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Comparison of Three Single-Phase PLL
Algorithms for UPS Applications

Rubens M. Santos Filho, Paulo F. Seixas, Porfírio C. Cortizo, Leonardo A. B. Torres, and André F. Souza

Abstract—In this paper, the performance assessment of three
software single-phase phase-locked loop (PLL) algorithms is car-
ried out by means of dynamic analysis and experimental results.
Several line disturbances such as phase-angle jump, voltage sag,
frequency step, and harmonics are generated by a DSP together
with a D/A converter and applied to each PLL. The actual minus
the estimated phase-angle values are displayed, providing a refined
method for performance evaluation and comparison. Guidelines
for parameters adjustments are also presented. In addition, prac-
tical implementation issues such as computational delay effects,
ride-through, and computational load are addressed. The devel-
oped models proved to accurately represent the PLLs under real
test conditions.

Index Terms—Mathematical modeling, phase-locked loops
(PLLs), uninterruptible power systems (UPSs).

I. INTRODUCTION

THE CORRECT line phase-angle is a very important in-
formation in uninterruptible power systems (UPSs) and

in other grid-connected equipment such as controlled rectifiers,
active filters, dynamic voltage restorers, and also in emerging
distributed generation systems such as eolic and photovoltaic
power plants. In UPS systems, in order to achieve bumpless
operation when the bypass switch is turned on, it is necessary
to guarantee prior good synchronization between the inverter
output voltage and the primary source voltage. The same is true
when the transfer switch is engaged in offline or line-interactive
UPSs. In parallel redundant UPS arrangements, a very precise
synchronization is also required prior to each UPS connection
to the protected bus in order to avoid catastrophic transients. To
estimate the phase-angle, open-loop and closed-loop methods
are available [8], [10]. The closed-loop methods are commonly
known as phase-locked loops (PLLs).

Generally, the line frequency varies within a limited range
even in isolated systems, and its rate of change is limited by
generators mechanical inertia. However, when grid faults occur,
equipment become exposed to phase-angle jumps and voltage
sags [15]. Furthermore, harmonics, notches, spikes, and other

Manuscript received February 28, 2007; revised February 18, 2008. First
published April 25, 2008; last published July 30, 2008 (projected). This work
was supported by Engetron under Grant 5993-UFMG-Engetron.

R. M. Santos Filho is with the Departamento de Eletrônica, Centro Federal
de Educação Tecnológica de Minas Gerais, 30480-000 Belo Horizonte, Brazil
(e-mail: rsantos@deii.cefetmg.br).

P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza are with
the Departamento de Engenharia Eletrônica, Universidade Federal de Minas
Gerais, 31270-901 Belo Horizonte, Brazil.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2008.924205

kinds of undesirable perturbations are common in industry line
voltages. These disturbances and their effects on industrial pow-
er equipment are currently subjects of research [12]–[15].

The picture sketched above shows that the development of
robust synchronizing algorithms is needed in order to meet the
growing performance requirements of modern UPSs and other
grid-connected equipment. The figures of merit of a PLL are the
steady state phase-angle error, speed of response to phase, fre-
quency and voltage amplitude disturbances, harmonic rejection
and line unbalance rejection in case of three-phase systems.

In recent years, several PLL algorithms with different char-
acteristics have been developed and presented in the literature
[1]–[11]. However, it is often difficult to recognize their exact
behavior and to compare their performances because the results
are not presented in a quite satisfactory way, i.e., usually in
the form of sawtooth or sine waves that represent the real and
estimated phase angles.

The main objectives of this paper are to evaluate and
to compare three selected single-phase PLL algorithms for
UPS applications under diverse controlled line disturbances by
means of dynamic analysis and experimental phase-angle error
data. Approximate linear models are presented, and parameter
adjustment guidelines are also proposed.

The selected structures have simple digital implementation
and, therefore, low computational burden. The first PLL algo-
rithm is based on fictitious electrical power [power-based PLL
(pPLL)], which is a single-phase version of [1]. The second is
based on the inverse Park transformation (parkPLL) [5], [6],
and the later is based on an adaptive phase detection scheme,
originally called enhanced PLL (EPLL) [8], [9].

II. SINGLE-PHASE PLL STRUCTURES

FOR UPS APPLICATIONS

Despite their differences, all PLL algorithms are derived
from a standard structure which can be divided into three main
sections: phase detector (PD), filter, and voltage controlled
oscillator (VCO), as shown in Fig. 1. The differences from one
PLL to another are concentrated in the PD section, which is
nonlinear in general. The implementation of the filter and VCO
sections is common to all structures covered in this paper. The
linear model shown in Fig. 2 will be used to model the PLLs
throughout this paper. The PD section dynamics are represented
by F (s), the compensator C(s) is a proportional plus integral
controller (PI) needed to meet closed-loop performance spec-
ifications, and, finally, the VCO function is represented as an
integrator.
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Fig. 1. Classical PLL structure.

Fig. 2. PLL linear model.

Fig. 3. Single-phase power PLL.

The input and output of this structure are the line voltage
angle θ and the estimated angle θ̂, respectively. The integration
in the compensator renders the system type II, so it will present
zero steady state error for a step both in input angle and in
input frequency. The feedforward term ωff defines the central
frequency around which the PLL will lock to.

A. pPLL

Fig. 3 displays the block diagram of the single-phase pPLL,
which is a classical structure. Since its PD section is based
on a single multiplier, the analogy with electric power can be
used in order to understand its behavior more intuitively. If the
fictitious power mean p is zero, then the fictitious current is
will be in quadrature with the fundamental of the input
voltage ei. Assuming a purely sinusoidal input voltage ei in the
form V cos θ, in that situation θ̂ equals θ.

The expression of the signal p(θ, θ̂) in Fig. 3 is

p = V cos θ sin θ̂ (1)

or

p =
V

2
sin(θ̂ − θ) +

V

2
sin(θ̂ + θ). (2)

The low-pass filter extracts the mean power p, which is given
by the first term of (2). Considering θ = ωt + φ, θ̂ = ω̂t + φ̂
and allowing ω̂ ∼= ω, for small phase differences φ − φ̂, p can
be approximated by

p ∼= V

2
(φ̂ − φ) (3)

which exhibits the small-signal static PD gain. The PD dy-
namics will rely entirely on the filter structure. As pointed out
by (2), there is a strong drawback to this structure: The product
of input voltage and fictitious current is yields a second har-
monic component which has to be filtered out. Thus, at first
sight, the low-pass filter should have a low cutoff frequency,
which degrades system speed response.

Nevertheless, this drawback can be minimized if the filter
order is increased simultaneously to its cutoff frequency, while
maintaining adequate attenuation at the second harmonic and
small phase lag at the desired open-loop crossover frequency.
Thus, the careful design of the low-pass filter and compensator
must be performed in order to provide good dynamic response
and disturbance rejection. It is worth noticing that either a
dc or a second harmonic component in input signal would
produce a fundamental frequency component in PD output
signal which must also be filtered out. Indeed, according to (2),
each harmonic component of order h and amplitude Vh will
produce two components of orders h ± 1 and amplitude Vh/2
in PD output. Moreover, subharmonic components in very low-
frequency range (1–2 Hz) will produce components around
fundamental frequency in PD output. Hence, it is desirable to
have some attenuation at fundamental frequency so that large
oscillations in the estimated frequency and phase are avoided.
The parameter design guidelines are based on the frequency
response method since the filter order may be high. An iterative
design procedure, based on a trial-and-error approach can be
outlined as follows.

1) Choose the open-loop crossover frequency ωc less than
the fundamental frequency. There is a tradeoff between
speed of response and rejection of DC, subharmonics and
second harmonic in input voltage.

2) Choose filter attenuation at 2 · ωi based on corresponding
ripple ∆θ̂ allowable in estimated angle θ̂, where ωi is the
line input frequency. This will be a first try since the PI
gains are not known yet.

3) Choose filter type and order that meet desired attenuation
with minimum phase delay at ω = ωc.

4) Check filter attenuation at fundamental frequency. If at-
tenuation is not high enough to cope with expected dc
and second harmonic levels in input voltage, change filter
order or cutoff frequency and return to second step.

5) Based on the frequency response M∠φG of cascaded PD,
filter and integrator GPFI(s) = s−1F (s)V/2 at ω = ωc,
where F (s) is the filter transfer function, determine the
PI gains kp and ki that result in required phase margin φm

and crossover frequency ωc

kp =M−1 cos φc (4)

ki = −kpωc tan φc (5)

where φm is the desired phase margin (φm < φG + 180)
and φc = φm − φG − 180◦.

6) Having the gains kp and ki, check if attenuations of
GPFI(s) at ωi and at 2 · ωi are high enough and return
to the second step if necessary.
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Fig. 4. Single-phase inverse Park PLL.

7) Using the diagram of Fig. 2 check dynamic response.
Modify φm and ωc as needed.

In this paper, we have chosen ωc = 10 Hz, ∆θ̂ < 10−3 rad at
120 Hz and φm > 30◦ for 0.8 per unit input voltage amplitude,
what demanded a fourth-order Butterworth-type filter, yield-
ing: φm = 34◦, kp = 160, ki = 3600, |GPFI(s)| = −28 dB at
60 Hz,−58 dB at 120 Hz.

B. parkPLL

Fig. 4 displays the block diagram of the parkPLL [5], [6],
which is a single-phase version of the three-phase SRF PLL [1].
The component vβ of the stationary frame is obtained by inverse
Park transforming the filtered synchronous components v′

d and
v′

q. Thus, a balanced three-phase system is emulated. The time
constants τq and τd of the two first-order filters determine the
PD dynamic behavior. The static gain of the PD section will be
found as follows. The expressions of the transformations are[

vd

vq

]
=

[
sin θ̂ cos θ̂
cos θ̂ − sin θ̂

] [
vα

vβ

]
(6)[

v′
α

vβ

]
=

[
sin θ̂ cos θ̂
cos θ̂ − sin θ̂

] [
v′

d

v′
q

]
. (7)

The filtered components v′
d and v′

q are given in frequency
domain by

v′
d(s) =

vd(s)
τds + 1

(8)

v′
q(s) =

vq(s)
τqs + 1

. (9)

Manipulating (6)–(9), one obtains (10), which describes the
PD large signal behavior in the rotating reference frame. This
expression represents a linear time-varying system because the
state matrix and gain vector are functions of θ̂(t)

d

dt

[
v′

d

v′
q

]
=

[
− sin2 θ̂

τd
− sin θ̂ cos θ̂

τd

− sin θ̂ cos θ̂
τq

− cos2 θ̂
τq

] [
v′

d

v′
q

]
+

[
sin θ̂
τd

cos θ̂
τq

]
vα.

(10)

Considering θ̂ = ω̂t + φ̂, vα = V cos(ωt + φ), and allowing
ω̂ ∼= ω, i.e., estimated frequency equal to the input frequency,
the equilibrium point for the system can be found by zeroing
the derivative terms in (10) and solving for v′

d and v′
q, leading to

V
′
d = V sin φe (11)

V
′
q = V cos φe (12)

where φe = φ̂ − φ, V
′
d and V

′
q are the steady state values of

the PD outputs.
Expression (11) reveals the rationale behind the structural

approach found in this PLL: If the component v′
d is regulated

to zero, φe will also be zero. Moreover, (12) shows that, in this
situation, V

′
q is equal to the input voltage amplitude. Writing

the differential equations for the stationary frame variables v′
α

and v′
β yields

d

dt

[
v′

α

v′
β

]
=

[
−1/τ dθ̂/dt

−dθ̂/dt 0

] [
v′

α

v′
β

]
+

[
1/τ

0

]
vα (13)

where the time constants τd and τq were made equal to τ .
Recognizing dθ̂/dt as the estimated frequency ω̂ and allowing
ω̂ ∼= ω and constant, (13) becomes a SISO linear time invariant
system with sinusoidal excitation, whose characteristic equa-
tion is det(λI − A) = 0 or

λ2 + λ/τ + ω̂2 = 0. (14)

The eigenvalues will depend on τ and ω̂ according to

λ1,2 = − 1
2τ

± 1
2

√
1
τ2

− 4ω̂2 (15)

which shows that this PD is always asymptotically stable
around the equilibrium condition ω̂ ∼= ω. If τ−1 � 2ω̂, i.e.,
if τ is made too small, a pair of real poles will take place.
One of these poles will be λ1 ≈ τ−1 which is fast, but λ2

will approximate zero, and it will dominate the dynamics with
slow time constant. Otherwise, if τ−1 � 2ω̂, a pair of complex
conjugate poles with small real part will occur, which are also
slow and oscillatory. Hence, if fast dynamics are required, the
filter cutoff frequency should be set to 1/τ ≈ 2ω, i.e., the
filter cutoff frequency should be equal to about two times line
frequency.

After applying the Park transformation so that v′
d =

v′
α sin θ̂ + v′

β cos θ̂, and by considering that the oscillating
terms due to sinusoidal excitation will decay to zero according
to the real part in (15), the transfer function of the PD output v′

d

from an abrupt phase change can be approximated by

F (s) =
v′

d(s)
φe(s)

∼= V
′
d

2τs + 1
. (16)

Hence, for small phase differences φ̂ − φ the closed-loop trans-
fer function of the system in Fig. 4 can be approximated by

φ̂(s)
φ(s)

∼= kv
skp + ki

2τs3 + s2 + skvkp + kvki
(17)

where kv is the static PD gain = V .
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Fig. 5. Single-phase EPLL.

Based on (17), the compensator gains can be set up in order
to meet dynamic and disturbance rejection specifications. It is
important to notice that each harmonic component of order h
and amplitude Vh in input voltage will produce two components
of orders h ± 1 in the PD output signal, whose amplitudes Vh1

and Vh2 can be found by writing the steady state equation of the
PD output v′

d for ω = hω̂, yielding

v′
d(t) =

VhV1

2
(h + 1) sin [(h − 1)ωt + φe − φ1]

− VhV1

2
(h − 1) sin [(h + 1)ωt − φe − φ1] (18)

where ω is the input voltage fundamental frequency; Vh is
the input harmonic amplitude; and V1 and φ1 are the gain and
phase of v′

α(s) for s = jω in (13).
By inspection of (18), one concludes that

Vh1 =
VhV1

2
(h + 1) (19)

Vh2 =
VhV1

2
(h − 1). (20)

Therefore, there is a tradeoff between speed of response and
rejection of harmonic components. Furthermore, a dc level in
input voltage will lead to a fundamental frequency oscillation
in the dq components. If harmonics are a concern, the response
of GOL(s) = s−1F (s)C(s) at the harmonic frequencies of
interest may be used as a target parameter for adjusting kp, ki,
and τ .

In this paper, the cutoff frequencies of the d and q filters
were set to 120 Hz, yielding critical damping for the PD. The
PI controller gains were set to kp = 200 and ki = 20 000 for
V = 0.8 per unit, yielding 50-ms settling time and amplitude
attenuation of 20 dB at 120 Hz.

C. EPLL

Fig. 5 displays the block diagram of the EPLL [8], [9]. This
PLL is based on adaptive filter theory. Basically, it reconstructs
in real time the fundamental component of the input signal
by estimating its amplitude, phase, and frequency through the
steepest descent algorithm. The gain K controls the conver-

gence speed of Â, i.e., the estimated line voltage amplitude.
Assuming a purely sinusoidal input voltage ei in the form
V cos θ, the PD static gain can be found by writing the expres-
sion of its output ed as a function of θ, θ̂ and V , yielding

ed =
V

2
sin(θ̂ − θ) +

V

2
sin(θ + θ̂) − Â

2
sin 2θ̂. (21)

Considering θ̂ = ω̂t + φ̂, θ = ωt + φ and allowing ω̂ ∼= ω, (21)
can be approximated by (22) if Â ≈ V

ed
∼= V

2
(φ̂ − φ). (22)

Notice that the phase difference φ̂ − φ is readily available
at PD output without any time delay. Oscillatory terms whose
frequency is about twice input frequency as can be deduced
from (21) will exist only during transient conditions, once they
will fade out as Â converges to V and φ̂ − φ goes to zero in
steady state. Hence, neglecting the PD dynamics and taking
phase φ as input, for small phase differences φ̂ − φ, the EPLL
closed-loop transfer function can be approximated by

φ̂(s)
φ(s)

∼= kv
skp + ki

s2 + skvkp + kvki
(23)

where kv = V/2 is the static PD gain.
The compensator gains can be set up based on (23) in

order to meet closed-loop dynamic and disturbance rejection
specifications. As in the parkPLL, each harmonic component
of order h and amplitude Vh in input voltage will generate two
components of orders h ± 1 in the PD output signal. Therefore,
there is a tradeoff between speed of response and rejection of
harmonic components. In addition, a dc level in input voltage
will lead to a fundamental frequency oscillation in PD output.
If harmonics are a concern, the closed-loop frequency response
at the harmonic frequencies of interest may be used as a target
parameter for adjusting kp and ki.

In the experiments reported in this paper, the amplitude
convergence gain K was set to 200. This gain can be varied in
a wide range with low influence on overall results. The gains of
the PI controller for V = 0.8 per unit were set to kp = 400 and
ki = 40 000, yielding closed-loop damping ζ ≈ 0.63, 40-ms
settling time and amplitude attenuation of 13.4 dB at 120 Hz.

III. EXPERIMENTAL RESULTS

A. General Setup and Practical Issues

Real time experiments based on a digital signal processor
(DSP)—DSP platform were conducted for all three PLL
structures in order to validate the former analysis under several
line input disturbances. The block diagram of the experimental
setup is depicted in Fig. 6. A fixed-point DSP from Texas
Instruments (TMS320F2812) was used to perform both the
PLL algorithms and the generation of their input signal
through a two channel, 10-b D/A converter. In order to present
the results more clearly, the known phase-angle θ and the

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 11, 2009 at 16:23 from IEEE Xplore.  Restrictions apply. 



SANTOS FILHO et al.: COMPARISON OF THREE SINGLE-PHASE PLL ALGORITHMS FOR UPS APPLICATIONS 2927

Fig. 6. Experimental setup overview.

Fig. 7. Correction of the steady-state error in θ̂ due to computational delay.

estimated phase-angle θ̂ were subtracted to allow comparison,
performance evaluation, and model validation based on the
phase-angle error. The host PC was used to select and to issue
preprogrammed line disturbances. Moreover, the PC was also
used to select the output signal to come from one of the D/A
converter channels, while the other channel was kept dedicated
to the emulated line signal.

A sampling frequency of 30 720 Hz was used. This ap-
parently high value is a consequence of the bandwidth re-
quirements of the UPS output voltage control loop rather than
the PLL bandwidth requirements. The system A/D conversion
time and D/A update time are negligible when compared
to sample time. The discretization process has minor effects
in the above modeling provided that sampling frequency is
more than ten times the PLL bandwidth. Nevertheless, the
implementation of low cutoff frequency filters at high sam-
pling rates leads to numeric representation problems, even
when using 32-b word length. The fourth-order Butterworth
filter for the pPLL has been implemented with the help of
the Texas Instruments 32-b filter library, which performs the
filtering through cascaded second-order sections, reducing nu-
meric problems. In addition, it is written in assembly language
optimized to take full advantage of DSP architecture. The Q20
fixed point base was employed for overall calculations, while
the Q30 base was used for filter calculations. The trapezoidal
method was used to implement the integrations because it
yields exact phase equivalence when discretizing continuous
systems.

A computational delay of one sampling time occurs in the
control loop. This delay has negligible effect on stability, since
the closed-loop poles are at low frequency, very far from
Nyquist frequency. However, a steady state error of 2π/N
radians in estimated angle (where N is the number of samples
per fundamental period) occurs due to this one sample time
delay. In the performed experiments N was equal to 512 at
the nominal frequency of 60 Hz, resulting in 0.7◦ steady state
error. Such quite small error value could only be confirmed

Fig. 8. Switch is needed to assure correct free-running in abnormal line
conditions.

with the help of Lissajous (XY) scope plots. This error could
be compensated by adding the value 2π/N to θ̂ before feeding
it back, as shown in Fig. 7. This correction term would need
to vary according to the input frequency. Nevertheless, it yields
satisfactory correction for a range in input frequency variation
of ±15%.

Another important and essential PLL feature for UPS ap-
plications is the ride-through capability, i.e., the PLL output
signal must remain running in the case of unacceptable line
conditions or even in the case of line outage, because this
signal is usually the reference for the UPS inverter control
section. The usual implementation of PLL algorithms found
in the literature does not inherently provide the ride-through
feature since the PI controller will try to follow the reference
even when the line voltage is in an undefined, abnormal con-
dition, or when it is out of PLL lock range. A line quality
algorithm that continuously inspects the line voltage shall turn
a switch in abnormal line situations, so that the PLL output
remains on its nominal condition, as depicted in Fig. 8. This
algorithm must have adequate hysteresis margins and timings
in order to avoid unstable behavior near established quality
thresholds. In this paper, the adopted quality criterion was the
range (−20%, +15%) for the input rms line voltage. Further
discussion of line quality criteria is beyond the scope of this
paper.

B. Experimental Results for the pPLL

Figs. 9 and 10 show the phase-angle error θ − θ̂ and esti-
mated frequency ω̂ responses to a 40◦ phase-angle jump and
to a frequency step of +5 Hz in input voltage, respectively. It
can be seen the good agreement between predicted and actual
results. The oscillations in the variables are not predicted by the
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Fig. 9. pPLL response to a phase-angle jump of 40◦. Top: phase-angle error. Bottom: estimated frequency.

Fig. 10. pPLL response to a frequency step from 60 to 65 Hz. Top: phase-angle error. Bottom: estimated frequency.

Fig. 11. pPLL response to 15% third harmonic injection in input voltage. Top:
phase-angle error. Bottom: input signal to the PLL (0.3 per unit/div).

model since it is an approximation that describes the relation
between estimated angle and input phase difference. The pPLL
locks to the new condition with zero steady-state error within
about seven cycles (120 ms) in both tests.

Fig. 12. pPLL response to a voltage sag of 30% in input voltage. Top: phase-
angle error. Bottom: input signal to the PLL (0.3 per unit/div).

Fig. 11 shows the response to 15% third harmonic injection.
As shown, the pPLL is almost insensitive to harmonics. Fig. 12
shows the voltage sag test response, where it can be seen the
pPLL low sensitivity to input signal amplitude variations.
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Fig. 13. parkPLL response to a phase-angle jump of 40◦. Top: phase-angle error. Bottom: estimated frequency.

Fig. 14. parkPLL response to a frequency step from 60 to 65 Hz. Top: phase-angle error. Bottom: estimated frequency.

Fig. 15. parkPLL response to 15% third harmonic injection in input voltage.
Top: phase-angle error. Bottom: input signal to the PLL (0.3 per unit/div).

C. Experimental Results for the parkPLL

Fig. 13 shows the parkPLL response to a 40◦ phase-angle
jump. The settling time is about three cycles (50 ms) in both

Fig. 16. parkPLL response to a voltage sag of 30% in input voltage.
Top: phase-angle error. Bottom: input signal to the PLL (0.3 per unit/div).

tests. It can be seen the good agreement of predicted and actual
results.

In Fig. 14, the parkPLL locks to the new frequency quickly
with zero steady-state error after a frequency step of +5 Hz
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Fig. 17. EPLL response to a phase-angle jump of 40◦. Top: phase-angle error. Bottom: estimated frequency.

Fig. 18. EPLL response to a frequency step from 60 to 65 Hz. Top: phase-angle error. Bottom: estimated frequency.

Fig. 19. EPLL response to 15% third harmonic injection in input voltage.
Top: phase-angle error. Bottom: input signal to the PLL (0.3 per unit/div).

in input voltage. Fig. 15 shows the response to 15% third
harmonic injection, where an oscillation of about 3◦ peak-to-
peak in steady state is noticeable. Fig. 16 shows the response to
30% voltage sag. The phase-angle error is still small, although
it is higher than the pPLL error to the same test.

Fig. 20. EPLL response to a voltage sag of 30% in input voltage. Top: phase-
angle error. Bottom: input signal to the PLL (0.3 per unit/div).

D. Experimental Results for the EPLL

Fig. 17 shows the response to a 40◦ phase-angle jump in
input voltage. The settling time is about three cycles (40 ms)
for both tests. Fig. 18 shows the response to a frequency
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TABLE I
EXPERIMENTAL RESULTS SUMMARY

step of +5 Hz. The PLL locks to the new frequency quickly
with zero steady state error. The third harmonic injection led
to about 5◦ peak-to-peak error in steady state, as shown in
Fig. 19. The response to 30% voltage sag is shown in Fig. 20.
This result has been confirmed by floating point simulation in
MATLAB.

E. Results Summary

Table I presents a summary of the main time response
parameters and other characteristics found in the experimental
results for the PLLs.

IV. CONCLUDING REMARKS

Three simple different single-phase PLL structures have been
analyzed and their experimental results have been objectively
presented by true phase-angle error data. Schemes for avoiding
unpredictable PLL behavior under abnormal line conditions and
also to compensate for computational delay effect on steady
state phase-angle error have been proposed.

The developed models led to results with good agreement
with experimental data. The modeling error for the parkPLL
PD decreases as the filter time constant τ increases. The models
could only predict the averaged evolution of the estimated
frequencies of the parkPLL and EPLL. The difference between
predicted and actual phase-angle error also decreases when
closed-loop bandwidths of these PLLs are reduced.

The dynamic analysis showed that the EPLL has the fastest
PD, but its output signal highly oscillates at second harmonic
during transient conditions, therefore some filtering may be
required at this frequency depending on the application. The
parkPLL PD has an inherent filtering, but its output also oscil-
lates at second harmonic during transient conditions. The speed
of response of these two PLLs to input angle disturbances can
be increased at the cost of lower harmonic rejection. On the
other hand, the pPLL bandwidth can be extended at the cost of
higher filter order. It is worth to notice that the static PD gain in
all three structures depends on input signal amplitude V .

The proposed method for designing the pPLL filter allowed
the extension of its bandwidth when compared to usual low-

order filtering, while maintaining good attenuation of second
and higher harmonic orders. This shows that the pPLL, when
appropriately tuned, can become almost insensitive to harmon-
ics in the input voltage and to voltage sags. This robustness
is achieved at the cost of only augmenting settling time by a
factor of two when compared to the others structures. Moreover,
this PLL had the lowest computational load, and showed to be
suitable to run under severe line conditions as it is the case of
UPS systems.
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