#### Plug In Vehicle Technology The Case for a Multi-Technology Approach

## COMPETE Coalition

Washington DC

Bill Reinert Advanced Technology Group, Toyota Motor Sales, USA, INC October 5, 2010

## On One Hand: Growing Megacities (>10M)

## Today – 2



New York, NY 18.65M



Los Angeles, CA 12.22M

## 4 Additional by 2050



Atlanta, GA



Chicago, IL



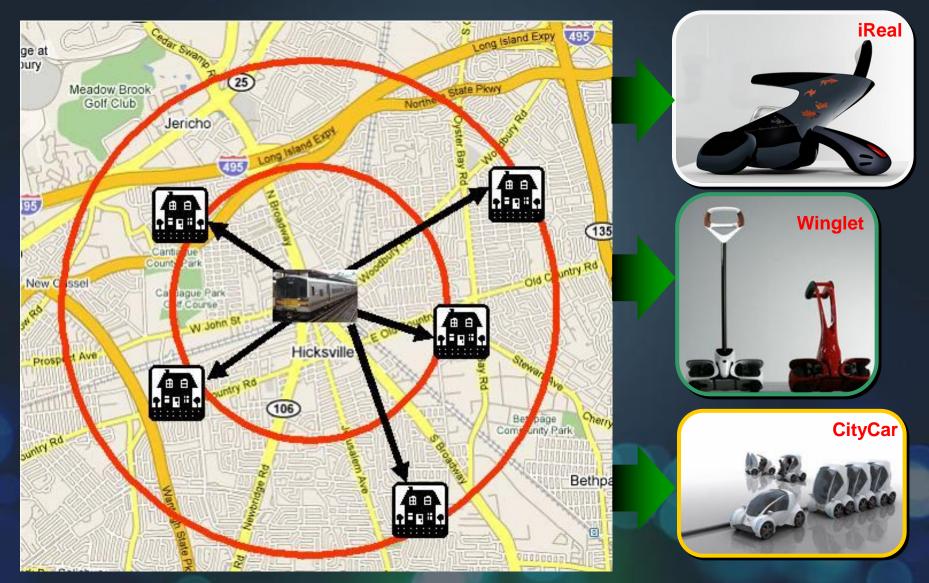
Dallas – Fort Worth, TX



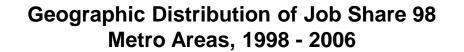
#### Miami, FL

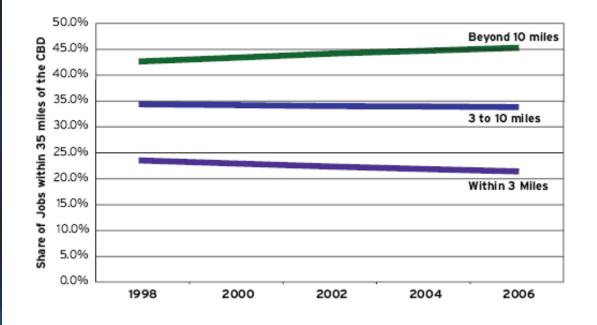
2006 citymayors.com

## **Urban Mass Transport Solutions**



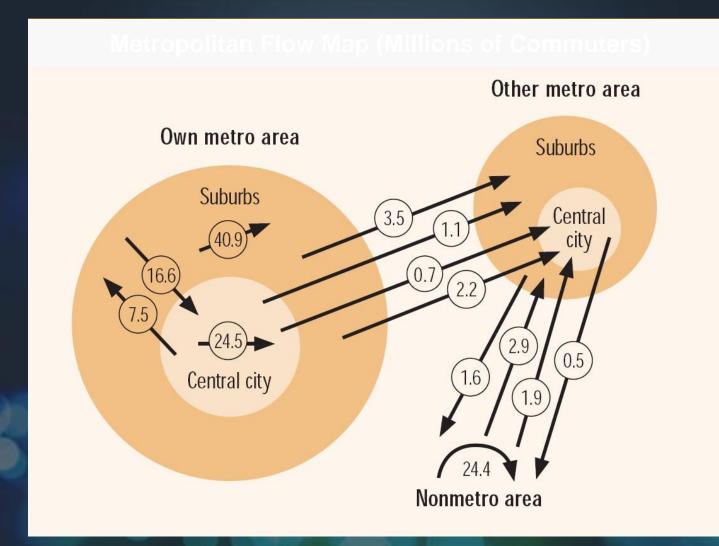

#### **Personal Rapid Transit**




## **Developing Solutions For The Last Mile Problem**

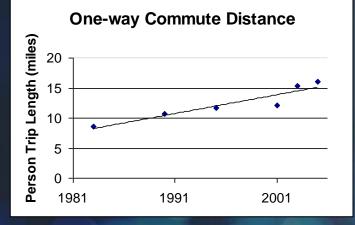



### **On the Other Hand: Populations are Spreading**

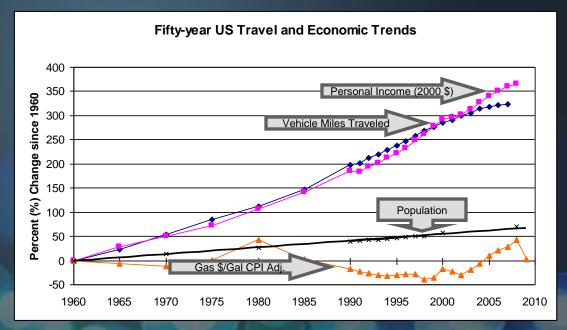




2/3 of US jobs, 3/4 economic output, are within 35 mi of 98 largest central business districts (CBD). Increasingly, they are moving to a ring 10-35 mi from CBD. (Brookings Inst.)


## **Most Commutes Are Suburb to Suburb**



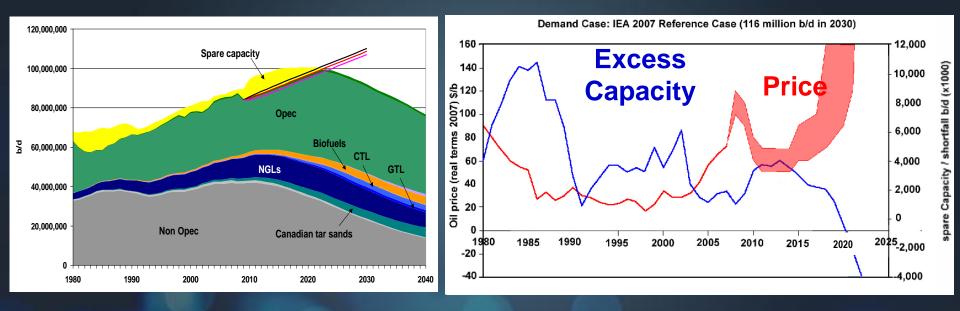

Source Brookings Inst.

## **Unique US Urbanization and Transportation Trends**

- US Vehicle Miles Traveled grows with US economy
- Jobs and housing are decentralizing (despite efforts to do the opposite)
- Commute distance increasing (often between suburbs of metro area)
- Highway car remains critically important to US



National Highway Travel Survey 2001, US Bureau of Transportation Statistics Omnibus Household Survey 2003, ABC News/Time magazine/Washington Post poll 2005




GDP: US Bureau of Economic Analysis, chained 2000 dollars; VMT: "Highway Statistics 2007" Table VMT-421, FHWA; Population: US Census; Gas Price: "Short Term Energy Outlook-October 2009" US Energy Information Administration, annual prices scaled by US CPI in 2008

## **Oil Prices Strongly Influenced by Excess Capacity**

#### **Oil Production Forecast**

#### **Oil Price Forecast**



**Platform Design** 

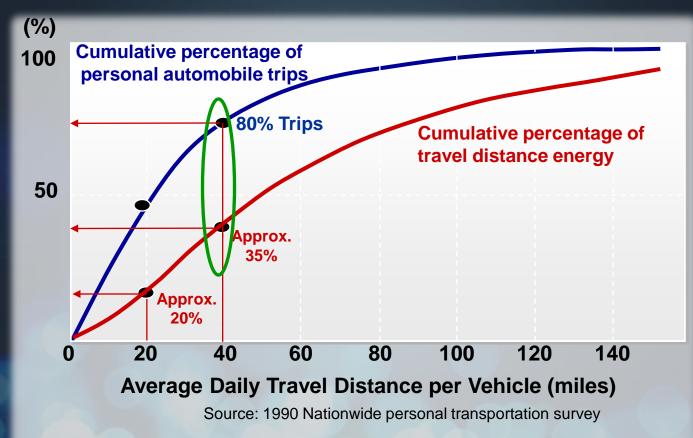
Cheap OilExpensive Oil

Scarce Oil

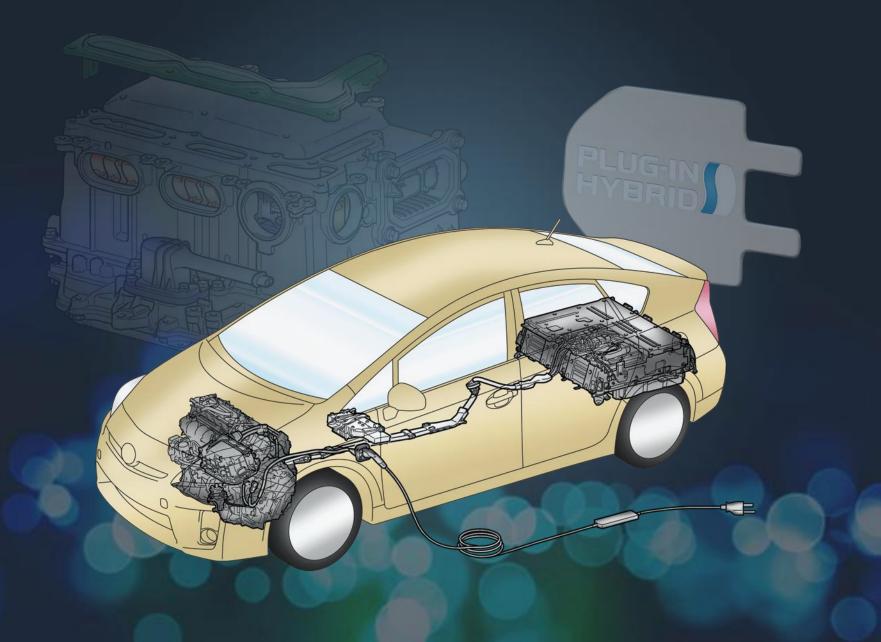
Source: Neftex (Dr. Peter Wells)

## Finding replacements part 1

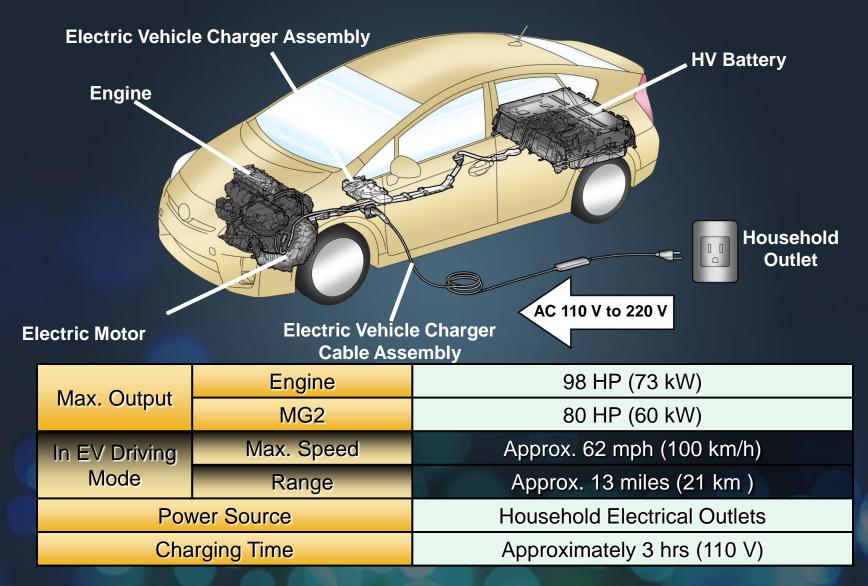
|                             |                                          | Land use             |                                 |                                | Water use<br>(gallons)                    |                          | Energy<br>ratio         | CO <sub>2</sub><br>emissions <sup>a</sup> |                         |
|-----------------------------|------------------------------------------|----------------------|---------------------------------|--------------------------------|-------------------------------------------|--------------------------|-------------------------|-------------------------------------------|-------------------------|
| Fuel<br>source              | Transportation<br>energy<br>displacement | Acres <sup>b</sup>   | Fraction of<br>U.S.<br>cropland | gallons of<br>fuel per<br>acre | MMBTU <sup>e</sup> of<br>fuel per<br>acre | per<br>gallon<br>of fuel | per<br>MMBTU of<br>fuel | BTU input<br>per BTU<br>of fuel           | lb per MMBTU<br>of fuel |
| Conventional gasoline       | 0-100%                                   | a few<br>thousand    | very low                        | •                              | •                                         | 5                        | 45                      | 0.05                                      | 175                     |
| Conventional<br>diesel      | 0-100%                                   | a few<br>thousand    | very low                        | •                              | - 1                                       | 10                       | 80                      | 0.08                                      | 175                     |
|                             | 10%                                      | 4,100                | very low                        | ~4.4 M                         | ~500,000                                  | 3                        | 24                      | ~0.5                                      | ~380                    |
| Coal-to-liquid              | 25%                                      | 10,300               |                                 |                                |                                           |                          |                         |                                           |                         |
|                             | 50%                                      | 20,600               |                                 |                                |                                           |                          |                         |                                           |                         |
| CNG                         | 0-100%                                   | a few<br>thousand    | very low                        |                                | •                                         | n/a                      | ~10 <sup>d</sup>        | ~0.1 <sup>d</sup>                         | ~150                    |
| Heavy crude                 | 0-100%                                   | a few<br>thousand    | very low                        | -                              | -                                         | ~10                      | ~80                     | ~0.25                                     | ~200                    |
| la sta                      | 10%                                      | 7,500°               | very low                        | ~20 M                          | ~65,000                                   | ~6                       | ~45                     | ~0.15                                     | ~240                    |
| <i>In situ</i><br>oil shale | 25%                                      | 19,000°              |                                 |                                |                                           |                          |                         |                                           |                         |
|                             | 50%                                      | 37,000°              |                                 |                                |                                           |                          |                         |                                           |                         |
| Tar sands                   | 10%                                      | 48,000 <sup>c</sup>  | low                             | ~3 M                           | ~350,000                                  | ~5                       | ~38                     | ~0.25                                     | ~180                    |
|                             | 25%                                      | 120,000 <sup>c</sup> |                                 |                                |                                           |                          |                         |                                           |                         |
|                             | 50%                                      | 240,000°             |                                 |                                |                                           |                          |                         |                                           |                         |


Source: Kreider and Associates

## Finding replacements part 2


|                           |                                          | Land use             |                                 |                                | Water use<br>(gallons)                    |                          | Energy<br>ratio         | CO <sub>2</sub><br>emissionsª   |                                  |
|---------------------------|------------------------------------------|----------------------|---------------------------------|--------------------------------|-------------------------------------------|--------------------------|-------------------------|---------------------------------|----------------------------------|
| Fuel<br>source            | Transportation<br>energy<br>displacement | Acres⁵               | Fraction of<br>U.S.<br>cropland | gallons of<br>fuel per<br>acre | MMBTU <sup>e</sup> of<br>fuel per<br>acre | per<br>gallon<br>of fuel | per<br>MMBTU of<br>fuel | BTU input<br>per BTU<br>of fuel | lb per MMBTU<br>of fuel          |
| Conventional gasoline     | 0-100%                                   | a few<br>thousand    | very low                        | -                              | -                                         | 5                        | 45                      | 0.05                            | 175                              |
| Conventional diesel       | 0-100%                                   | a few<br>thousand    | very low                        |                                |                                           | 10                       | 80                      | 0.08                            | 175                              |
|                           | 10%                                      | 65 M                 | 20%                             | 370                            | 28                                        | 170                      | 2200                    | 0.98                            | 350                              |
| Corn-based<br>ethanol     | 25%                                      | 160 M                | 51%                             | 370                            | 28                                        | 180                      | 2300                    | 0.98                            | 350                              |
| ethanor                   | 50%                                      | 337 M                | 103%                            | 360                            | 28                                        | 220                      | 2900                    | 0.98                            | 350                              |
|                           | 10%                                      | 46 M                 | 15%                             | 515                            | 39                                        | 146                      | 1900                    | 0.92                            | 330                              |
| Cellulosic<br>ethanol     | 25%                                      | 112 M                | 35%                             | 515                            | 39                                        | 146                      | 1900                    | 0.92                            | 330                              |
| ethanoi                   | 50%                                      | 228 M                | 72%                             | 510                            | 39                                        | 149                      | 1900                    | 0.92                            | 330                              |
|                           | 10%                                      | 253 M                | 80%                             | 57                             | 7                                         | 900                      | 6900                    | 0.76                            | 240                              |
| Soybean<br>biodiesel fuel | 25%                                      | 380 M                | 120%                            | 57                             | 7                                         | 900                      | 6900                    | 0.76                            | 240                              |
|                           | 50%                                      | 1.2 B                | 390%                            | 57                             | 7                                         | 900                      | 6900                    | 0.76                            | 240                              |
| 1                         | 10%                                      | 2.5 M                | < 1%                            | 6000                           | 800                                       | 50                       | 400                     | 0.2                             |                                  |
| Algaculture               | 25%                                      | 6.5 M                | 2%                              | 6000                           | 800                                       | 50                       | 400                     | 0.2                             | absorbs CO <sub>2</sub><br>waste |
|                           | 50%                                      | 13 M                 | 4 %                             | 6000                           | 800                                       | 50                       | 400                     | 0.2                             |                                  |
| MSW-based<br>ethanol      | 0-100%                                   | tens of<br>thousands | very low                        |                                |                                           | 5                        | 65                      | 0.6                             | ~105                             |

## PHV Role: EV Mode For Short Distance HV Mode for Longer Trips


#### **U.S.** Driving Patterns



## **Toyota's PHV Development**



## **Operation Specifications**

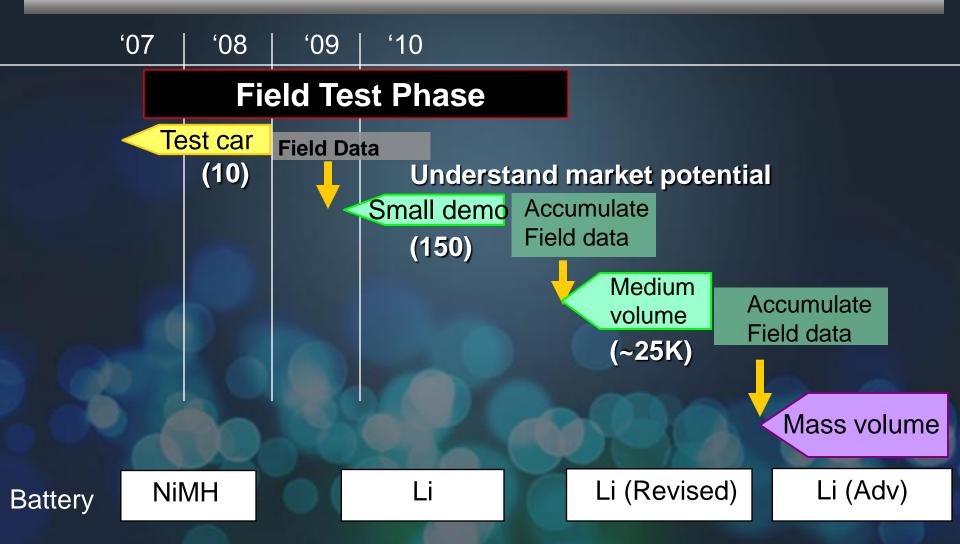


## **HV Battery Cooling**

- Additional fans
- New ductwork
- 42 Temperature Sensors

HV Battery Temperature Sensors (for HV Battery Pack)

> DC/DC Converter Cooling Blower


**Intake Air Ducts** 

Sub 2 Main Sub1 HV Battery Cooling Blowers

HV Battery Temperature Sensors (for Intake Air Duct)

## **Toyota's PHV Introduction Scenario**

Step by Step approach, dependent on Battery Development



## Last Century Urban Mobility Projects


Toyota e-Com shared-use 'community' EVs for employees



Crayon System pay-as-you-go public EV rentals



## **New Urban Mobility – EV Concept**



Range: 50 miles
Charge Time:

 2.5hr/7.5hr (220V/110V)

2012



## **Transition in Personal Mobility**

#### Mobility based on Multiple Modes

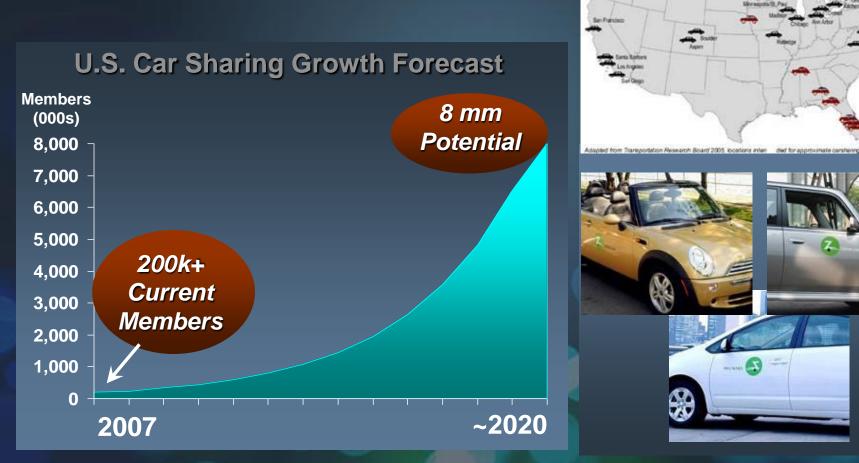
- Car Sharing
- Personal Rapid Transit
- Mass Rapid Transit

#### **Transition will require:**

- **1.** Real-time Communication from Vehicle
  - a) to customer (web portal, Smart Phone)
  - b) to utilities
- 2. Shift to other modes of personal transportation
- 3. Partnerships

Mobility based on Personal Automobile

## **Technology Enables New Possibilities**


#### Wireless Technology Promotes Modal Diversity

Eco Technology Conserves Energy, Reduces CO<sub>2</sub>



## **Car Sharing is Growing**





North American Car-Sharing Cities

Fox Business 2008 (70 Campuses); Innovative Mobility Research 2007 (current members), CNW Research 2008 (8 million forecast)

## **Car Sharing Opens New Market Opportunities**

#### Two Basic Models, OEM Owner and Independen

- OEM Owned Example: Mercedes Smart Car To Go
  - Two Locations, Austin, Texas and Ulm Germany
  - Charge \$.35/minute or \$70 for all day
  - Insurance (and future charging) Provided
  - Mercedes Retains Control of Vehicle
  - Municipality Provides Free Parking
  - Income Stream From Services not From Sales
  - Enabled by Smart Phone Applications

#### Independent Owner Example: Zip Car

- 350,000 Subscribers and Climbing
- 49 US Cities, Plus Toronto, Vancouver and London
- 6000 Vehicles, 70 Different Models
- Largest Car Sharing Operation in the World
- Estimated to be \$1 Billion Company in 5 years (Fortune Magazine)
- iPhone App Finds the Car, Reserves the Car and Unlocks the Car
- Municipalities Provide Dedicated Parking and Charging





## **Key Infrastructure Issues Remain**

#### Vehicle to Grid Communications

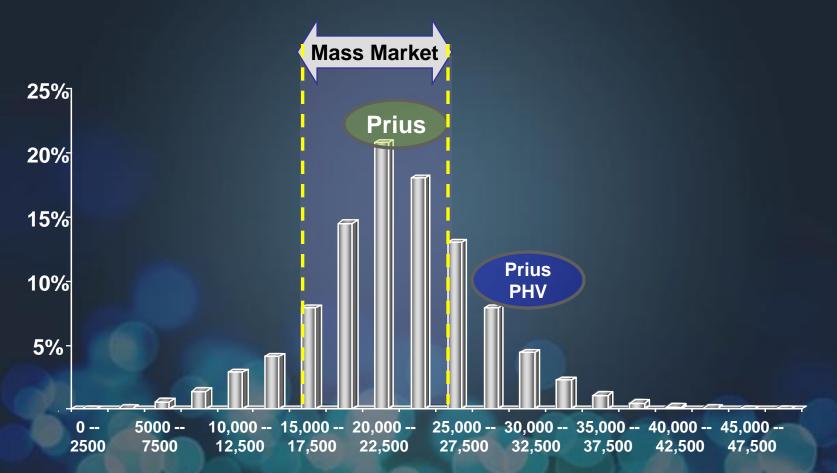
- Electric Utilities have excess electricity <u>generation</u> capacity during off-peak hours – typically at night
- Even during off-peak times, however, there is insufficient electricity <u>distribution</u> capacity for many PEVs to charge at the same time
- → Communication between vehicle and "grid" is necessary to avoid negative impacts to distribution system (such as local outages)

#### Level 2 Charging Equipment

- The majority of customers, particularly larger-capacity BEVs (50+ miles), will need/want L2 (220V) charging at home and business
- The installation of L2 charging equipment is extremely challenging: high cost, lengthy time period, complex interactions among City, Utilities, Contractor, Customer, OEM and Dealer
- $\rightarrow$  Resolving L2 installation issues will be critical for EV market adoption

#### Last Mile Grid System not Developed

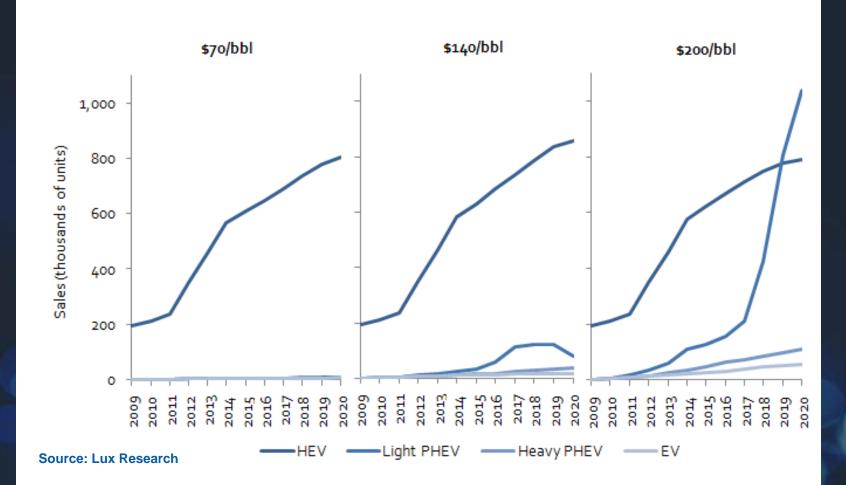
- Old Transformers Cannot Accommodate Multiple EVs Charging in One Neighborhood
- Night Time Charging Limits Charging Hours
- Public Charging Not Assured








## "What the Market will Bear"


#### **2008 Midsize Car Prices**



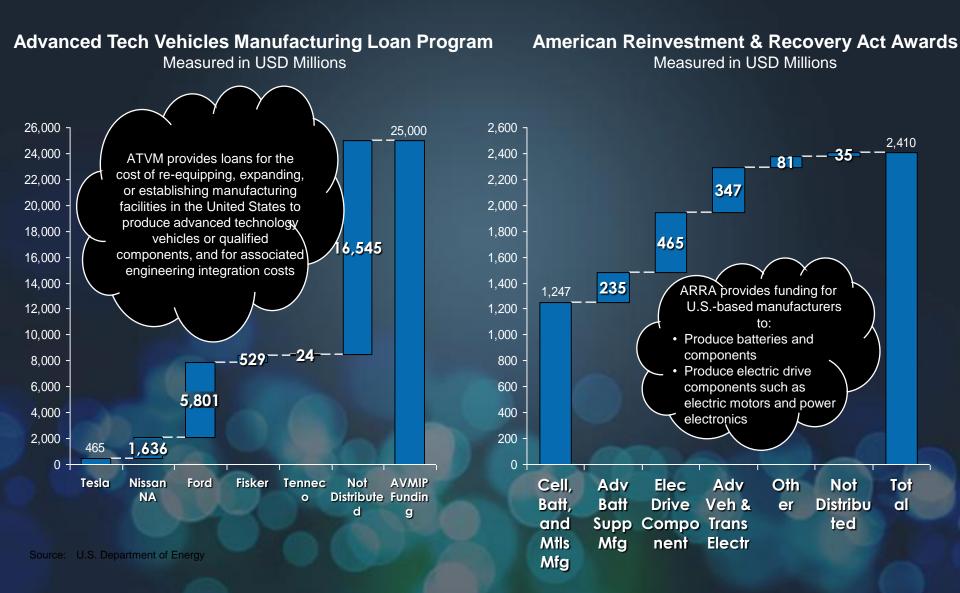
Source: PIN

## The U.S. market is primed for light PHVs .....

#### if oil prices play along

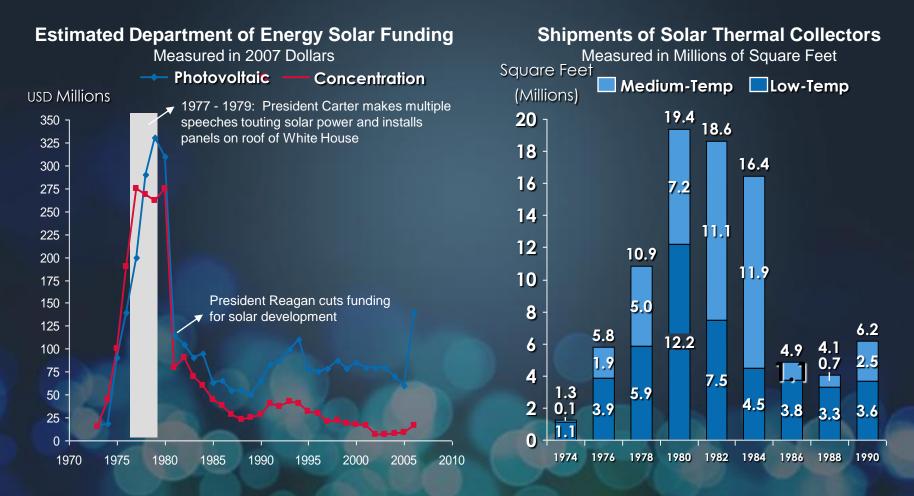


# The Obama administration has made EVs an agenda item...


#### **Energy Plan from Campaign - Key Points**

- Put 1 million plug-in hybrid and/or electric vehicles on the road by 2015
- Ensure 10% of energy comes from renewable sources by 2012 and 25% by 2025
- Implement economy-wide capand-trade program to reduce greenhouse gas emissions 80% from 1990 levels by 2050

#### **Progress vs. Campaign Promises**


- Congress passed energy legislation in 2009 to reduce U.S. emissions below 2005 levels (Senate has not voted on legislation)
  - 17% reduction by 2020
  - **83% reduction by 2050**
- American Recovery and Reinvestment Act included \$2.4 billion in funding for battery development and electric vehicle component

## ...backed by significant financial commitments



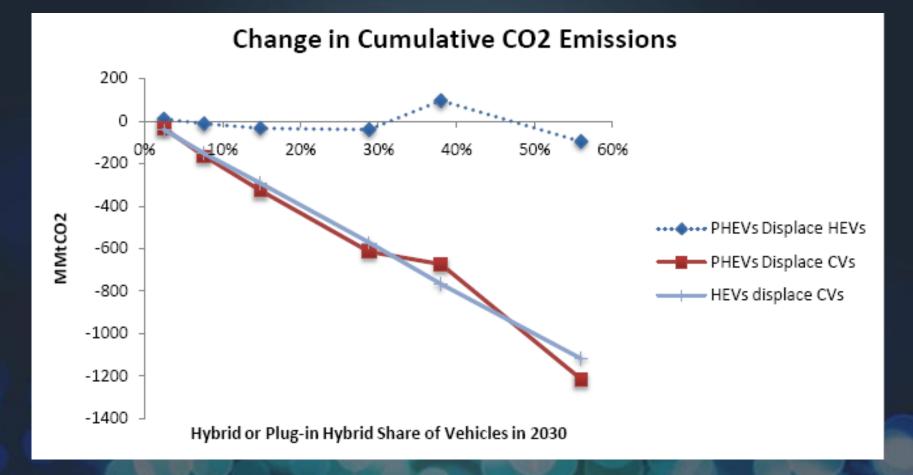
# However, past presidential agenda items such as solar power

#### have struggled once funding was cut



Source: Sissine, "Federal Spending for Solar Energy", Congressional Research Service July 11, 2008; EIA "Solar Thermal Collector Shipments by Type, Price, and Trade 1974 - 2007

## Strong Regulatory Push: Reduce CO<sub>2</sub>




CARB 2050 Vision

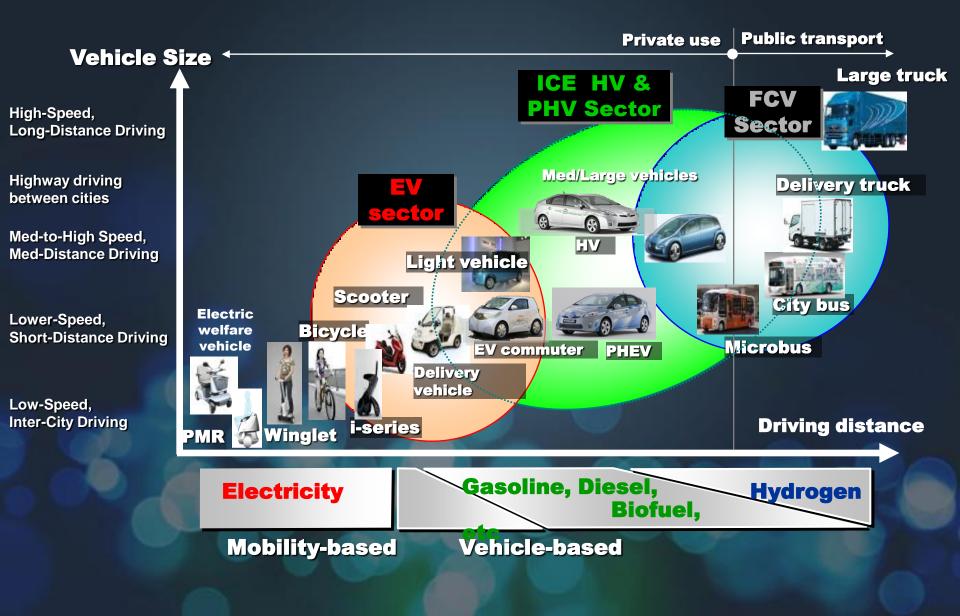
Sources: California Air Resources Board; "[ZEV] White Paper"

- CARB expects BEV/FCV sales volume to surpass conventional gas by 2035 and reach 30% of mix by 2040
- However, the above vision does not achieve the 80% reduction in GHG emissions from 1990 levels by 2050; ZEVs will need to reach 100% of vehicle sales by 2040, to meet the 80% goal

#### **Outside Voices: Evaluation of PHVs, Duke University**



Duke University, Plug-in and regular hybrids: A national and regional comparison of costs and CO<sub>2</sub> emissions.


## **Comparison of Vehicle Powertrain Technologies**

|                         |           |       |     |         | Lifetime<br>energy use |
|-------------------------|-----------|-------|-----|---------|------------------------|
|                         | CO2 equiv | SOx   | NOx | Hg      |                        |
|                         | lb        | lb    | lb  | lb      | ммвти                  |
| Gasoline (30mpg Sentra) | 140,000   | 150   | 160 | 0.00084 | 721                    |
| EV-40 (Current US Grid) | 110,000   | 430   | 210 | 0.00190 | 339                    |
| PHEV-20 (Reduced Volt)  | 100,000   | 270   | 160 | 0.00120 | 409                    |
| HEV (2010 Prius)        | 97,000    | 140   | 120 | 0.00071 | 472                    |
| Fuel Cell (70mi/kg)     | 76,000    | 4,100 | 53  | 0.00047 | 626                    |

## **Comparison of Vehicle Powertrain Technologies**

|                                | Lifetime energy use breakdown |      |         |       |      |  |  |  |
|--------------------------------|-------------------------------|------|---------|-------|------|--|--|--|
|                                | FC                            | HEV  | PHEV-20 | EV-40 | Gas  |  |  |  |
| Material production            | 17%                           | 17%  | 20%     | 25%   | 11%  |  |  |  |
| Vehicle assembly               | 3%                            | 3%   | 4%      | 5%    | 2%   |  |  |  |
| Fuel production /<br>transport | 10%                           | 10%  | 9%      | 5%    | 12%  |  |  |  |
| Vehicle operation              | 63%                           | 63%  | 59%     | 54%   | 71%  |  |  |  |
| Vehicle maintenance            | 3%                            | 3%   | 3%      | 4%    | 2%   |  |  |  |
| Vehicle disposal               | 4%                            | 4%   | 5%      | 7%    | 3%   |  |  |  |
| Total                          | 100%                          | 100% | 100%    | 100%  | 100% |  |  |  |

## **Roles of EV/PHEV/FCV**



## Summary

Apply existing technologies in new ways

- Most of the technologies mentioned already exist, just not yet in the mobility space
- For now smaller battery approaches are more cost effective
  - Implies multiple charge periods throughout the day
- At the end of the day, customer is king
  - All solutions must solve customers problems without creating new ones

Charging solutions to manage the grid may be at odds with customer expectations.