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LiFePO4 in the olivine structure is a promising cathode material for Li ion batteries. During
normal battery operation, an olivine form of FePO4 is produced. In addition to the olivine form,
FePO4 is known to form in a quartz-like structure, a high pressure CrVO4-like structure, and a
monoclinic structure. We report the results of a detailed density functional study of the electronic
structures and total energies of these four crystalline structures of FePO4. Partial density of states
analysis of the four materials finds them all to be characterized by strong hybridization between
the Fe and O contributions throughout their upper valence bands, consistent with recent X-ray
spectroscopy studies of olivine FePO4. Results obtained using the local density approximation for
the exchange-correlation functional find the olivine structure to be more stable than the quartz-like
structure by 0.1 eV which is in good agreement with recent calorimetry experiments.

I. INTRODUCTION

There has recently been a lot of interest in FePO4 as
the delithiated form of LiFePO4 in connection with Li ion
battery cathodes.1 The mineral names “heterosite” and
“olivine” have been used to describe this orthorhombic
form of iron phosphate which has the space group sym-
metry Pnma (No. 62 in the International Tables for
Crystallography2). Although the olivine structure has by
far the best electrochemical properties, FePO4 is known
to crystallize in several different structures. The question
of the stability of the olivine phase relative to the other
forms is important for the possible adoption of LiFePO4

in commercial batteries.
Yang, Song, Zavalij, and Whittingham3 showed that

olivine FePO4 irreversibly transforms to an electrochem-
ically inactive quartz-like structure at ≈ 600oC, sug-
gesting that perhaps the olivine form might be meta-
stable. In subsequent work, Song, Zavalij, Suzuki, and
Whittingham4 investigated the structural and electro-
chemical properties of several crystalline forms of FePO4.
In addition to the olivine and quartz-like structures,
they studied a monoclinic form and also mentioned
a high pressure form related to the CrVO4 structure,
more recently studied by Arroyo-de Dompablo, Gallardo-
Amores, and Amador.5 In fact, very recently, Iyer, Dela-
court, Masquelier, Tarascon, and Navrotsky6 carried out
calorimetry measurements to show clear experimental ev-
idence that the olivine structure is the more stable struc-
ture, suggesting that the irreversibility of the transforma-
tion to the quartz structure might be due to an activation
barrier.

In order to study the factors which contribute to their
stability, we undertook a series of first-principles sim-
ulations of the electronic structures of the 4 crystalline
forms of FePO4 mentioned above.7 The outline of the pa-
per is as follows. In Sec. II we detail the computational
methods used in this study. In Sec. III we present the
results of our lattice optimization (Sec. III A), densities
of states (Sec. III B), and relative energies (Sec. III C).
Discussions of the results are presented in Sec. IV and
conclusions are presented in Sec. V.

II. CALCULATIONAL METHODS

All the calculations were performed within the
framework of spin-dependent density functional theory
(DFT)8,9 using both the local density approximation
(LDA)10 and the generalized gradient approximation
(GGA).11 Symmetry breaking spin ordering within the
unit cells and spin-orbit interactions were not included
in the calculations. On the basis of the measured Neél
temperature for the orthorhombic material,12 we expect
the error of that omission to be less than 0.01 eV per
unit cell. During the course of this work, we used
three different calculational methods and codes. The de-
tailed analysis was carried out using our own PWPAW
code13,14 which is based on the projector augmented
wave (PAW) formalism developed by Blöchl.15 More re-
cently, we took advantage of the variable-cell optimiza-
tion methods16,17 that are available in the PWscf code.18
This code uses the ultra-soft pseudopotential (USPP) for-
malism of Vanderbilt,19 which is conceptually and nu-
merically very close to the PAW formalism. Since the
treatment of spin-dependence in the exchange-correlation
functional was not initially available in our PWPAW
code, we also used the WIEN2K code20 based on the
linear augmented wave (LAPW) method.21 Fortunately,
we found that by carefully adjusting the calculational
parameters to ensure accuracy and convergence, we were
able to obtain consistent results with all three methods.

Each of the computational methods uses specially de-
signed atomic basis and potential functions. These func-
tions are used to represent portions of the electronic
wavefunctions in the vicinity of each atom. While they
approximately span function space within the atomic
spheres, they also must not be “over-complete” and thus
generate spurious “ghost” states.22 We found that the
default parameters of the WIEN2K code and the pseu-
dopotentials on the web18,19 are generally not able to
represent the highly ionic materials in this study. The
particular choice of parameters for the atomic basis and
potential functions that we found to work well are listed
in Table I. For the PAW and USPP formalisms, the
rc parameters indicate the “augmentation” sphere radii,
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TABLE I: Atomic parameters used to generate atom-centered
functions for the materials mentioned in this study, using the
PAW (Ref. 13), USPP (Ref. 19), and LAPW (Ref. 20)
codes. Essentially the same parameters were used with both
the LDA10 and GGA11 exchange-correlation forms.

rc (bohr) Atomic basis

Li
PAW 1.61 1s, 2s, 2p
USPP 1.60 1s, 2s, 2p
LAPW 1.70 1s, 2s, 2p

Fe
PAW 1.90 3s, 4s, 3p, 4p, 3d, εd
USPP 1.90 3s, 4s, 3p, 4p, 3d, εd
LAPW 1.95 3s, εs, 3p, εp, εd

O
PAW 1.41 2s, εs, 2p, εp
USPP 1.40 2s, εs, 2p, εp
LAPW 1.28 2s, εs, εp

P
PAW 1.51 2s, 3s, 2p, 3p
USPP 1.50 3s, εs, 3p, εp, εd
LAPW 1.38 εs, 2p, εp

representing spheres (that can slightly overlap) within
which the atom-centered basis, projector, and pseudopo-
tential functions are effective. For the LAPW calcula-
tion, the rc parameters indicate muffin-tin radii, repre-
senting strictly non-overlapping spheres within which the
Kohn-Sham equations are analyzed with atom-centered
basis functions. Also indicated in Table I are the basis
functions used within each of the atomic spheres, with
1s, 2s, 2p, 3s, 3p, 3d, . . . denoting the valence wavefunc-
tions for the self-consistent neutral atom and εs, εp, εd, . . .
indicating additional basis functions at energies ε used
to improve the completeness of the representations. For
these, the PAW and USPP parameters could be chosen to
be nearly identical, since they represent very similar for-
malisms generated with different computer codes, while
the the LAPW parameters have somewhat different prop-
erties. While it is not the focus of the present work, Li
is included in this table so that it can be used as a ref-
erence. Of the atoms included, P proved to be the most
challenging due to the presence of “ghost” states within
the energy range of interest. Fortunately, the “ghost”
resonances could be shifted out of the important energy
range by the careful selection of atomic basis functions.

In order to test the atomic parameters, we computed
the total energy as a function of lattice parameter or
bond length for several simple oxide materials. For this
purpose we calculated binding energy curves for Li2O in
the fluorite structure (Fig. 1) and FeO in the ferromag-
netic NaCl structure (Fig. 2), and a hypothetical neutral
tetrahedral PO4 molecule (Fig. 3). (This PO4 molecule,
while convenient for testing purposes, is not known to
exist in nature; natural phosphorous oxides are found in
much more complicated structures.) For these three test
materials, the three different computational methods give
superposable binding energy curves, giving us confidence

that the three methods can be used together to study the
FePO4 materials which are the focus of this study.
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FIG. 1: Relative total energy versus the lattice constant of
Li2O in the fluorite structure obtained with the PWscf,18

PAW,14 and LAPW20 computer codes. The set of curves in-
dicated with the lighter lines and filled symbols with smaller
equilibrium lattice constant was obtained with the LDA10

exchange-correlation form, while the other set of curves was
obtained with the GGA11,23 exchange-correlation form.
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FIG. 2: Relative total energy versus lattice of FeO assuming
a ferromagnetic NaCl structure, using the same conventions
as shown in Fig. 1.

In addition to the atom-centered functions, the accu-
racy of the calculations are also controlled by the num-
ber of plane waves included in the representation of the
smooth portions of the wavefunctions. In this work, all
plane wave coefficients were included in the wave function
expansion with the cut-off criterion

|k + G|2 ≤ Ecut, (1)

where k and G denote a Bloch wave vector and a recip-
rocal lattice vector, respectively. The values of Ecut were
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FIG. 3: Relative total energy versus bond length of a hy-
pothetical neutral molecule of PO4 assumed to have exact
tetrahedral symmetry, using the same conventions as shown
in Fig. 1.

chosen to be 30 Ry for the LAPW code and 64 Ry for the
PAW and PWscf codes. The Brillouin zone integrals were
performed using a Monkhorst-Pack24 or similar scheme
of uniform sampling within partitions of 0.15 (bohr)−1

or smaller on each side.
The partial densities of states were determined using

a Gaussian shape function to replace the delta function:

Na
σ (E) ≡ 1√

π∆

∑

nk

fa
nkσWke−(E−Enkσ)2/∆2

, (2)

where Wk denotes the Brillioun zone weighting factor and
the smearing parameter was chosen to be ∆ = 0.1 eV.
The factor fa

nkσ denotes the charge within a sphere about
atom a with the radius taken to be the augmentation
radius ra

c given in Table I for each state of band index n,
wave vector k, and spin orientation σ.

For the PAW and LAPW schemes, structural optimiza-
tion was carried out in two steps. For each choice of
the lattice constants, the atomic positions were optimized
within the symmetry constraints of their structures. The
total energies were then fit to a polynomial expansion
of the energy in terms of the lattice parameters, in or-
der to determine the optimized lattice constants. For the
PWscf scheme, structural optimization was determined
by using variable-cell optimization methods.16,17

III. RESULTS

A. Crystal structures

Figures 4, 5, 6, and 7 show the four experimentally
determined crystal structures of FePO4 studied in the
present work – the olivine, quartz, CrVO4, and mon-
oclinic forms, respectively. Evident from these figures

FIG. 4: (Color online) XcrySDen25 drawing of the olivine
crystal structure. Fe, P, and O spheres are represented with
spheres of decreasing size, with online colors red, yellow, and
blue, respectively.

FIG. 5: (Color online) Quartz crystal structure, using the
same convention as in Fig. 4.

is the fact that the Fe sites are coordinated by six
nearest-neighbor O’s in approximately octahedral geom-
etry for the olivine and CrVO4 structures. For the quartz
structure, the Fe sites are coordinated by four nearest-
neighbor O’s in approximately tetrahedral geometry. By
contrast, in the monoclinic structure, the Fe sites have
lower symmetry and their coordination with nearest-
neighbor O’s is approximately 5.

In the chemical literature,4 it is often noted that the oc-
tahedral coordination of Fe stabilizes its Fe+2 and Fe+3

charge states, while tetrahedral coordination stabilizes
only its Fe+3 charge state. This trend is presumably re-
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FIG. 6: (Color online) CrVO4 crystal structure, using the
same convention as in Fig. 4.

FIG. 7: (Color online) Monoclinic crystal structure, using the
same convention as in Fig. 4.

lated to different crystal field splittings of the Fe d states
in octahedral and tetrahedral symmetries. Since the
cathode reaction involves transitions between the Fe+2

and Fe+3 charge states, it follows that the octahedrally
coordinated structures – olivine and CrVO4 – would be
expected to be more electrochemically active materials.
However, recent experimental studies of the electrochem-
ical properties of the CrVO4 structured material5 have
shown that despite its favorable Fe coordination, the Li
ion mobility in this material is too small to be technolog-
ically useful.

TABLE II: Lattice parameters for FePO4. V denotes the
volume per formula unit (Å3); a, b, and c denote the lattice
parameters (Å); and β (degrees) is the non-orthogonal lattice
angle for the monoclinic structure (optimized only with the
PWscf code).

V a b c β

Olivine (Pnma)
LDA - LAPW 67.5 9.83 5.76 4.77
LDA - PWscf 68.1 9.85 5.77 4.79
GGA - LAPW 74.5 10.04 6.01 4.94
GGA - PAW 74.5 10.04 6.01 4.94
GGA - PWscf 74.0 10.03 5.99 4.93
Exp.a 66.7 9.76 5.75 4.76

Quartz (P3121)
LDA - LAPW 79.9 4.99 11.12
LDA - PWscf 79.8 4.99 11.12
GGA - LAPW 91.9 5.25 11.57
GGA - PAW 91.9 5.25 11.57
GGA - PWscf 91.3 5.23 11.58
Expb 82.4 5.04 11.26

CrVO4-type (Cmcm)
LDA - LAPW 62.3 5.24 7.73 6.15
LDA - PWscf 62.8 5.23 7.76 6.19
GGA - PWscf 68.6 5.32 7.96 6.48
Exp.c 64.3 5.23 7.78 6.33

Monoclinic (P21/n)
LDA - LAPW 81.5 5.52 7.40 8.02 95.7
LDA - PWscf 81.9 5.54 7.40 8.03 96.1
GGA - LAPW 91.3 5.47 8.03 8.36 95.7
GGA - PWscf 88.4 5.60 7.68 8.27 96.5
Exp.d 82.1 5.48 7.48 8.05 95.7

aRef. 12.
bRef. 26.
cRef. 5.
dRef. 4.

Table II compares all of the calculated lattice constants
with the experimental values for these structures. For the
olivine, quartz and CrVO4 structures, we find that the
lattice constants for the different calculational methods
agree to better than ±0.03 Å. For the monoclinic struc-
ture, the agreement is somewhat less good; perhaps due
to its more complicated geometry which includes a non-
orthogonal lattice angle β and perhaps due to regions of
low curvature in its potential energy surface. In general,
the experimental results are closer to the LDA calcula-
tions, but the LDA calculations systematically underes-
timate the lattice constants while the GGA calculations
systematically overestimate the lattice constants. The
optimized atomic coordinates in fractional units for the
four crystal forms calculated with the PWscf code for
the LDA functional are listed in Table III. They agree
with with the experimental measurements within ±0.01
in fractional units, except for a few of the O positions
in the monoclinic structure. The ±0.01 error in frac-
tional coordinates seems to be generally within the ex-
perimental uncertainty as indicated by comparing coor-
dinates for the olivine structure determined by X-ray27
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TABLE III: Fractional coordinates (x, y, z) for the inequiva-
lent atoms in four crystalline forms of FePO4, corresponding
to the lattice parameters listed in Table II. Results calculated
using the LDA-PWscf scheme are compared to experimental
diffraction measurements (rounded to 3 decimal digits).

Calc. Exp.
Crystal Atom x y z x y z

Olivinea Fe 0.273 1
4

0.960 0.276 1
4

0.948
P 0.095 1

4
0.406 0.094 1

4
0.395

O1 0.122 1
4

0.719 0.122 1
4

0.709
O2 0.443 1

4
0.151 0.439 1

4
0.160

O3 0.169 0.043 0.259 0.166 0.045 0.250

Quartzb Fe 0.451 0.000 1
3

0.458 0.000 1
3

P 0.448 0.000 5
6

0.458 0.000 5
6

O1 0.418 0.327 0.393 0.419 0.318 0.396
O2 0.403 0.271 0.873 0.413 0.264 0.875

CrVO4
c Fe 0.000 0.000 0.000 0.000 0.000 0.000

P 0.000 0.351 1
4

0.000 0.354 1
4

O1 0.000 0.241 0.046 0.000 0.246 0.050
O2 0.243 0.469 1

4
0.247 0.465 1

4

Monod Fe 0.390 0.810 0.060 0.388 0.806 0.060
P 0.587 0.458 0.273 0.590 0.458 0.266
O1 0.493 0.649 0.236 0.481 0.640 0.228
O2 0.838 0.475 0.382 0.828 0.463 0.384
O3 0.619 0.357 0.111 0.641 0.358 0.116
O4 0.416 0.353 0.376 0.410 0.343 0.368

aExp. from Ref. 12.
bExp. from Ref. 26.
cExp. from Ref. 5.
dExp. from Ref. 4.

and neutron12 diffraction. Similarly, the calculated and
measured bond lengths listed in Table IV are in good
agreement with experiment.

B. Densities of states

Results for the partial densities of states are presented
in Fig. 8, calculated using Eq. 2, comparing the LDA and
GGA results for the 4 crystal forms. The results show a
systematic pattern of LDA band widths being larger and
band gaps being smaller compared to the GGA results.
However, the general form of the density of states is very
similar among the four materials. The CrVO4-type ma-
terial is clearly metallic while the other materials have
band gaps at the Fermi level ranging from 0.1(0.4) eV
for the olivine structure to 0.8(1.0) eV for the quartz
structure using LDA(GGA) functionals. The relatively
large calculated band gap for the quartz structure is con-
sistent with its observed poor electrochemical activity.4
By contrast, the metallic behavior of the CrVO4-type
material indicates its electronic conductivity should be
good, however, experimental results5 suggest that poor
ionic conductivity causes this material to have poor elec-
trochemical activity.

The basic structure of the occupied densities of states

TABLE IV: Bond lengths (in Å) for four crystalline forms
of FePO4, corresponding to lattice and positional parameters
listed in Tables II and III, calculated using the LDA-PWscf
scheme are compared to those deduced from experimental
diffraction measurements.

Crystal Bond Calc. Exp.

Olivinea Fe-O1 1.89 1.89
Fe-O2 1.90 1.89
Fe-O3 2.03 2.02
Fe-O3 2.13 2.14
P-O1 1.53 1.52
P-O2 1.57 1.53
P-O3 1.53 1.54

Quartzb Fe-O1 1.84 1.85
Fe-O2 1.86 1.87
P-O1 1.54 1.54
P-O2 1.54 1.53

CrVO4
c Fe-O1 1.89 1.94

Fe-O2 2.07 2.08
P-O1 1.53 1.52
P-O2 1.56 1.55

Monod Fe-O1 1.89 1.87
Fe-O2 1.96 1.97
Fe-O2 2.14 2.24
Fe-O3 1.84 1.87
Fe-O4 1.85 1.81
P-O1 1.53 1.51
P-O2 1.57 1.54
P-O3 1.53 1.47
P-O4 1.53 1.60

aExp. from Ref. 12.
bExp. from Ref. 26.
cExp. from Ref. 5.
dExp. from Ref. 4.

for all of the materials in the range of −10 ≤ E ≤ 0 eV
can be explained as follows. At the lowest order of ap-
proximation, the states correspond to the filled O 2p6

states and Fe ions in the configuration 3d5
↑ 3d0

↓ 4s0. The
P ions formally lose all of their valence electrons. How-
ever, the partial densities of states show that the states
at the low energy range have non-trivial P contributions
which can be well described in terms of hybridization
with the nearest neighbor O ions to form P 3s – O 2pσ
states in the energy range of −10 ≤ E ≤ −8 eV and P 3p
– O 2pσ states in the energy range of −8 ≤ E ≤ −6 eV.
For the quartz structure, this partitioning results in 2
separate groups of bands, while for the other structures,
additional hybridizations complicate the form of the den-
sities of states in this energy range. The use of the O 2pσ
states in the formation of the P−O bonds leaves the O
2pπ states, corresponding to 4 electrons per O, to form
the upper portion of the valence band. The 2 major-
ity spin electrons (O 2pπ2

↑) hybridize with the Fe 3d5
↑

states and the 2 minority spin electrons (O 2pπ2
↓) form

a narrower band in a similar energy range. The Fe 3d0
↓

states form the lowest energy unoccupied states above
the Fermi level. The formation of the O 2pσ bonds with
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FIG. 8: (Color online) Partial densities of states for FePO4 in the four different crystalline forms, comparing LDA (left) and
GGA (right) results calculated using Eq. (2), plotting the majority and minority spin contributions upward and downward
along the vertical axis, respectively. The zero of energy is taken to be the Fermi level.

P, leaving the O 2pπ states to interact with the tran-
sition metal is sometimes referenced as the “induction
effect”.28 This same description of the valence state dis-
tribution generally fits all four of the crystal forms shown
in Fig. 8 so that in principle, all could be well-described
by closed-shell single determinant wavefunctions, except
perhaps for the metallic contributions in the CrVO4-type
structure. Correspondingly, the calculated spin moments
correspond to 5 µe per formula unit for all of the materi-
als other than the CrVO4 structure which has a slightly
smaller spin moment.

The interesting fact that for olivine FePO4, the
upper valence band of the majority spin states can
be described by well-hybridized Fe 3d↑ and O 2p↑
throughout the spectrum, has been discussed in previ-
ous work,7,29 and is consistent with recent X-ray spec-
troscopy measurements.30,31 From Fig. 8, it is apparent
that the strong hybridization of Fe 3d↑ and O 2p↑ states
throughout their valence band spectra is a feature of all

of the FePO4 materials.
Since the insightful paper by Sham and Schlüter,32 it

has been understood that an energy band gap calculated
from the DFT eigenstates differs from the physical en-
ergy band gap by a self-energy correction. Since, esti-
mating this band gap correction is beyond the scope of
the present work, any comparison to experimental band
gaps is necessarily very qualitative. Previous calcula-
tions by other authors using DFT+U techniques report
much larger minimum band gaps that those of the present
work. A minimum band gap of 1.9 eV was reported by
Zhou and co-workers33 for the olivine structure and (ap-
proximately) 1.4 eV was reported by Arroyo-de Dom-
pablo and co-workers5 for the CrVO4 structure. Unfor-
tunately, we know of no direct experimental measure-
ments of the band gap of these materials with which
the calculated results can be compared. Zhou and co-
workers33 cite a band gap of 4 eV for the related ma-
terial LiFePO4 on the basis of reflectance measurements
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TABLE V: Internal energies of the four crystalline forms of
FePO4 relative to the olivine structure (in units of eV/FePO4)

Crystal LDA GGA Exp.a

Olivine 0.00 0.00 0.00
Quartz 0.09 (LAPW) −0.35 (LAPW) 0.12

0.05 (PAW) −0.27 (PAW)
0.09 (PWscf) −0.25 (PWscf)

CrVO4-type −0.10 (LAPW)
−0.11 (PAW) 0.07 (PAW)
−0.07 (PWscf) 0.07 (PWscf)

Monoclinic 0.02 (LAPW) −0.19 (LAPW)
−0.01 (PAW) −0.16 (PAW)
−0.02 (PWscf) −0.17 (PWscf)

aRef. 6

which they find consistent with their DFT+U calcula-
tions of that material. However, more recent work by
Hunt and co-workers30 find their inelastic X-ray scatter-
ing measurements to be more consistent with a much
smaller band gap for LiFePO4 as well as for FePO4 as is
consistent with the olivine density of states presented in
Fig. 8.

C. Total Energies

The results for the internal energy differences for
FePO4 materials relative to the olivine structure are sum-
marized and compared with the experimental calorime-
try measurements for the quartz and olivine crystals6
in Table V. The table shows that the 3 independent
computational methods give consistent results and that
the range of the energy differences is quite small − 0.2
(0.4) eV for LDA (GGA). The calculated LDA internal
energy difference for the quartz structure relative to the
olivine structure is close to the experimental result of
0.12 eV/FePO4.6

For the LDA calculations, the ordering of the most
stable to least stable structures is CrVO4, monoclinic,
olivine, and quartz. The LDA calculations also indicate
that the monoclinic structure has nearly the same energy
as the olivine structure, while the CrVO4-type structure
has an energy −0.1 eV/FePO4 relative to that of the
olivine structure. Thus, the LDA calculations suggest
that the CrVO4-type structure is the most stable of the
four structures studied, which has yet to be verified by
experiment. The fact that the CrVO4-type structure has
been prepared under conditions of high pressure and tem-
perature from the quartz structure5,34–36 indicates that
there is an activation barrier, but does not provide in-
formation about the relative stability of the equilibrium
structures.

By contrast, the GGA calculations give results for
the relative stabilities essentially opposite to those of
the LDA calculations, finding the quartz structure to
have an energy −0.3 eV/FePO4 relative to that of the

olivine structure, in direct contradiction to the experi-
mental result.6 Since, there is good agreement with avail-
able experiment, we expect that our LDA results provide
the more reasonable analysis of four crystalline phases
of FePO4 including a plausible prediction of the correct
relative stability.

IV. DISCUSSION

The fact that the LDA and GGA results for these cal-
culations are significantly different from each other is
not unprecedented. In our own work37 we have stud-
ied Li3PO4 in it β- and γ- crystal forms, finding that
Eγ − Eβ = 0.03(0.01) eV/FePO4 for the LDA (GGA)
simulations respectively. For this system, the LDA and
GGA results differ by 0.02 eV, but they are both con-
sistent in sign with each other and with experiment,38
finding the β- structure to be more stable than the γ-
phase.

There are several examples of material studies in the
literature which document different structural and ener-
getic results for LDA and GGA simulations. For exam-
ple, in studies of phase transitions in silica, Hamann39

found LDA and GGA calculations to give different rel-
ative energies for the α-quartz and stishovite forms of
SiO2. In that case, the GGA results for the relative in-
ternal energies were in much better agreement with ex-
periment. This work was later corroborated by Zupan
and co-workers40 who also studied the diamond and β-
tin structures of Si and the bcc and fcc structures of
metallic Fe, again finding the GGA results to be in closer
agreement with experiment. Another example is a study
of the group-III nitrides by Fuchs and co-workers41 who
found different trends in calculating structural properties
and heats of formation with LDA and GGA functionals.
These authors showed that the GGA calculations repro-
duce the crystal binding energies more consistently than
the LDA calculations, but significantly overestimate the
binding energy of a N2 molecule. Furche and Perdew42

carried out a systematic comparison of several function-
als including the LDA and GGA functionals used in the
current work for a number of atomic and molecular sys-
tems. They conclude that for transition metal materials,
“errors in the range of 10 kcal/mole [0.4 eV] per bond,
sometimes more, have to be expected”.

More recently, there has been considerable effort fo-
cused on reducing the errors of DFT simulations of tran-
sition metal materials. There are two main physical ef-
fects – strong correlation among the localized d-electrons
of the transition metal ions and the self-interaction error
which can be quite large for the localized d-electrons of
the transition metal ions.

The standard definition of correlation is based on the
deviation of the exact many-body wavefunction relative
to a single Slater determinant. For transition metal
materials with a partially filled d shell, these correla-
tions could in principle be approximated by a sum over
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several Slater determinants to represent the correlation
effects beyond average correlations embedded into the
exchange-correlation functional. The so-called DFT+U
scheme43,44 has been developed as a first step toward
including such effects. In the DFT+U approach, a
Hubbard-like Coulomb repulsion at each Fe site is added
to the Kohn-Sham Hamiltonian and its occupancy is
treated in a self-consistent mean-field formalism. The
repulsion parameter U can be either treated empirically
or calculated self-consistently, while the occupation pa-
rameters are determined by suitable localized projector
functions. Zhou and co-workers45 successfully used this
approach to model LixFePO4 materials. They showed
that by choosing U in a physically reasonable range, the
expected charge-ordering behavior of LixFePO4 could be
successfully modeled. Their results showed that a ma-
jority of Fe sites had either Fe+3 (FeIII) or Fe+2 (FeII)
ions which was consistent with the experimental evidence
that LixFePO4 tends to phase separate into FePO4 and
LiFePO4 domains. The DFT+U approach was further
able to make quantitative predictions of redox potentials
of FePO4/LiFePO4 and other cathode materials46. More
recently, this DFT+U approach has been applied to the
very interesting problem of modeling electron transport
in LixFePO4, assuming a polaron mechanism of charge
transfer between Fe+2 and Fe+3 sites.47 Other research
groups have also used the DFT+U approach to study
these and similar materials.33,48,49

In summary, the most successful use of DFT+U tech-
niques has come from the introduction of solutions which
lower the symmetry of the system and thus approximate
multideterminant effects. This approach is analogous to
solutions of the Hubbard model itself,50 where it has been
shown that within a mean-field (Hartree-Fock) approach,
a broken symmetry solution can sometimes approach the
exact solution when the full symmetry solution fails. This
was shown explicitly for the one-dimensional Hubbard
model by Johansson and Berggren51 where a broken sym-
metry antiferromagnetic solution was found to closely
approximate the ground state energy while the full sym-
metry Hartree-Fock solution yielded unphysical ground
states at large values of the Coulomb repulsion param-
eter U . In a similar way, the MIT group45–47 has been
able to use the DFT+U technique to model transition
metal compounds by stabilizing low symmetry configura-
tions such as the Fe-ion sites of different charges within
non-stoichiometric LixFePO4. For materials which are
expected to have uniform charge and/or spin on all of
the transition metal sites, the DFT+U technique may
have some value as a scheme to provide approximate
self-interaction correction, but may suffer the same in-
accuracies of other uniform mean-field treatments. For
this reason, we do not expect the DFT+U technique to
be helpful for modeling FePO4 in its various crystalline
structures where for each crystal form, the Fe sites are ge-
ometrically and electronically equivalent. Furthermore,
since we have argued that the FePO4 materials are well
represented by single determinant wave functions, there

appears to be little reason to use techniques designed to
treat highly correlated systems. The fact that experi-
mental X-ray spectroscopy results30,31 on olivine materi-
als are in good agreement with the results of traditional
DFT simulations provides experimental support for this
argument.

The “self-interaction” error was identified in a 1981
paper by Perdew and Zunger,52 who noticed that each
occupied electron state Ψnkσ(r) repels itself in the
self-consistent Coulomb interaction. In Hartree-Fock
theory,53 this unphysical self-repulsion is subtracted out
explicitly as shown in the following expression for the
electronic coulomb (EC) and exchange (EX) energies.

EC + EX =
e2

2

∑

nkσ

∑

n′k′σ′
wnkσwn′k′σ′

×
{ |Ψnkσ(r)|2|Ψn′k′σ′(r′)|2

|r− r′|
−δσσ′

Ψ∗nkσ(r)Ψn′k′σ′(r)Ψnkσ(r′)Ψ∗n′k′σ′(r
′)

|r− r′|
}

. (3)

Here, the indices nkσ denote the band index, wave vec-
tor, and spin index, respectively, while wnkσ denotes the
Brillouin zone-weighted occupancy factor for the elec-
tronic state Ψnkσ(r). Both of these terms must be eval-
uated carefully for the infinite periodic system. The di-
vergence of the electronic Coulomb energy EC becomes
well-defined when combined with the corresponding nu-
clear interaction terms. The self-repulsion term which
is subtracted from EC in the exchange contribution EX

appears as an integrable singularity.54,55 In the present
work, EC is represented as defined in Eq. (3), but since
the exchange contribution is treated in the LDA or GGA
formulation, the electron self-repulsion term is not can-
celed from the energy. Because of this singular behavior,
the self-repulsion is numerically difficult to calculate di-
rectly and difficult to approximate consistently.

The are several suggestions in the literature of how
to correct the self-interaction problem in an approximate
way.56–61 Since the error is large where the wavefunctions
have the greatest amplitudes, most of these formulations
are based on localized basis functions centered on the
atomic sites. Although these methods have succeeded in
making qualitative improvements to the modeling of the
structures of several types of materials including those
with transition metal and rare-earth components,56–58,61
it is not clear that the accuracy of these methods is suf-
ficient to tackle the delicate balance of crystal field and
hybridization effects, and the relative importance of the
Fe 3d and O 2p contributions, that stabilize the FePO4

crystalline forms of the current study.
Nevertheless, in order to get an estimate of the self-

interaction error, we have taken advantage of a muffin-
tin based formulation recently developed in the WIEN2K
code.20,62,63 In this formulation, the spherical average of
the l-projected density within a muffin sphere is used to
define the square of a radial function χl(r) from which
the Slater integral F k (defined in Eq. (7) of Ref. 63)
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TABLE VI: Hartree-Fock exchange corrected LDA internal
energies of the four crystalline forms of FePO4 relative to the
olivine structure (in units of eV/FePO4) obtained using the
WIEN2K code,20 for various values of the strength parameter
α.

α Orbital Olivine Quartz CrVO4 Mono

0.00 Fe(d) 0.00 0.09 −0.10 0.02
0.35 Fe(d) 0.00 1.05 −0.08 0.16
1.00 Fe(d) 0.00 2.97 −0.08 0.43
1.00 Fe(d) & O(p) 0.00 3.22 0.39 0.87

is calculated. The Hartree-Fock exchange contributions
within the muffin tin spheres are then calculated from
summations of the Slater integrals F k times the appro-
priate angular weight factors determined from the occu-
pied states. The correction to the energy is generally
given in the form

∆E = α(EHF
x − EDFT

x ), (4)

where EHF
x and EDFT

x denote the sum the muffin tin
contributions of the exchange energy calculated using
the Hartree-Fock and density functional formulations, re-
spectively. The strength factor α is an adjustable param-
eter which we took to be 1 or 0.35, representing full Fock
exchange or a popular choice63 for hybrid Fock exchange,
respectively. Table VI lists the results of our calculations
which were obtained using the LDA-PWscf geometries
and the LDA functional, comparing results for various
values of α including the corresponding α = 0 values re-
produced from Table V. Results obtained by including
only Fe(d) contributions show that the relative energy of
the CrVO4 structure is only slightly changed, while the
relative energies of the monoclinic and quartz structures
are raised by a significant amount for both choices of α.
This trend shows that the correction is very sensitive to
the extent of the Fe(d) wavefunctions, correlating with
the number of O neighbors – olivine and CrVO4 struc-
tures having 6 neighbors and the smallest correction and
the quartz structure havine 4 neighbors and the largest
correction. Since the O 2p states are almost as spatially
localized as are the Fe 3d states, it is sensible to consider
both Fe(d) and O(p) contributions in these calculations,
however since the muffin tin radius of O is quite small,
the approximation works less well and the calculations
converge very slowly. The corresponding results listed in
Table VI suggest that the O(p) states do have a substan-
tial contribution to the self-interaction correction. These
results offer a glimpse into some of the issues of the self-
interaction correction, but obviously more work must be
done for quantitative evaluation.

V. SUMMARY

In this work, we compare the electronic structures of
four crystalline phases of FePO4 using spin-dependent

density functional theory with both LDA and GGA
exchange-correlation functionals. By careful use of three
independent computational formalisms and codes, the
numerical accuracy is well-controlled.

The partial densities of states of the four crystals dif-
fer in band widths and band gaps, but all have similar
features which can be described by the following simple
picture. The lowest states are due to σ bonds between
the O 2p and P 3s and 3p states which form the strong
P−O bonds. This so-called “induction” effect is responsi-
ble for there being only four 2p electrons for each O−2 ion
to hybridize with the Fe 3d states. In fact, because of the
strong spin coupling effects in Fe, the upper valence band
is formed from a well-hybridized configuration of O 2p2

↑
and Fe 3d5

↑ for the majority spin, leaving the O 2p2
↓ states

to form a narrower band at a similar energy for the mi-
nority spin contribution. The minority spin Fe 3d0

↓ states
form a relatively narrow band above the Fermi level. This
analysis provides evidence that these materials are well
approximated as closed shell systems and well described
by single Slater determinant wavefunctions. The density
of states spectrum for the olivine structure is consistent
with recent X-ray spectroscopy measurements.30,31

Results for the lattice parameters are slightly underes-
timated by the LDA functional and overestimated by the
GGA functional results, while the fractional atomic po-
sitions and bond lengths are generally in excellent agree-
ment with experiment.

The relative energies of the four crystalline phases are
very small – with internal energy differences of less than
0.2 (0.4) eV/FePO4 for the LDA (GGA) results. The
LDA functional results find the quartz structure to have a
higher energy than that of the olivine structure by 0.1 eV
which is consistent with experiment,6 and predict the
CrVO4 structure to be the most stable. Further work
examining the effects of the self-interaction error on these
materials is suggested.
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60 B. Baumeier, P. Krüger, and J. Pollmann, Phys. Rev. B
73, 195205/1 (2006).
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