
Competitive Game Development:
Software Engineering as a Team Sport*

Walt Scacchi
Institute for Software Research

and
Center for Computer Games and Virtual Worlds

University of California, Irvine

*Presented at the 2nd. Games and Software Engineering Workshop,
34th. Intern. Conf. Software Engineering, Zurich, 9 June 2012

Overview

• The what, why, how and outcomes of game
software development competitions

• Related efforts in competitive software
development
o software development competitions
o software engineering education and research

• Observations, lessons learned, and
conclusions

The What of game software
development competitions

• Competition affords the opportunity for alternative
interpretations of common game software requirements.

o independent selection of game topic
• “Green field” game software development versus game

modding [Scacchi 2011]
• Goal: present observational results from multi-round field

studies of computer game software development competitions
hosted at UC Irvine, starting in 2010.

Video game development club game demos

The Why of game software
development competitions

• There is growing interest in conducting and facilitating such
competitions for reasons including:
o starting up a local culture of game software development,
o building entries into student resumes in preparation for job placement [cf.

Scacchi 2002, 2004], as well as
o having extracurricular fun outside of coursework that can utilize knowledge

gained inside coursework [Hamilton 2011].
o exercising user-led innovation using tool-kits [von Hippel, 2002, 2005, Franke

and von Hippel 2003]
o gaining SE experience in rapid prototyping, agile development, or accelerated

time-compressed product development
• But do the participating developers learn software

engineering, or what do they learn about SE practices,
techniques, or tools?

Student game developers creating career contingencies
for themselves

The How of game software
development competitions

• Game software engineering process: issues,
constraints, and caveats

o Requirements
o Reuse
o Design
o Code sprint
o Testing and post mortem

• Collaborative game software development tools
• Balancing game SE team competition

Game software requirements
• primary emphasis on creating and satisfying non-functional

requirements for the game as product,
o examples:

 game must be playable in one week!
 provide online video (YouTube) of game demo
 provide external testers all installable game run-time resources

• game software functional requirements are tacit and
undocumented.

• game developers as end-users [Scacchi 2010]
o elicitation of functional requirements can often be much

less complicated than compared to situations where
developers ("us") and users ("them") are distinct groups.

Game software reuse

• What gets reused?
o game development components (e.g., closed/open source software game

engines) and libraries
o game play mechanics, design of play sequences, and play experience
o game content assets, but not misappropriated media assets subject to

copyright.
o knowledge and experience from earlier game development competitions

• Modding as a reuse strategy
o modifying existing games via extension mechanisms like domain-specific

scripting (modding) languages which reuse, modify, or create new game play
mechanics and play experiences [Scacchi 2011]

• Game development tool frameworks (discussed later)

Game software design

• Game design principles [Fullerton et al 2004, Rogers 2010,
Schell 2008] are different from those for software design.

o Game design focuses attention on:
– how to address non-functional requirements for game

characters
– choice of game play mechanics well-suited for the game’s

genre,
– the look and feel of game level or world design,
– user interface design and overlay, etc.

o Little/no focus on game’s software functional requirements.
• Collaborative design of game software arises through shared

online artifacts and persistent online chat records [cf. Elliott,
Ackerman, and Scacchi 2007, Scacchi 2002].

Game code sprint

• a game code sprint or hackathon [Wikipedia 2011] or indie
game jam [Wikipedia 2012]

• Emphasize production of useable game within a pre-specified
period of time, compared to other requirements.
o buildable game source code
o all game content assets provided
o complete run-time executable installation

Game software testing and post mortem
• Game software testing

o Little developer-oriented verification
 if no functional requirements, then testing focuses on

addressing non-functional requirements
o Mostly independent end-user playtesting [Fullerton, et al.

2004].
 Game competition judges act as non-aligned end-user

play testers
• End-user demonstration and game showcase

o Not "demo or die," but shared developer experience
• Post mortem [Grossman 2003]

o common for game developers

Collaborative game software development kits
(SDKs), libraries and components

• Commercial game development frameworks: Microsoft XNA,
GameMaker: Studio, Unreal Development Kit, or Unity 3D,
[Wu and Wang 2011]

• Free/open source software components for game
development like Blender (3D modeling and animation),
OGRE (graphics run-time environment), game engines like
Crystal Space, Delta 3D, and dozens of others [Game
Engines 2012].

• Current SDKs and frameworks tend to reinforce one style (or
genre) of game and game development

o domain-specificity does have its advantages for reuse and
development process familiarization.

Game software development team
management

• Teams not interested in financial incentives or
cash rewards for their efforts
o they want friendly competition, not cut-throat

• They do welcome opportunity to acquire and
employ new, unfamiliar game SDKs in their
project work.

• Emphasis on “winning” the competition is in
shared experience, local “geek fame,” and similar
forms of social capital.

Balancing game software engineering
competition

• Team skill and role-set balancing that seeks to plausibly
equalize the size, composition, and expertise of each game
development team.

• Experienced student game producers help to organize the
game design and development effort.

• Team composition is determined by event organizers
(students) via semi-random assignment of participants to a
team, so participants do not choose which team they join.

• Equalized team role-set composition enables the competition
to resemble a role-playing game.

The Outcomes of game software
development competitions

• Game day: teams showcase their game development results
o External game publishing can follow after competition, for example, on

Microsoft’s XBox Live Indie Game marketplace
• Participants enact career contingencies as accomplished, upcoming game

software developers ready for (entry-level) placement in "industry."
o Game industry versus other non-game industries

• Role-based development efforts good for:
o learning teamwork
o individual contribution
o shared responsibility, and
o technical skill acquisition and demonstration.

• Participants learn how to confront and deal with team members who do not
fulfill or honor their commitment to the team’s effort, schedule, and product
goals.

More Outcomes
• UCI VGDC game video demos at

http://www.clubs.uci.edu/vgdc/blog/showcase
• What doesn’t get addressed during game development

competitions:
o security
o anti-cheating
o commerce and payment systems (e.g., micro-transactions)
o external user-centered requirements elicitation or market-

driven focus group feedback
• Discovering the challenge of time-constrained, team-oriented

computational thinking [cf. Wing 2006].

http://www.clubs.uci.edu/vgdc/blog/showcase

Related Game R&D Efforts
• ACM Programming Contest

o focusing on production of correct solutions, not SE.

• Commercial or independent game industry
sponsored competitions
o Microsoft Imagine Cup
o Make Something Unreal (Epic Games, Intel)

• Participation involves use of vendor-specific game
software tools or game creation libraries
o Limit technical choices and game genre

• Game Festivals
o IGDA Global Game Jam, IndieCade, etc.
o Focus on game as product, not teams, nor SE

More related efforts
• Robocup competition [Barrera, et al 2005]

o The organization of the Robocup consciously fosters the
use of free OSS software as a way of improving the level
of the competition.

o All software produced by the organization is therefore
released under a free software license and most of the
teams do share their code.

o Winning code is distributed to next year's contestants (i.e.,
encourages design/code reuse)

• Google Summer of Code
o Students "compete" to be selected to work on OSS project

and receive financial stipend for successful internship. Not
team-oriented, mostly code sprint.

Games in Software Engineering
Education
• Teaching introductory and specialized SE concepts using

games [Claypool and Claypool 2005, Sweedyk and Keller
2005, Wang 2011]
o positive effect is that students are clearly motivated by game projects which

likely resulted in higher enrollments and more effort put into the project.

• Games that model and simulate a team-oriented approach to
SE process and project management education [Navarro and
van der Hoek 2004, 2010, Longstreet and Cooper 2012, Zhu
et al, 2007]
o SE project work as a role-playing game

• Modding as an approach to end-user game software
engineering using software extension techniques and tools
common to OSS development [Scacchi 2004, 2011].

Observations, Lessons Learned and
Conclusions

• Game software development competitions are fun, hard work,
low-cost, short-term, intensive, and not motivated nor
rewarded academically (no grades or tests given).

• Game software development competitions can serve as a
testbed for exploring, observing, or evaluating new SE tools,
techniques and concepts.
o Equalized and balanced competitions represent time-compressed ways and

means for conducting empirical SE studies.
● These competitions may help students and others in industry

learn the value of presenting SE experiences that entail tough
technical, time-constrained team collaboration challenges, that
are perceived as a fun thing to do.

More observations and conclusions
• Game-centric SE may be a viable strategy for helping

to make SE education more fun and engaging.
Games are a medium and strategy for updating SE
education.

• Balanced team-oriented game development
competitions can be used as:
● ways and means for advancing SE education
● conducting empirical studies of SE processes and

tools in time-compressed schedules [cf.
Bendifallah and Scacchi 1989].

More observations and conclusions
• The subjective criteria employed to evaluate the products or

results of game development competitions represent an
expansion of topics addressing the importance of non-
functional software requirements over functional requirements
in this domain for software engineering.

• Game development competitions also represent a relatively
unexplored domain for empirical studies of collaborative
teamwork in software development [Mistrik, et al 2010],
● those that rely on online artifacts (e.g., game design

documents, persistent chat transcripts, game screen layout
and artwork mockups) within shared repositories and other
social media [FutureCSD 2012, Scacchi 2010].

Acknowledgements

• Thanks for the hundreds of students within the
UCI Video Game Developers Club for their
efforts. http://www.clubs.uci.edu/vgdc/blog

• The research described in this presentation has
been supported by grants #0808783 and
#1041918 from the National Science Foundation.

• No review, approval or endorsement implied.

http://www.clubs.uci.edu/vgdc/blog

References
ACM (2012). ACM International Collegiate Programming Contest, Accessed 29 May 2012. http
Barrera, P., Robles, G., Canas, J.M., Martın, F., Matellan, V. (2005). Impact of Libre Software Tools and Methods in the Robotics Field, Proc. 2005
Workshop on Open Source Software Engineering, ACM, New York.
Bendifallah, S. and Scacchi, W. (1989). Work Structures and Shifts: An Empirical Analysis of Software Specification Teamwork, Proc. 11th. Intern.
Conf. Software Engineering , Pittsburgh, PA, ACM and IEEE Computer Society, 260-270, May.
Claypool, K. and Claypool, M. (2005). Teaching software engineering through game design, in Proceedings of the 10th Annual SIGCSE
Conference on innovation and Technology in Computer Science Education (ITiCSE '05), pp. 123–127, Caparica, Portugal.
Elliott, M., Ackerman, M.S., and Scacchi, W. (2007). Knowledge Work Artifacts: Kernel Cousins for Free/Open Source Software Development,
Proc. ACM Conf. Support Group Work (Group07), Sanibel Island, FL, 177-186, November 2007.
Franke, N., & Hippel, E. V. (2003). Satisfying heterogeneous user needs via innovation toolkits: the case of Apache security software.
Research Policy, 32(7), 1199-1215.
Game Engines (2012). Free, cross-platform, real-time 3D engines. http. Also see List of Game Engines, http , Accessed 29 May 2012.
Fullerton, T., Swain, C., Hoffman, S. (2004). Game Design Workshop: Designing, Prototyping and Playtesting Games. CMP Books, February 2004.
FutureCSD (2012). Workshop on the Future of Collaborative Software Development, ACM Conf. Computer-Supported Cooperative Work, Seattle,
WA, February. Accessed 29 May 2012, http
Hamilton, I. (2011). UCI Students Build Games in a Week, Orange County Register, 13 April 2011, http Accessed 17 February 2012.
IEEE GameSIG (2012). Intercollegiate Game Showcase. Accessed 29 May 2012. http
Longstreet, S. and Cooper, K. (2012). Using Games in Software Engineering Education to Increase Student Success & Retention, Online poster,
Accessed 30 May 2012. http
Mistrík, I., Grundy, J., van der Hoek, A., and Whitehead, J. (2010), Collaborative Software Engineering, Springer, New York.
Navarro, E. and van der Hoek, A. (2004). Software Process Modeling for an Educational Software Engineering Simulation Game, Software Process
Improvement and Practice: 10 (3), 311-325.
Navarro, E. and van der Hoek, A. (2010). Multi-Site Evaluation of SimSE, Proc. 40th. ACM Technical Symposium on Computer Science Education,
Chattanooga, TN, March 2009.

http://en.wikipedia.org/wiki/ACM_International_Collegiate_Programming_Contest
http://freegamedev.net/wiki/Free%2C_cross-platform%2C_real-time_3D_engines
http://en.wikipedia.org/wiki/List_of_game_engines
http://research.microsoft.com/en-us/events/futurecsd/
http://ocunwired.ocregister.com/2011/04/13/uci-students-build-games-in-a-week/7131/
http://occs.ieee.org/gamesig/showcase/
http://www.utdallas.edu/~kcooper/SimSYS/Longstreet_Cooper_UTDallas_Poster.pdf

References
Rogers, S. (2010). Level Up!: The Guide to Great Video Game Design, Wiley.
Salen, K. (2007). Gaming Literacies: A Game Design Study in Action. J. Educational Multimedia and Hypermedia, 16(3), 301-22.
Scacchi, W. (2002). Understanding the requirements for open source software development, IEE Proceedings--Software, 149(1), 24-39,
February 2002.
Scacchi, W. (2004). Free/open source software practices in the game development community, IEEE Software, 21(1), 59-67,
January/February.
Scacchi, W. (2010). Collaboration Practices and Affordances in Free/Open Source Software Development in I. Mistrík, J. Grundy, A. van der
Hoek, and J. Whitehead, (Eds.), Collaborative Software Engineering, Springer, New York, 307-328, 2010.
Scacchi, W. (2011). Modding as an Open Source Software Approach to Extending Computer Game Systems, in S. Hissam, B. Russo, M.G.
de Mendonca Neto, and F. Kan (Eds.), Open Source Systems: Grounding Research, Proc. 7th. IFIP Intern. Conf. Open Source Systems , 62-74, IFIP
ACIT 365, Salvador, Brazil, October 2011. Also appears in Intern. J. Open Source Software & Processes, 3(3), 2012.
Schell, J. (2008). The Art of Game Design: A book of lenses, Morgan Kauffman.
Sweedyk, E. and Keller, R.M. (2005). Fun and games: a new software engineering course, ACM SIGCSE Bulletin, 37(3), 138–142.
von Hippel, E. (2005). Democraticizing Innovation, MIT Press, Cambridge, MA.
von Hippel, E., & Katz, R. (2002). Shifting Innovation to Users via Toolkits. Management Science, 48(7), 821-833.
Wikipedia, Hackathon, http. Also known as Code Sprint. Accessed 17 February 2012.
Wing, J.M., (2006). Computational Thinking, Communications ACM, 49(3), 33-35.

Wang, A.I. (2011) Extensive Evaluation of Using a Game Project in a Software Architecture Course, ACM Transactions on Computing
Education 11(1), February 2011.
Wu, B. and Wang, A.I. (2011). Game Development Frameworks for SE Education, 2011 Intern. Games Innovation Conference , IEEE Consumer
Electronics Society, Orange, CA, 98-100.
Zhu, Q., Wang, T., and Tan, S. (2007). Adapting game technology to support software engineering process teaching: from SimSE to MO-
SEProcess , in Proc. 3rd Intern. Conf. on Natural Computation, (ICNC '07) , 777–780, Haikou, China, August.

http://en.wikipedia.org/wiki/Hackthon

	Slide 1
	Overview
	The What of game software development competitions
	Slide 4
	The Why of game software development competitions
	Slide 6
	The How of game software development competitions
	Game software requirements
	Game software reuse
	Game software design
	Slide 11
	Slide 12
	Game code sprint
	Game software testing and post mortem
	Slide 15
	Game software development team management
	Balancing game software engineering competition
	The Outcomes of game software development competitions
	More Outcomes
	Related Game R&D Efforts
	More related efforts
	Games in Software Engineering Education
	Observations, Lessons Learned and Conclusions
	More conclusions
	Slide 25
	Acknowledgements
	Slide 27
	Slide 28

