deduced a fast and scalable

distributed algorithm called PACC (Partition Aware

Connected Components) for performing connection

component computation dependent on three key

techniques which are, two-step processing of partitioning

& computation, edge filtering, and sketching. In [7], n

Husain et al., went through previous work in the domain

of distributed computation and gave an overview of what

Hadoop Cluster is capable of and how it overcomes many

problems in the field of Big Data Analytics, and also

discusses about the various drawbacks it comes with

which can later be improved in the near future. In [8],

Wei et al., developed a Hadoop Spark distribute

framework supported on big-data technology, to

accelerate the computation of typhoon rainfall prediction

models. This study exploited deep neural networks

(DNNs) and multiple linear regressions (MLRs) in

machine learning, to ascertain rainfall prediction models

and for rainfall prediction accuracy. For big-data

technology, the Hadoop Spark distributed cluster-

computing framework was the used. In [9], Zhang et al.,

proposed MCRS as recommendation model and

recommendation algorithm. MCRS is enforced on

distributed computation framework. The basic algorithm

of MCRS is distributed association rules mining

algorithm. In [10], Alarabi et al., presented an expansive

study on ST-Hadoop; the first full-fledged open-source

MapReduce framework with a provincial support for

spatio-temporal data. In [11], Lei et al., analyzed AIS

data, a big data framework run on Hadoop, which

extended the data type, storage, computing, and operation

layer of traditional Hadoop to include trajectory data. In

[12], Akaash et al., gave an overview on Spark and

Hadoop architecture, their differences and compared

their performance. In [13], Li et al., deduced improved

fringe image processing method based on the Hartley

transform because the traditional Fourier transform is

complex and takes a long time to get implemented. For

more speed and computational power, they even used

Hadoop. In [14], Nagesh et al., identified the factors

affecting the performance of frequent item mining

algorithm based on Hadoop MapReduce technology and

proposed it as an approach for increasing the

performance. In [15], Hemant Kumar Reddy et al.,

employed a data location aware application scheme that

optimizes performance by reducing runtime overhead of

data transfer among clusters.

3. METHODS

3.1. System Architecture

As stated before, the system architecture for this

project consists of the following 4 instances/virtual

machines, pro- cured from Amazon Web Services,

specifically their EC2 product (Elastic Compute Cloud)

[16]:

 HadoopNameNode – This is the master node

which runs the processes of NameNode and

JobTracker.

 SecondaryNameNode – This is a backup node for

the master node, and its job is to store a snapshot

of the contents of HadoopNameNode as backup.

 Slave1 – This is the first slave node, which runs 2

processes namely: TaskTracker and DataNode.

TaskTracker reports to JobTracker in the master

node, while DataNode reports to NameNode in the

master node.

 Slave2 – This is the second slave node, which runs

2 processes namely: TaskTracker and DataNode.

TaskTracker reports to JobTracker in the master

node, while DataNode reports to NameNode in the

master node [17-18].

Figure 1 System Architecture

Atlantis Highlights in Computer Sciences, volume 4

228

https://sciprofiles.com/profile/65566
https://sciprofiles.com/profile/65566
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Li%2C+Maozhen

The JobTracker and the two TaskTracker processes

are part of the MapReduce layer, while NameNode and

the two DataNode processes are part of the HDFS layer.

This sums up the whole architecture used for this

project.

(Refer Figure 1 for system architecture)

3.2. Algorithms/Techniques

Following are few of the techniques and algorithms

used while making the initial part of this project:

SSH (Secure Shell) – This is a cryptographic

network protocol used to use network services securely

over an un- secured network. Typically, its usages

include login, remote command-line, and remote

command execution (all of which is used in this project).

SSH achieves this secure channel by employing a client-

server architecture, coupling an SSH client with an SSH

server. The SSH client that is used in this project is

PuTTY [19].

SCP (Secure Copy Protocol) – This is a method to

move computer file securely between a remote host and

a local host or among 2 remote hosts. It is primarily built

upon the SSH protocol. SCP is used in this project to

transfer the Hadoop config files between machines to not

have to make the same changes in the config files

repeatedly, instead required changes can be made on one

host, and then SCP can be used to transfer the files to the

other host. The SCP client that is used in this project is

WinSCP [20-21].

MapReduce – This is a computing/processing

approach and a program model for distributed computing

primarily built on Java [22]. It contains two essential

tasks, specifically Map and subsequently, Reduce. Map

takes a type of data and translates it into another type of

data (tuples or key/value pairs) and Reduce aggregates

the said tuples to provide an output. MapReduce

programs will be used in this project to run jobs on the

Hadoop cluster.

Table 1. Advantages and Disadvantages of Distributed Computing

Advantages Disadvantages

Since computing takes place independently on every

node, it is very handy and reasonably priced to feature

extra nodes and capability anyplace necessary.

A distributed system like a Hadoop cluster must decide

which jobs have to run when and the job schedulers used

in these systems (Hadoop uses YARN scheduler) have

certain limitations which can lead to incomplete hardware

usage or wastage (inefficient scheduling).

Most distributed systems have a certain degree of

redundancy as they are made up of multiple nodes that

work together. If configured correctly, the system should

not face any disruption in case a single machine fails (i.e.,

Reliability).

In case of a very widely distributed system with many

nodes, it can take a longer time for the nodes to

communicate which in turn can slow down performance.

Thus, the issue of latency arises.

Workloads can be broken up and thus performance is

greatly increased, and mostly performance in Hadoop

clusters is less dependent on the CPU usage of each

node, the main factor which determines performance is

the memory usage.

Gathering, processing, and monitoring the hardware

usage data is difficult when using distributed systems

(such as a Hadoop cluster). This is especially difficult when

dealing with larger clusters.

3.3. Design Methodology

The design methodology used in this project was the

Waterfall model [2], as the requirements were mapped

out first, which were – Four nodes (virtual

machines/instances) to run the HDFS layer of Hadoop,

and three nodes to run the MapReduce layer of Hadoop.

Thus these requirements were used to proceed with the

design of the system architecture (Four AWS EC2

instances procured, and Hadoop configured according to

the requirements) and now this paper shall be moving on

to the implementation phase as regular jobs are run on the

cluster [23-25].

3.4. Setting up a Hadoop Cluster

The steps what were followed in setting up the

Hadoop cluster were:

Acquiring and launching 4 instances of Amazon EC2

(Elastic Compute Cloud) [5] virtual machines through an

AWS (Amazon Web Services) account, with the said

virtual machines running Ubuntu 18.04 LTS and 8 GB of

memory [26]. These instances were named NameNode

Atlantis Highlights in Computer Sciences, volume 4

229

(master), SecondaryNameNode, Slave1(data node) and

Slave2(data node).

Then client access is set up to the previously created

EC2 instances, by using password-less SSH (Secure

Shell) access among servers to set up the cluster. This

gives remote access from master server to slave servers

which enables master server to remotely and

conveniently start the data node and task tracker services

on the slave servers [27-28].

Then connect to the said EC2 instances, starting with

the master node – NameNode, and then similarly connect

to all the other nodes. Then enable public access in the

nodes so that all the nodes can be accessed from the

master node.

Then install Java on all the nodes by using the

following command: sudo apt install openjdk-11-jdk

[29].

Then download Hadoop v1.2.1 from the Apache

download page, and then we unzip the files, look through

the package content, and rename the hadoop-1.2.1

directory to just hadoop.

Then setup the environment variables so that we do

not have to specify the entire paths for Java and Hadoop

whenever we run a command pertaining to them.

Then add the AWS EC2 key pair provided, to the ssh-

agent program (ssh-agent is a background program that

takes care of passwords for SSH private keys), to enable

password-less SSH on the servers [30].

Then edit the required Hadoop config files

(specifying the master node, the slave nodes etc.) on all

the servers to get the cluster up and running [31].

Then start up all the hadoop daemons from the master

node (A daemon is a process that runs in the background

on a multi-tasking operating system) using the command:

start- all.sh. This will start:

NameNode, JobTracker and SecondaryNameNode

die- mons on the master node and SecondaryNameNode

daemons on the SecondaryNameNode, and also

DataNode and TaskTracker daemons on the slave nodes.

Now, a big text file with multiple words is uploaded

onto the Hadoop cluster. The data in question is – “The

Project Gutenberg eBook of The Adventures of Sherlock

Holmes, by Arthur Conan Doyle” and then implement the

Hadoop Mapper and Reducer classes for this file in order

to find out the word count of each word. The written code

is exported as a .jar file and also uploaded to the Hadoop

cluster for execution, and then the job is executed on the

cluster [32].

Simultaneously, standard Java code is written and

executed to process this file and find out the word count

on a standalone machine without Hadoop (thus no

mappers or reducers needed).

4. RESULTS

Now, having set up the Hadoop cluster, it can be

verified that it is running by visiting the various webUI

pages of the different processes:

The NameNode process webUI runs on port number

50070 on the master node.

The JobTracker process web UI runs on port number

50030 on the master node.

The TaskTracker processes run on port number 50060

on both the slave nodes.

The task using Hadoop is completed in approximately

22 seconds: 6 seconds for the 2 mappers each (Refer

Figure 2) + 10 seconds for the reducer (Refer Figure 3).

IntWritable and LongWritable data types are used which

are only available in Hadoop and are optimized for

serialization and are thus much faster than the standard

Java Integer and Long data types.

On the other hand, the standard program using all

standard Java classes, methods, and data types (Integer

and Long) takes 353610 milliseconds just to read the text

file. This is equal to roughly 353 seconds (Refer Figure

4).

Figure 2 Mapper Execution Time

Figure 3 Reducer execution time

Atlantis Highlights in Computer Sciences, volume 4

230

Figure 4 Time taken by standard Java code to read the

file

5. DISCUSSION

5.1. Source of input data

The input text file for this project is the e-book “The

Adventures of Sherlock Homes by Arthur Conan Doyle”

obtained from the Project Gutenberg library of free e-

books.

This e-book was chosen due to the fact that it contains

roughly 128458 lines of text, which was considered to

appropriate to carry out a comparison on.

5.2. Comparative Analysis

Table 2. Comparative Analysis of results

METHOD LANGUAGE
NUMBER

OF NODES

SIZE OF INPUT

(in Megabytes)

TIME TAKEN

(in milliseconds)

Method using Java Java 1 7 353610

Method using Hadoop Java Hadoop 4 7 22000

Gohil P. et al. Java Hadoop 5 600 192330

Gohil P. et al. Java Hadoop 7 600 163670

R. Yadav et al. Java 1 530 25840

R. Yadav et al C# 1 530 22557

R. Yadav et al. Java Hadoop 11 500 2143

The rows in bold denote the methods which use Java

Hadoop (Distributed Computation).

In Gohil P. et al., Java Hadoop is used and the number

of nodes used in two cases are 5 and 7, with the time

decreasing as the nodes are increased (approximately 192

seconds for 5 nodes and 163 seconds for 7 nodes, on a

file of size 600MB).

R. Yadav et al. uses two languages in addition to Java

Hadoop, with a clear decrease in execution time seen

when comparing Hadoop to C# and Standard Java

(approximately 22 seconds for C# and 25 seconds for

Java, while Java Hadoop takes 2 seconds).

Thus, in all the cases, Java Hadoop using the

MapReduce Framework greatly exceeds the time taken

by standard single node execution. Also, it is noticed that

as the number of nodes is increased, the execution time

decreases which is in line with the findings of this paper

as well.

6. CONCLUSION

6.1. Conclusion

Thus, it is found that the time taken by the Hadoop

cluster to give the required output is far less than the time

required by the standalone machine even for a file which

is considered small by today’s standards. This can be

extrapolated with bigger file sizes and larger number of

nodes in the cluster, subject to cost constraints.

Clearly, the MapReduce distributed computation

engine is superior in terms of time taken to complete a

job when com- pared to standalone computation systems.

Further, the results are quantified using the screenshots

below. The performance is expected to increase much

more rapidly in the case of Hadoop as higher

specification machines and a greater number of nodes are

obtained. This is because IntWritable and LongWritable

data types are used which are only available in Hadoop

and are optimized for serialization and are thus much

faster than the standard Java Integer and Long data types.

Thus, the advantage offered by the special Hadoop

file I/O tools over standard tools when trying to perform

tasks on files with greater amounts of data is clearly

observed.

6.2. Future Plan

As it is known Hadoop is completely written in Java,

a language widely used by end users, engineers as well as

cyber criminals hence it can lead to numerous security

breaches. In future with more developments, more

programming languages can be used to write in Hadoop,

even few languages specific to Hadoop can be created

which will help to curb the afore- mentioned problem.

Hadoop only ensures that the data job is completed, but

Atlantis Highlights in Computer Sciences, volume 4

231

it does not guarantee when the job will be complete. This

can also be something which can be worked on in near

future.

REFERENCES

[1] S. Mehta, V. Mehta, Hadoop Ecosystem: An

Introduction, International Journal of Science and

Research (IJSR) 5(6) (2016) 557–562.

[2] G. Turkington, Hadoop Beginner’s Guide, Packt

Publishing (2013).

[3] J.V. Vliet, F. Paganelli, Programming Amazon EC2:

Survive your Success (1st ed.), O’Reilly Media

(2011).

[4] T. White, Hadoop: The definitive guide: Storage and

analysis at internet scale, (2015).

[5] Q. Fu, N. Timkovich, P. Riteau, K. Keahey, A step

towards hadoop dynamic scaling, in: 2018 IEEE

20th International Conference on High Performance

Computing and Communications; IEEE 16th

International Conference on Smart City; IEEE 4th

International Conference on Data Science and

Systems (HPCC/SmartCity/DSS), IEEE, 2018, pp.

67-74.

[6] H.M. Park, N. Park, S.H. Myaeng, U. Kang, PACC:

Large scale connected component computation on

Hadoop and Spark, Plos one 15(3) (2020 Mar 18)

e0229936.

[7] B.H. Husain, S.R. Zeebaree, Improvised

distributions framework of hadoop: A review,

International Journal of Science and Business 5(2)

(2021) 31-41.

[8] C.C. Wei, T.H. Chou, Typhoon quantitative rainfall

prediction from big data analytics by using the

apache hadoop spark parallel computing framework,

Atmosphere 11(8) (2020 Aug) 870.

[9] H. Zhang, T. Huang, Z. Lv, S. Liu, Z. Zhou, MCRS:

A course recommendation system for

MOOCs, Multimedia Tools and Applications 77(6)

(2018) 7051-7069.

[10] L. Alarabi, M.F. Mokbel, M. Musleh, St-hadoop: A

MapReduce framework for spatio-temporal

data, Geoinformatics 22(4) (2018) 785-813.

[11] B. Lei, A Hadoop-Based Spatial Computation

Framework for Large-Scale AIS Data, in: 2019

IEEE 2nd International Conference on Electronics

Technology (ICET), IEEE, 2019, pp. 599-602.

[12] A.V. Hazarika, G.J.S.R. Ram, E. Jain, Performance

comparison of Hadoop and spark engine, in: 2017

International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), IEEE,

2017, pp. 671-674.

[13] Li, Maozhen, Hanyuan Zhang, Yong Jin, Zhaoba

Wang, and Guodong Guo. "Parallelizing Hartley

transform with Hadoop for fast detection of glass

defects." Concurrency and Computation: Practice

and Experience 30, no. 23 (2018): e4499.

[14] H.R. Nagesh, S. Prabhu, High performance

computation of big data: performance optimization

approach towards a parallel frequent item set mining

algorithm for transaction data based on hadoop

MapReduce framework, International Journal of

Intelligent Systems and Applications 9(1) (2017) 75.

[15] K. Reddy, H. Kumar, H. Das, D.S. Roy, A data

aware scheme for scheduling big data applications

with SAVANNA Hadoop, in: Networks of the

Future, Chapman and Hall/CRC, 2017, pp. 377-392.

[16] R. Yadav, A. Kilaru, D.K. Srivastava, P. Dahiya,

Performance Evaluation of Word Count Program

Using C#, Java and Hadoop, in: International

Conference on Smart Trends in Information

Technology and Computer Communications, 2016,

pp. 299-307.

[17] M. Maurya, S. Mahajan, Performance analysis of

MapReduce Programs on Hadoop cluster, in: World

Congress on Information and Communication

Technologies, IEEE, 2012, pp. 505-510.

[18] P. Gohil, D. Garg, B. Panchal, A Performance

Analysis of MapReduce Applications on Big Data in

Cloud based Hadoop, in: International Conference

on Information Communication and Embedded

Systems (ICICES2014), 2014.

[19] M. Arun, E. Baraneetharan, A. Kanchana, S. Prabu,

Detection and monitoring of the asymptotic COVID-

19 patients using IoT devices and

sensors, International Journal of Pervasive

Computing and Communications (2020).

[20] D.T. Do, T.A. Le, T.N. Nguyen, X. Li, K.M. Rabie,

Joint impacts of imperfect CSI and imperfect SIC in

cognitive radio-assisted NOMA-V2X

communications, IEEE Access 8 (2020) 128629-

128645.

[21] P. Subramani, K. Srinivas, R. Sujatha, B.D.

Parameshachari, Prediction of muscular paralysis

disease based on hybrid feature extraction with

machine learning technique for COVID-19 and post-

COVID-19 patients, Personal and Ubiquitous

Computing (2021) 1-14.

[22] Z. Guo, L. Tang, T. Guo, K. Yu, M. Alazab, A.

Shalaginov, Deep Graph Neural Network-based

Atlantis Highlights in Computer Sciences, volume 4

232

Spammer Detection Under the Perspective of

Heterogeneous Cyberspace, Future Generation

Computer Systems,

https://doi.org/10.1016/j.future.2020.11.028.

[23] P. Subramani, K. Srinivas, R. Sujatha, B.D.

Parameshachari, Prediction of muscular paralysis

disease based on hybrid feature extraction with

machine learning technique for COVID-19 and post-

COVID-19 patients, Personal and Ubiquitous

Computing (2021) 1-14.

[24] M.A. Naeem, T.N. Nguyen, R. Ali, K. Cengiz, Y.

Meng, T. Khurshaid, Hybrid Cache Management in

IoT-based Named Data Networking, IEEE Internet

of Things Journal (2021).

[25] N.T. Le, J.W. Wang, D.H. Le, C.C. Wang, T.N.

Nguyen, Fingerprint enhancement based on tensor of

wavelet subbands for classification, IEEE Access 8

(2020) 6602-6615.

[26] Z. Guo, Y. Shen, A.K. Bashir, M. Imran, N. Kumar,

D. Zhang, K. Yu, Robust Spammer Detection Using

Collaborative Neural Network in Internet of Thing

Applications, IEEE Internet of Things Journal 8(12)

(15 June 2021) 9549-9558. doi:

10.1109/JIOT.2020.3003802.

[27] L. Tan, H. Xiao, K. Yu, M. Aloqaily, Y. Jararweh, A

Blockchain-empowered Crowdsourcing System for

5G-enabled Smart Cities, Computer Standards &

Interfaces, https://doi.org/10.1016/j.csi.2021.10351

7

[28] G.B. Rajendran, U.M. Kumarasamy, C. Zarro, P.B.

Divakarachari, S.L. Ullo, Land-use and land-cover

classification using a human group-based particle

swarm optimization algorithm with an LSTM

Classifier on hybrid pre-processing remote-sensing

images, Remote Sensing 12(24) (2020) 4135.

[29] P. Subramani, G.B. Rajendran, J. Sengupta, R.P. de

Prado, P.B. Divakarachari, A block bi-

diagonalization-based pre-coding for indoor

multiple-input-multiple-output-visible light

communication system, Energies 13(13) (2020)

3466.

[30] K. Yu, Z. Guo, Y. Shen, W. Wang, J.C. Lin, T. Sato,

Secure Artificial Intelligence of Things for Implicit

Group Recommendations, IEEE Internet of Things

Journal (2021). doi: 10.1109/JIOT.2021.3079574.

[31] H. Li, K. Yu, B. Liu, C. Feng, Z. Qin, G. Srivastava,

An Efficient Ciphertext-Policy Weighted Attribute-

Based Encryption for the Internet of Health Things,

IEEE Journal of Biomedical and Health Informatics

(2021). doi: 10.1109/JBHI.2021.3075995.

[32] L. Zhen, A.K. Bashir, K. Yu, Y.D. Al-Otaibi, C.H.

Foh, P. Xiao, Energy-Efficient Random Access for

LEO Satellite-Assisted 6G Internet of Remote

Things, IEEE Internet of Things Journal.

doi: 10.1109/JIOT.2020.3030856

Atlantis Highlights in Computer Sciences, volume 4

233

https://scholar.google.com/citations?user=tUr1WzkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=wZ6mimYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=GhrhtTgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O8VscasAAAAJ&hl=en&oi=sra
https://doi.org/10.1016/j.csi.2021.103517
https://doi.org/10.1016/j.csi.2021.103517

