
Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
1

Compiler Optimization and
Code Generation

Professor: Sc.D., Professor
 Vazgen Melikyan

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
2

Course Overview

  Introduction: Overview of Optimizations
  1 lecture

  Intermediate-Code Generation
  2 lectures

  Machine-Independent Optimizations
  3 lectures

  Code Generation
  2 lectures

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
3

Intermediate-Code Generation

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
4

Logical Structure of a Compiler Front
End
  In the analysis-synthesis model of a compiler, the front end analyzes

a source program and creates an intermediate representation, from
which the back end generates target code.

 Parser
Static

Checker
Intermediate Code

Generator
Code

Generator
Intermediate

code

Front End Back End

  Static checking:
  Type checking: ensures that operators are applied to compatible

operands
  Any syntactic checks that remain after parsing

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
5

Type Checking
  Each operation in a language

  Requires the operands to be predefined types of values
  Returns an expected type of value as result

  When operations misinterpret the type of their operands,
the program has a type error

  Compilers must determine a unique type for each
expression
  Ensure that types of operands match those expected by an

operator
  Determine the size of storage required for each variable

  Calculate addresses of variable and array accesses

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
6

Value of Intermediate Code
Generation
  Typically the compiler needs to produce machine code or

assembler for several target machines.
  The intermediate code representation is neutral in

relation to target machine, so the same intermediate
code generator can be shared for all target languages.

  Less work in producing a compiler for a new machine.
  Machine independent code optimization can be applied.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
7

Main Methods of Intermediate Code (IC)
Generation
  Two main forms used for representing

intermediate code:
  Postfix Notation: the abstract syntax tree is linearized

as a sequence of data references and operations.
  For instance, the tree for : a * (9 + d) can be

mapped to the equivalent postfix notation: a9d+*
  Quadruples: All operations are represented as a 4-part

list:
  (op, arg1, arg2, result)

  E.g., x := y + z -> (+ y z x)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
8

Commonly Used Intermediate
Representations
  Possible IR forms

  Graphical representations: such as syntax trees, AST
(Abstract Syntax Trees), DAG

  Postfix notation
  Three address code
  SSA (Static Single Assignment) form

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
9

Compiling Process without
Intermediate Representation

C

Pascal

FORTRAN

C++

SPARC

HP PA

x86

IBM PPC

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
10

Compiling Process with Intermediate
Representation

C

Pascal

FORTRAN

C++

SPARC

HP PA

x86

IBM PPC

IR

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
11

Direct Acyclic Graph (DAG)
Representation
  Example: F = ((A+B*C) * (A*B*C))+C

F

=

+

C

+ *
*

B
A

*

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
12

Postfix Notation: PN
  A mathematical notation wherein every operator follows

all of its operands.
 Example: PN of expression a* (b+a) is abc+*

  Form Rules:
  If E is a variable/constant, the PN of E is E itself.
  If E is an expression of the form E1 op E2, the PN of E

is E1 ’E2 ’op (E1 ’ and E2 ’ are the PN of E1 and E2,
respectively.)

  If E is a parenthesized expression of form (E1), the PN
of E is the same as the PN of E1.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
13

Three Address Code
  The general form: x = y op z

  x,y,and z are names, constants, compiler-generated
temporaries

  op stands for any operator such as +,-,…
  A popular form of intermediate code used in optimizing

compilers is three-address statements.
  Source statement: f = a+b*c+e

 Three address statements with temporaries t1 and t2:
 t1 = b* c
 t2 = a + t1
 f = t2 + e

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
14

DAG vs. Three Address Code
  Three address code is a linearized representation of a syntax tree

(or a DAG) in which explicit names (temporaries) correspond to the
interior nodes of the graph.
 Expression: F = ((A+B*C) * (A*B*C))+C

F

=

+

C

+ *
*

B
A

*

T1 := A
T2 := C
T3 := B * T2
T4 := T1+T3
T5 := T1*T3
T6 := T4 * T5
T7 := T6 + T2
F := T7

T1 := B * C
T2 := A+T1
T3 := A*T1
T4 := T2*T3
T5 := C
T6 := T4 + T5
D := T6

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
15

Types of Three-Address Statements
  Assignment statements:

  x := y op z, where op is a binary operator
  x := y op z, where op is a binary operator

  Copy statements
  x := y

  The unconditional jumps:
  goto L

  Conditional jumps:
  if x relop y goto L

  param x and call p, n and return y relating to procedure calls
  Assignments:

  x := y[i]
  x[i] := y

  Address and pointer assignments:
  x := &y, x := *y, and *x = y

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
16

Generating Three-Address Code
  Temporary names are made up for the interior nodes of

a syntax tree
  The synthesized attribute S.code represents the code for

the assignment S
  The nonterminal E has attributes:

  E.place is the name that holds the value of E
  E.code is a sequence of three-address statements evaluating E

  The function newtemp returns a sequence of distinct
names

  The function newlabel returns a sequence of distinct
labels

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
17

Assignments
Production Semantic Rules

S -> id := E S.code := E.code || gen(id.place ':=' E.place)
E -> E1 + E2 E.place := newtemp;

E.code := E1.code || E2.code ||
 gen(E.place ':=' E1.place '+' E2.place)

E -> E1 * E2 E.place := newtemp;
E.code := E1.code || E2.code ||
 gen(E.place ':=' E1.place '*' E2.place)

E -> -E1 E.place := newtemp;
E.code := E1.code || gen(E.place ':=' 'uminus’E1.place)

E -> (E1) E.place := E1.place;
E.code := E1.code

E -> id E.place := id.place;
E.code := ‘‘

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
18

Incremental Translation

  Code attributes can be long strings, so they are
usually generated incrementally.

  Instead of building up E.code only the new
three-address instructions are generated.

  In the incremental approach, gen not only
constructs a three-address instruction, it
appends the instruction to the sequence of
instructions generated so far.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
19

Incremental Translation: Examples
Production Semantic Rules

S -> id := E gen(top.gen(id.lexeme) ‘:=' E.addr);

E -> E1 + E2 E.addr := new Temp();
gen(E.addr ‘:=' E1.addr '+' E2.addr);

E -> -E1 E. addr := new Temp();
gen(E. addr ‘:=' 'minus' E1. addr) ;

E -> (E1) E.addr := E1.addr

E -> id E.addr := top.get(id.lexeme);

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
20

While Statement

E.code

if E.place = 0 goto S.after

S1.code

goto S.begin
…

S.begin:

S.after:

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
21

Quadruples
  A quadruple is a record structure with four fields: op,

arg1, arg2, and result
  The op field contains an internal code for an operator
  Statements with unary operators do not use arg2
  Operators like param use neither arg2 nor result
  The target label for conditional and unconditional jumps are in

result

  The contents of fields arg1, arg2, and result are typically
pointers to symbol table entries
  If so, temporaries must be entered into the symbol table as they

are created
  Obviously, constants need to be handled differently

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
22

Quadruples: Example

op arg1 arg2 result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) assign t5 a

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
23

Triples

  Triples refer to a temporary value by the position of the
statement that computes it
  Statements can be represented by a record with only three fields:

op, arg1, and arg2
  Avoids the need to enter temporary names into the symbol table

  Contents of arg1 and arg2:
  Pointer into symbol table (for programmer defined names)
  Pointer into triple structure (for temporaries)
  Of course, still need to handle constants differently

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
24

Triples : Example

op arg1 result

(0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
25

Declarations

  A symbol table entry is created for every declared name
  Information includes name, type, relative address of

storage, etc.
  Relative address consists of an offset:

  Offset is from the field for local data in an activation record for
locals to procedures

  Types are assigned attributes type and width (size)
  Becomes more complex if dealing with nested

procedures or records

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
26

Declarations: Example
Production Semantic Rules

P -> D offset := 0
D -> D ; D
D -> id : T enter(id.name, T.type, offset);

offset := offset + T.width
T -> integer T.type := integer;

T.width := 4
T -> real T.type := real

T.width := 8
T -> array[num] of T1 T.type := array(num, T1.type);

T.width := num * T1.width
T -> ↑T1 T.type := pointer(T1.type);

T.width := 4

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
27

Translating Assignments
Production Semantic Rules

S -> id := E p := lookup(id.name);
if p != NULL then emit(p ':=' E.place)
else error

E -> E1 + E2 E.place := newtemp;
emit(E.place ':=' E1.place '+' E2.place)

E -> E1 * E2 E.place := newtemp;
emit(E.place ':=' E1.place '*' E2.place)

E -> -E1 E.place := newtemp;
emit(E.place ':=' 'uminus' E1.place)

E -> (E1) E.place := E1.place
E -> id p := lookup(id.name);

if p != NULL then E.place := p
else error

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
28

Addressing Array Elements

  The location of the i-th element of array A is:

 base + (i – low) * w
  w is the width of each element
  Low is the lower bound of the subscript
  Base is the relative address of a[low]

  The expression for the location can be rewritten as:
 i * w + (base – low * w)

  The subexpression in parentheses is a constant
  That subexpression can be evaluated at compile time

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
29

Semantic Actions for Array
References

Production Semantic Rules
S -> id := E gen(top.get(id.lexeme) ':=' E.addr)

E -> E1 + E2 E.addr=newTemp();
gen(E. addr '=' E1. addr '+' E2. addr) ;

 | L = E gen(L. addr. base '['L. addr ']' '=' E. addr);

 | id E.addr = top.get(id.lexeme)

L -> id [E] L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L. addr = new Temp 0;
gen(L.addr '=' E.addr '*' L.type.width);

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
30

Type Conversions

  There are multiple types (e.g. integer, real)
for variables and constants
  Compiler may need to reject certain mixed-type

operations
  At times, a compiler needs to general type conversion

instructions

  An attribute E.type holds the type of an
expression

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
31

Boolean Expressions
  Boolean expressions compute logical values
  Often used with flow-of-control statements
  Methods of translating Boolean expression:

  Numerical:
  True is represented as 1 and false is represented as 0
  Nonzero values are considered true and zero values are

considered false

  Flow-of-control:
  Represent the value of a Boolean by the position reached in a

program
  Often not necessary to evaluate entire expression

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
32

Boolean Expressions: Examples
Production Semantic Rules

E -> E1 or E2 E1.true := E.true;
E1.false := newlabel;
E2.true := E.true;
E2.false := E.false;
E.code := E1.code || gen(E1.false ':') || E2.code

E -> E1 and E2 E1.true := newlabel;
E1.false := E.false;
E2.true := E.true;
E2.false := E.false;
E.code := E1.code || gen(E1.true ':') || E2.code

E -> not E1 E1.true := E.false;
E1.false := E.true;
E.code := E1.code

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
33

Boolean Expressions: Examples (2)
Production Semantic Rules

E -> (E1) E1.true := E.true;
E1.false := E.false;
E.code := E1.code

E -> id1 relop id2 E.code := gen('if' id.place
relop.op id2.place 'goto'
E.true) ||
gen('goto' E.false)

E -> true E.code := gen('goto' E.true)

E -> false E.code := gen('goto' E.false)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
34

Flow-of-Control
  The function newlabel returns a new symbolic

label each time it is called
  Each Boolean expression has two new

attributes:
  E.true is the label to which control flows if E is true
  E.false is the label to which control flows if E is false

  Attribute S.next of a statement S:
  Inherited attribute whose value is the label attached to

the first instruction to be executed after the code for S
  Used to avoid jumps

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
35

Flow-of-Control: Examples
Production Semantic Rules

S -> if E then S1 E.true := newlabel;
E.false := S.next;
S1.next := S.next;
S.code := E.code || gen(E.true ':') || S1.code

S -> if E then S1 else S2 E.true := newlabel;
E.false := newlabel;
S1.next := S.next;
S2.next := S.next;
S.code := E.code || gen(E.true ':') || S1.code || gen('goto'
S.next) || gen(E.false ':') || S2.code

S -> while E do S1 S.begin := newlabel;
E.true := newlabel;
E.false := S.next;
S1.next := S.begin;
S.code := gen(S.begin ':') || E.code || gen(E.true ':') ||
S1.code || gen('goto' S.begin)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
36

Labels and Goto Statements

  The definition of a label is treated as a declaration of the
label

  Labels are typically entered into the symbol table
  Entry is created the first time the label is seen
  This may be before the definition of the label if it is the target of any

forward goto

  When a compiler encounters a goto statement:
  It must ensure that there is exactly one appropriate label in the current

scope
  If so, it must generate the appropriate code; otherwise, an error should

be indicated

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
37

Return Statements

  Several actions must also take place when a
procedure terminates
  If the called procedure is a function, the result must be stored in a

known place
  The activation record of the calling procedure must be restored
  A jump to the calling procedure's return address must be

generated

  No exact division of run-time tasks between the
calling and called procedure

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
38

Pass by Reference

  The param statements can be used as placeholders for
arguments

  The called procedure is passed a pointer to the first of
the param statements

  Any argument can by obtained by using the proper offset
from the base pointer

  Arguments other than simple names:
  First generate three-address statements needed to evaluate

these arguments
  Follow this by a list of param three-address statements

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
39

Pass by Reference Using a Queue

  The code to evaluate arguments is emitted first,
followed by param statements and then a call

  If desired, could augment rules to count the
number of parameters

Production Semantic Rules
S -> call id (Elist) for each item p on queue do

emit('param' p); emit('call' id.place)
Elist -> Elist, E push E.place to queue

Elist -> E initialize queue to contain E

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
40

Backpatching

  A key problem when generating code for Boolean
expressions and flow-of-control statements is that of
matching a jump instruction with the target of the jump.

  Backpatching uses lists of jumps which are passed as
synthesized attributes.

  Specifically, when a jump is generated, the target of the
jump is temporarily left unspecified. Each such jump is
put on a list of jumps whose labels are to be filled in
when the proper label can be determined.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
41

One-Pass Code Generation using
Backpatching
  Generate instructions into an instruction array, and labels

will be indices into this array. To manipulate lists of
jumps, three functions are used:
  makelist(i) creates a new list containing only i, an

index into the array of instructions; makelist returns a
pointer to the newly created list.

  merge(pl , p2) concatenates the lists pointed to by pl
and p2 , and returns a pointer to the concatenated list.

  backpatch(p, i) inserts i as the target label for each of
the instructions on the list pointed to by p.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
42

Predictable Success

