

Second Edition

Alfred V. Aho
Columbia University

Monica S. Lam
Stanford University

Ravi Sethi
Ava ya

Jeffrey D. Ullman
Stanford University

Boston San Francisco NewYork
London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher
Executive Editor
Acquisitions Editor
Project Editor
Associate Managing Editor
Cover Designer
Digital Assets Manager
Media Producer
Senior Marketing Manager
Marketing Assistant
Senior Author Support1

Technology Specialist
Senior Manufacturing Buyer

Cover Image

Greg Tobin
Michael Hirsch
Matt Goldstein
Katherine Harutunian
Jeffrey Holcomb
Joyce Cosentino Wells
Marianne Groth
Bethany Tidd
Michelle Brown
Sarah Milmore

Joe Vetere
Carol Melville

Scott Ullman of Strange Tonic Productions
(www. strangetonic.com)

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

This interior of this book was composed in L*T~X.

Library of Congress Cataloging-in-Publication Data

Compilers : principles, techniques, and tools 1 Alfred V. Aho ... [et al.]. -- 2nd ed.
p. cm.

Rev. ed. of: Compilers, principles, techniques, and tools / Alfred V. Aho, Ravi
Sethi, Jeffrey D. Ullman. 1986.
ISBN 0-32 1-4868 1 - 1 (alk. paper)
1. Compilers (Computer programs) I. Aho, Alfied V. 11. Aho, Alfred V.

Compilers, principles, techniques, and tools.
QA76.76.C65A37 2007
005.4'53--dc22

2006024333

Copyright O 2007 Pearson Education, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of
material in this work, please submit a written request to Pearson Education,
Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston,
MA 021 16, fax your request to 61 7-848-7047, or e-mail at
http://www .pearsoned.com/legal/permissions.htm.

Preface

In the time since the 1986 edition of this book, the world of compiler design
has changed significantly. Programming languages have evolved to present new
compilation problems. Computer architectures offer a variety of resources of
which the compiler designer must take advantage. Perhaps most interestingly,
the venerable technology of code optimization has found use outside compilers.
It is now used in tools that find bugs in software, and most importantly, find
security holes in existing code. And much of the "front-end" technology -
grammars, regular expressions, parsers, and syntax-directed translators - are
still in wide use.

Thus, our philosophy from previous versions of the book has not changed.
We recognize that few readers will build, or even maintain, a compiler for a
major programming language. Yet the models, theory, and algorithms associ-
ated with a compiler can be applied to a wide range of problems in software
design and software development. We therefore emphasize problems that are
most commonly encountered in designing a language processor, regardless of
the source language or target machine.

Use of the Book

It takes at least two quarters or even two semesters to cover all or most of the
material in this book. It is common to cover the first half in an undergraduate
course and the second half of the book - stressing code optimization - in
a second course at the graduate or mezzanine level. Here is an outline of the
chapters:

Chapter 1 contains motivational material and also presents some background
issues in computer architecture and programming-language principles.

Chapter 2 develops a miniature compiler and introduces many of the impor-
tant concepts, which are then developed in later chapters. The compiler itself
appears in the appendix.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and
scanner-generator tools. This material is fundamental to text-processing of all
sorts.

PREFACE

Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL)
and bottom-up (LR and its variants).

Chapter 5 introduces the principal ideas in syntax-directed definitions and
syntax-directed translations.

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate
intermediate code for a typical programming language.

Chapter 7 covers run-time environments, especially management of the run-time
stack and garbage collection.

Chapter 8 is on object-code generation. It covers construction of basic blocks,
generation of code from expressions and basic blocks, and register-allocation
techniques.

Chapter 9 introduces the technology of code optimization, including flow graphs,
dat a-flow frameworks, and iterative algorithms for solving these frameworks.

Chapter 10 covers instruction-level optimization. The emphasis is on the ex-
traction of parallelism from small sequences of instructions and scheduling them
on single processors that can do more than one thing at once.

Chapter 11 talks about larger-scale parallelism detection and exploit ation. Here,
the emphasis is on numeric codes that have many tight loops that range over
multidimensional arrays.

Chapter 12 is on interprocedural analysis. It covers pointer analysis, aliasing,
and data-flow analysis that takes into account the sequence of procedure calls
that reach a given point in the code.

Courses from material in this book have been taught at Columbia, Harvard,
and Stanford. At Columbia, a seniorlfirst-year graduate course on program-
ming languages and translators has been regularly offered using material from
the first eight chapters. A highlight of this course is a semester-long project
in which students work in small teams to create and implement a little lan-
guage of their own design. The student-created languages have covered diverse
application domains including quantum computation, music synthesis, com-
puter graphics, gaming, matrix operations and many other areas. Students use
compiler-component generators such as ANTLR, Lex, and Yacc and the syntax-
directed translation techniques discussed in chapters two and five to build their
compilers. A follow-on graduate course has focused on material in Chapters 9
through 12, emphasizing code generation and optimization for contemporary
machines including network processors and multiprocessor architectures.

At Stanford, a one-quarter introductory course covers roughly the mate-
rial in Chapters 1 through 8, although there is an introduction to global code
optimization from Chapter 9. The second compiler course covers Chapters 9
through 12, plus the more advanced material on garbage collection from Chap-
ter 7. Students use a locally developed, Java-based system called Joeq for
implementing dat a-flow analysis algorithms .

PREFACE vii

Prerequisites

The reader should possess some "computer-science sophistication," including
at least a second course on programming, and courses in data structures and
discrete mathematics. Knowledge of several different programming languages
is useful.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Gradiance On-Line Homeworks

A feature of the new edition is that there is an accompanying set of on-line
homeworks using a technology developed by Gradiance Corp. Instructors may
assign these homeworks to their class, or students not enrolled in a class may
enroll in an "omnibus class" that allows them to do the homeworks as a tutorial
(without an instructor-created class). Gradiance questions look like ordinary
questions, but your solutions are sampled. If you make an incorrect choice you
are given specific advice or feedback to help you correct your solution. If your
instructor permits, you are allowed to try again, until you get a perfect score.

A subscription to the Gradiance service is offered with all new copies of this
text sold in North America. For more information, visit the Addison-Wesley
web site www . aw . com/gradiance or send email to comput ing@aw . corn.

Support on the World Wide Web

The book's home page is

Here, you will find errata as we learn of them, and backup materials. We hope
to make available the notes for each offering of compiler-related courses as we
teach them, including homeworks, solutions, and exams. We also plan to post
descriptions of important compilers written by their implementers.

Acknowledgements

Cover art is by S. D. Ullman of Strange Tonic Productions.
Jon Bentley gave us extensive comments on a number of chapters of an

earlier draft of this book. Helpful comments and errata were received from:

viii PREFACE

Domenico Bianculli, Peter Bosch, Marcio Buss, Marc Eaddy, Stephen Edwards,
Vibhav Garg, Kim Hazelwood, Gaurav Kc, Wei Li, Mike Smith, Art Stamness,
Krysta Svore, Olivier Tardieu, and Jia Zeng. The help of all these people is
gratefully acknowledged. Remaining errors are ours, of course.

In addition, Monica would like to thank her colleagues on the SUIF com-
piler team for an 18-year lesson on compiling: Gerald Aigner, Dzintars Avots,
Saman Amarasinghe, Jennifer Anderson, Michael Carbin, Gerald Cheong, Amer
Diwan, Robert French, Anwar Ghuloum, Mary Hall, John Hennessy, David
Heine, Shih- Wei Liao, Amy Lim, Benjamin Livshits, Michael Martin, Dror
Maydan, Todd Mowry, Brian Murphy, Jeffrey Oplinger, Karen Pieper, Mar-
tin Rinard, Olatunji Ruwase, Constantine Sapuntzakis, Patrick Sathyanathan,
Michael Smith, Steven Tjiang, Chau- Wen Tseng, Christopher Unkel, John
Whaley, Robert Wilson, Christopher Wilson, and Michael Wolf.

A. V. A., Chatham NJ
M. S. L., Menlo Park CA
R. S., Far Hills NJ
J. D. U., Stanford CA
June, 2006

Table of Contents

1 Introduction 1
. 1.1 Language Processors 1

1.1.1 Exercises for Section 1.1 3
1.2 The Structure of a Compiler . 4

1.2.1 Lexical Analysis . 5
1.2.2 Syntax Analysis . 8
1.2.3 Semantic Analysis . 8

. 1.2.4 Intermediate Code Generation 9
. 1.2.5 Code Optimization 10

. 1.2.6 Code Generation 10
. 1.2.7 Symbol-Table Management 11

. 1.2.8 The Grouping of Phases into Passes 11
. 1.2.9 Compiler-Construction Tools 12

. 1.3 The Evolution of Programming Languages 12
1.3.1 The Move to Higher-level Languages 13
1.3.2 Impacts on Compilers . 14
1.3.3 Exercises for Section 1.3 14

1.4 The Science of Building a Compiler 15
1.4.1 Modeling in Compiler Design and Implementation 15
1.4.2 The Science of Code Optimization 15

1.5 Applications of Compiler Technology 17
1.5.1 Implement at ion of High-Level Programming Languages . 17
1.5.2 Optimizations for Computer Architectures 19
1.5.3 Design of New Computer Architectures 21
1.5.4 Program Translations . 22
1.5.5 Software Productivity Tools 23

1.6 Programming Language Basics 25
1.6.1 The Static/Dynamic Distinction 25
1.6.2 Environments and States 26
1.6.3 Static Scope and Block Structure 28
1.6.4 Explicit Access Control 31
1.6.5 Dynamic Scope . 31
1.6.6 Parameter Passing Mechanisms 33

TABLE OF CONTENTS

1.6.7 Aliasing . 35
1.6.8 Exercises for Section 1.6 35

1.7 Summary of Chapter 1 . 36
. 1.8 References for Chapter 1 38

2 A Simple Synt ax-Direct ed Translator 39
. 2.1 Introduction 40

. 2.2 Syntax Definition 42
. 2.2.1 Definition of Grammars 42

. 2.2.2 Derivations 44
2.2.3 Parse Trees . 45

. 2.2.4 Ambiguity 47
2.2.5 Associativity of Operators 48
2.2.6 Precedence of Operators 48

. 2.2.7 Exercises for Section 2.2 51
. 2.3 Syntax-Directed Translation 52

. 2.3.1 Postfix Notation 53
. 2.3.2 Synthesized Attributes 54

. 2.3.3 Simple Syntax-Directed Definitions 56
. 2.3.4 Tree Traversals 56

. 2.3.5 Translation Schemes 57
. 2.3.6 Exercises for Section 2.3 60

. 2.4 Parsing 60
. 2.4.1 Top-Down Parsing 61
. 2.4.2 Predictive Parsing 64

. 2.4.3 When to Use 6-Productions 65
. 2.4.4 Designing a Predictive Parser 66

. 2.4.5 Left Recursion 67
. 2.4.6 Exercises for Section 2.4 68

. 2.5 A Translator for Simple Expressions 68
. 2.5.1 Abstract and Concrete Syntax 69

. 2.5.2 Adapting the Translation Scheme 70

. 2.5.3 Procedures for the Nonterminals 72
. 2.5.4 Simplifying the Translator 73

. 2.5.5 The Complete Program 74
. 2.6 Lexical Analysis 76

. 2.6.1 Removal of White Space and Comments 77
. 2.6.2 Reading Ahead 78

. 2.6.3 Constants 78
. 2.6.4 Recognizing Keywords and Identifiers 79

. 2.6.5 A Lexical Analyzer 81
. 2.6.6 Exercises for Section 2.6 84

. 2.7 Symbol Tables 85
. 2.7.1 Symbol Table Per Scope 86

. 2.7.2 The Use of Symbol Tables 89

TABLE OF CONTENTS xi

. 2.8 Intermediate Code Generation 91
. 2.8.1 Two Kinds of Intermediate Representations 91

. 2.8.2 Construction of Syntax Trees 92
. 2.8.3 Static Checking 97

. 2.8.4 Three-Address Code 99
. 2.8.5 Exercises for Section 2.8 105

. 2.9 Summary of Chapter 2 105

3 Lexical Analysis 109
. 3.1 The Role of the Lexical Analyzer 109

. 3.1.1 Lexical Analysis Versus Parsing 110

. 3.1.2 Tokens, Patterns, and Lexemes 111
. 3.1.3 Attributes for Tokens 112

. 3.1.4 Lexical Errors 113
. 3.1.5 Exercises for Section 3.1 114

. 3.2 Input Buffering 115
. 3.2.1 Buffer Pairs 115

. 3.2.2 Sentinels 116
. 3.3 Specification of Tokens 116

. 3.3.1 Strings and Languages 117
. 3.3.2 Operations on Languages 119

. 3.3.3 Regular Expressions 120
. 3.3.4 Regular Definitions 123

3.3.5 Extensions of Regular Expressions 124
. 3.3.6 Exercises for Section 3.3 125

3.4 Recognition of Tokens . 128
3.4.1 Transition Diagrams . 130
3.4.2 Recognition of Reserved Words and Identifiers 132
3.4.3 Completion of the Running Example 133
3.4.4 Architecture of a Transition-Diagram-Based Lexical An-

alyzer . 134
3.4.5 Exercises for Section 3.4 136

3.5 The Lexical-Analyzer Generator Lex 140
3.5.1 Use of Lex . 140
3.5.2 Structure of Lex Programs 141
3.5.3 Conflict Resolution in Lex 144
3.5.4 The Lookahead Operator 144
3.5.5 Exercises for Section 3.5 146

3.6 Finite Automata . 147
3.6.1 Nondeterministic Finite Automata 147
3.6.2 Transition Tables . 148
3.6.3 Acceptance of Input Strings by Automata 149
3.6.4 Deterministic Finite Automata 149
3.6.5 Exercises for Section 3.6 151

3.7 From Regular Expressions to Automata 152

TABLE OF CONTENTS

3.7.1 Conversion of an NFA to a DFA 152
3.7.2 Simulation of an NFA . 156
3.7.3 Efficiency of NFA Simulation 157
3.7.4 Construction of an NFA from a Regular Expression . . . 159
3.7.5 Efficiency of String-Processing Algorithms 163
3.7.6 Exercises for Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166
3.8.1 The Structure of the Generated Analyzer 167
3.8.2 Pattern Matching Based on NFA's 168
3.8.3 DFA's for Lexical Analyzers 170
3.8.4 Implementing the Lookahead Operator 171
3.8.5 Exercises for Section 3.8 172

3.9 Optimization of DFA-Based Pattern Matchers 173
3.9.1 Important States of an NFA 173
3.9.2 Functions Computed From the Syntax Tree 175
3.9.3 Computing nullable, firstpos, and lastpos 176

. 3.9.4 Computing followpos 177
. . . 3.9.5 Converting a Regular Expression Directly to a DFA 179

3.9.6 Minimizing the Number of States of a DFA 180
. 3.9.7 State Minimization in Lexical Analyzers 184

. 3.9.8 Trading Time for Space in DFA Simulation 185
. 3.9.9 Exercises for Section 3.9 186

. 3.10 Summary of Chapter 3 187
. 3.11 References for Chapter 3 189

4 Syntax Analysis 191
. 4.1 Introduction 192

. 4.1.1 The Role of the Parser 192
. 4.1.2 Representative Grammars 193

. 4.1.3 Syntax Error Handling 194
. 4.1.4 Error-Recovery Strategies 195

. 4.2 Context-Free Grammars 197
4.2.1 The Formal Definition of a Context-Free Grammar 197

. 4.2.2 Notational Conventions 198
. 4.2.3 Derivations 199

. 4.2.4 Parse Trees and Derivations 201
. 4.2.5 Ambiguity 203

. . . . 4.2.6 Verifying the Language Generated by a Grammar 204
. . . 4.2.7 Context-Free Grammars Versus Regular Expressions 205

. 4.2.8 Exercises for Section 4.2 206
. 4.3 Writing a Grammar 209

. 4.3.1 Lexical Versus Syntactic Analysis 209
. 4.3.2 Eliminating Ambiguity 210

. 4.3.3 Elimination of Left Recursion 212
. 4.3.4 Left Factoring 214

...
TABLE OF CONTENTS xlll

4.3.5 Non-Context-Free Language Constructs 215
. 4.3.6 Exercises for Section 4.3 216

. 4.4 Top-Down Parsing 217
. 4.4.1 Recursive-Descent Parsing 219

. 4.4.2 FIRST and FOLLOW 220
. 4.4.3 LL(1) Grammars 222

. 4.4.4 Nonrecursive Predictive Parsing 226
. 4.4.5 Error Recovery in Predictive Parsing 228

. 4.4.6 Exercises for Section 4.4 231
. 4.5 Bottom-Up Parsing 233
. 4.5.1 Reductions 234

. 4.5.2 Handle Pruning 235
. 4.5.3 Shift-Reduce Parsing 236

. 4.5.4 Conflicts During Shift-Reduce Parsing 238
. 4.5.5 Exercises for Section 4.5 240

. 4.6 Introduction to LR Parsing: Simple LR 241
. 4.6.1 Why LR Parsers? 241

. 4.6.2 Items and the LR(0) Automaton 242
. 4.6.3 The LR-Parsing Algorithm 248

. 4.6.4 Constructing SLR-Parsing Tables 252
4.6.5 Viable Prefixes . 256
4.6.6 Exercisesfor Section 4.6 257

4.7 More Powerful LR Parsers . 259
4.7.1 Canonical LR(1) Items . 260
4.7.2 Constructing LR(1) Sets of Items 261
4.7.3 Canonical LR(1) Parsing Tables 265
4.7.4 Constructing LALR Parsing Tables 266
4.7.5 Efficient Construction of LALR Parsing Tables 270
4.7.6 Compaction of LR Parsing Tables 275
4.7.7 Exercises for Section 4.7 277

4.8 Using Ambiguous Grammars . 278
4.8.1 Precedence and Associativity to Resolve Conflicts 279
4.8.2 The "Dangling-Else" Ambiguity 281
4.8.3 Error Recovery in LR Parsing 283
4.8.4 Exercises for Section 4.8 285

4.9 Parser Generators . 287
4.9.1 The Parser Generator Yacc 287
4.9.2 Using Yacc with Ambiguous Grammars 291
4.9.3 Creating Yacc Lexical Analyzers with Lex 294
4.9.4 Error Recovery in Yacc 295
4.9.5 Exercises for Section 4.9 297

4.10 Summary of Chapter 4 . 297
4.11 References for Chapter 4 . 300

xiv TABLE OF CONTENTS

5 Syntax-Directed Translation 303
5.1 Syntax-Directed Definitions . 304

5.1.1 Inherited and Synthesized Attributes 304
5.1.2 Evaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1 309

5.2 Evaluation Orders for SDD's . 310
5.2.1 Dependency Graphs . 310
5.2.2 Ordering the Evaluation of Attributes 312
5.2.3 S-Attributed Definitions 312
5.2.4 L-Attributed Definitions 313
5.2.5 Semantic Rules with Controlled Side Effects 314
5.2.6 Exercises for Section 5.2 317

5.3 Applications of Synt ax-Directed Translation 318
5.3.1 Construction of Syntax Trees 318

. 5.3.2 The Structure of a Type 321

. 5.3.3 Exercises for Section 5.3 323
. 5.4 Syntax-Directed Translation Schemes 324

. 5.4.1 Postfix Translation Schemes 324
. 5.4.2 Parser-Stack Implementation of Postfix SDT's 325

. 5.4.3 SDT's With Actions Inside Productions 327

. 5.4.4 Eliminating Left Recursion From SDT's 328
. 5.4.5 SDT's for L-Attributed Definitions 331

. 5.4.6 Exercises for Section 5.4 336
. 5.5 Implementing L- Attributed SDD's 337

. 5.5.1 Translation During Recursive-Descent Parsing 338
. 5.5.2 On-The-Fly Code Generation 340

. 5.5.3 L-Attributed SDD's and LL Parsing 343
. 5.5.4 Bottom-Up Parsing of L-Attributed SDD's 348

. 5.5.5 Exercises for Section 5.5 352
. 5.6 Summary of Chapter 5 353

. 5.7 References for Chapter 5 354

6 Intermediate-Code Generation 357
. 6.1 Variants of Syntax Trees 358

. 6.1.1 Directed Acyclic Graphs for Expressions 359
6.1.2 The Value-Number Method for Constructing DAG's . . . 360

. 6.1.3 Exercises for Section 6.1 362
. 6.2 Three-Address Code 363

. 6.2.1 Addresses and Instructions 364
. 6.2.2 Quadruples 366

. 6.2.3 Triples 367
. 6.2.4 Static Single- Assignment Form 369

. 6.2.5 Exercises for Section 6.2 370
. 6.3 Types and Declarations 370
. 6.3.1 Type Expressions 371

TABLE OF CONTENTS xv

. 6.3.2 Type Equivalence 372
. 6.3.3 Declarations 373

. 6.3.4 Storage Layout for Local Names 373
. 6.3.5 Sequences of Declarations 376

. 6.3.6 Fields in Records and Classes 376
. 6.3.7 Exercises for Section 6.3 378

. 6.4 Translation of Expressions 378
. 6.4.1 Operations Within Expressions 378

. 6.4.2 Incremental Translation 380
. 6.4.3 Addressing Array Elements 381

. 6.4.4 Translation of Array References 383
. 6.4.5 Exercises for Section 6.4 384

. 6.5 Type Checking 386
. 6.5.1 Rules for Type Checking 387

. 6.5.2 Type Conversions 388
. 6.5.3 Overloading of Functions and Operators 390

. 6.5.4 Type Inference and Polymorphic Functions 391
. 6.5.5 An Algorithm for Unification 395

. 6.5.6 Exercises for Section 6.5 398
. 6.6 Control Flow 399

. 6.6.1 Boolean Expressions 399
. 6.6.2 Short-circuit Code 400

. 6.6.3 Flow-of- Control Statements 401
6.6.4 Control-Flow Translation of Boolean Expressions 403
6.6.5 Avoiding Redundant Gotos 405
6.6.6 Boolean Values and Jumping Code 408
6.6.7 Exercises for Section 6.6 408

6.7 Backpatching . 410
6.7.1 One-Pass Code Generation Using Backpatching 410
6.7.2 Backpatching for Boolean Expressions 411
6.7.3 Flow-of-Control Statements 413
6.7.4 Break-, Continue-, and Goto-Statements 416
6.7.5 Exercises for Section 6.7 417

. 6.8 Switch-Statements 418
6.8.1 Translationof Switch-Statements 419
6.8.2 Syntax-Directed Translation of Switch-Statements 420
6.8.3 Exercises for Section 6.8 421

6.9 Intermediate Code for Procedures 422
6.10 Summary of Chapter 6 . 424
6.11 References for Chapter 6 . 425

xvi TABLE OF CONTENTS

7 Run-Time Environments 427
. 7.1 Storage Organization 427

7.1.1 Static Versus Dynamic Storage Allocation 429
. 7.2 Stack Allocation of Space 430

7.2.1 Activation Trees . 430
7.2.2 Activation Records . 433
7.2.3 Calling Sequences . 436
7.2.4 Variable-Length Data on the Stack 438
7.2.5 Exercises for Section 7.2 440

. 7.3 Access to Nonlocal Data on the Stack 441
. 7.3.1 Data Access Without Nested Procedures 442

. 7.3.2 Issues With Nested Procedures 442
7.3.3 A Language With Nested Procedure Declarations 443

. 7.3.4 Nesting Depth 443
. 7.3.5 Access Links 445

. 7.3.6 Manipulating Access Links 447
7.3.7 Access Links for Procedure Parameters 448

. 7.3.8 Displays 449
. 7.3.9 Exercises for Section 7.3 451

. 7.4 Heap Management 452
. 7.4.1 The Memory Manager 453

. 7.4.2 The Memory Hierarchy of a Computer 454
. 7.4.3 Locality in Programs 455

. 7.4.4 Reducing Fragmentation 457
. 7.4.5 Manual Deallocation Requests 460

. 7.4.6 Exercises for Section 7.4 463
. 7.5 Introduction to Garbage Collection 463

. 7.5.1 Design Goals for Garbage Collectors 464
. 7.5.2 Reachability 466

. 7.5.3 Reference Counting Garbage Collectors 468
. 7.5.4 Exercises for Section 7.5 470

. 7.6 Introduction to Trace-Based Collection 470
. 7.6.1 A Basic Mark-and-Sweep Collector 471

. 7.6.2 Basic Abstraction 473
. 7.6.3 Optimizing Mark-and-Sweep 475

. 7.6.4 Mark-and-Compact Garbage Collectors 476
. 7.6.5 Copying collectors 478

. 7.6.6 Comparing Costs 482
. 7.6.7 Exercises for Section 7.6 482
. 7.7 Short-Pause Garbage Collection 483

. 7.7.1 Incremental Garbage Collection 483
. 7.7.2 Incremental Reachability Analysis 485

. 7.7.3 Partial-Collection Basics 487
. 7.7.4 Generational Garbage Collection 488

. 7.7.5 The Train Algorithm 490

TABLE OF CONTENTS xvii

. 7.7.6 Exercises for Section 7.7 493
. 7.8 Advanced Topics in Garbage Collection 494

. 7.8.1 Parallel and Concurrent Garbage Collection 495
. 7.8.2 Partial Object Relocation 497

. 7.8.3 Conservative Collection for Unsafe Languages 498
. 7.8.4 Weak References 498

. 7.8.5 Exercises for Section 7.8 499
. 7.9 Summary of Chapter 7 500

. 7.10 References for Chapter 7 502

8 Code Generation 505
. 8.1 Issues in the Design of a Code Generator 506

. 8.1.1 Input to the Code Generator 507
. 8.1.2 The Target Program 507
. 8.1.3 Instruction Selection 508

. 8.1.4 Register Allocation 510
. 8.1.5 Evaluation Order 511

. 8.2 The Target Language 512
. 8.2.1 A Simple Target Machine Model 512

. 8.2.2 Program and Instruction Costs 515
. 8.2.3 Exercises for Section 8.2 516

. 8.3 Addresses in the Target Code 518
8.3.1 Static Allocation . 518
8.3.2 Stack Allocation . 520
8.3.3 Run-Time Addresses for Names 522
8.3.4 Exercises for Section 8.3 524

8.4 Basic Blocks and Flow Graphs 525
8.4.1 Basic Blocks . 526
8.4.2 Next-Use Information . 528
8.4.3 Flow Graphs . 529
8.4.4 Representation of Flow Graphs 530
8.4.5 Loops . 531
8.4.6 Exercises for Section 8.4 531

8.5 Optimization of Basic Blocks . 533
8.5.1 The DAG Representation of Basic Blocks 533
8.5.2 Finding Local Common Subexpressions 534
8.5.3 Dead Code Elimination 535
8.5.4 The Use of Algebraic Identities 536
8.5.5 Representation of Array References 537
8.5.6 Pointer Assignments and Procedure Calls 539
8.5.7 Reassembling Basic Blocks From DAG's 539
8.5.8 Exercises for Section 8.5 541

8.6 A Simple Code Generator . 542
8.6.1 Register and Address Descriptors 543
8.6.2 The Code-Generation Algorithm 544

xviii TABLE OF CONTENTS

8.6.3 Design of the Function getReg 547
8.6.4 Exercises for Section 8.6 548

. 8.7 Peephole Optimization 549
8.7.1 Eliminating Redundant Loads and Stores 550
8.7.2 Eliminating Unreachable Code 550

. 8.7.3 Flow-of-Control Optimizations 551
8.7.4 Algebraic Simplification and Reduction in Strength 552

. 8.7.5 Use of Machine Idioms 552
8.7.6 Exercises for Section 8.7 553

. 8.8 Register Allocation and Assignment 553
. 8.8.1 Global Register Allocation 553

. 8.8.2 Usage Counts 554
. 8.8.3 Register Assignment for Outer Loops 556
. 8.8.4 Register Allocation by Graph Coloring 556

. 8.8.5 Exercises for Section 8.8 557
. 8.9 Instruction Selection by Tree Rewriting 558

. 8.9.1 Tree-Translation Schemes 558
. 8.9.2 Code Generation by Tiling an Input Tree 560

. 8.9.3 Pattern Matching by Parsing 563
. 8.9.4 Routines for Semantic Checking 565

. 8.9.5 General Tree Matching 565
. 8.9.6 Exercises for Section 8.9 567

. 8.10 Optimal Code Generation for Expressions 567
. 8.10.1 Ershov Numbers 567

. 8.10.2 Generating Code From Labeled Expression Trees 568
8.10.3 Evaluating Expressions with an Insufficient Supply of Reg-

. isters 570
. 8.10.4 Exercises for Section 8.10 572

. 8.11 Dynamic Programming Code-Generation 573
. 8.11.1 Contiguous Evaluation 574

. 8.11.2 The Dynamic Programming Algorithm 575
. 8.1 1.3 Exercises for Section 8.11 577

. 8.12 Summary of Chapter 8 578
. 8.13 References for Chapter 8 579

9 Machine-Independent Optimizations 583
. 9.1 The Principal Sources of Optimization 584

. 9.1.1 Causes of Redundancy 584
. 9.1.2 A Running Example: Quicksort 585

. 9.1.3 Semantics-Preserving Transformations 586
. 9.1.4 Global Common Subexpressions 588

. 9.1.5 Copy Propagation 590
. 9.1.6 Dead-Code Elimination 591

. 9.1.7 Code Motion 592
. 9.1.8 Induction Variables and Reduction in Strength 592

TABLE OF CONTENTS xix

. 9.1.9 Exercises for Section 9.1 596
. 9.2 Introduction to Data-Flow Analysis 597

9.2.1 The Data-Flow Abstraction 597
9.2.2 The Data-Flow Analysis Schema 599

. 9.2.3 Data-Flow Schemas on Basic Blocks 600
. 9.2.4 Reaching Definitions 601

. 9.2.5 Live-Variable Arlalysis 608

. 9.2.6 Available Expressions 610
. 9.2.7 Summary 614

. 9.2.8 Exercises for Section 9.2 615
. 9.3 Foundations of Data-Flow Analysis 618

. 9.3.1 Semilattices 618
. 9.3.2 Transfer Functions 623

. 9.3.3 The Iterative Algorithm for General Frameworks 626
. 9.3.4 Meaning of a Data-Flow Solution 628

. 9.3.5 Exercises for Section 9.3 631
. 9.4 Constant Propagation 632

9.4.1 Data-Flow Values for the Constant-Propagation Frame-
. work 633

9.4.2 The Meet for the Constant-Propagation Framework . . . 633
9.4.3 Transfer Functions for the Constant-Propagation Frame-

. work 634
9.4.4 Monotonicity of the Constant-Propagation Framework . . 635
9.4.5 Nondistributivity of the Constant-Propagation Framework 635
9.4.6 Interpretation of the Results 637
9.4.7 Exercises for Section 9.4 637

9.5 Partial-Redundancy Elimination 639
9.5.1 The Sources of Redundancy 639
9.5.2 Can All Redundancy Be Eliminated? 642
9.5.3 The Lazy-Code-Motion Problem 644
9.5.4 Anticipation of Expressions 645
9.5.5 The Lazy-Code-Motion Algorithm 646
9.5.6 Exercises for Section 9.5 655

9.6 Loops in Flow Graphs . 655
9.6.1 Dominators . 656
9.6.2 Depth-First Ordering . 660
9.6.3 Edges in a Depth-First Spanning Tree 661
9.6.4 Back Edges and Reducibility 662
9.6.5 Depth of a Flow Graph 665
9.6.6 Natural Loops . 665
9.6.7 Speed of Convergence of Iterative Data-Flow Algorithms . 667
9.6.8 Exercises for Section 9.6 669

. 9.7 Region-Based Analysis 672
9.7.1 Regions . 672
9.7.2 Region Hierarchies for Reducible Flow Graphs 673

TABLE OF CONTENTS

9.7.3 Overview of a Region-Based Analysis 676
9.7.4 Necessary Assumptions About Transfer Functions 678
9.7.5 An Algorithm for Region-Based Analysis 680
9.7.6 Handling Nonreducible Flow Graphs 684
9.7.7 Exercises for Section 9.7 686

9.8 Symbolic Analysis . 686
9.8.1 Affine Expressions of Reference Variables 687
9.8.2 Data-Flow Problem Formulation 689
9.8.3 Region-Based Symbolic Analysis 694
9.8.4 Exercises for Section 9.8 699

. 9.9 Summary of Chapter 9 700
. 9.10 References for Chapter 9 703

10 Instruct ion-Level Parallelism 707
. 10.1 Processor Architectures 708

10.1.1 Instruction Pipelines and Branch Delays 708
. 10.1.2 Pipelined Execution 709

10.1.3 Multiple Instruction Issue 710
. 10.2 Code-Scheduling Constraints 710

. 10.2.1 Data Dependence 711
10.2.2 Finding Dependences Among Memory Accesses 712
10.2.3 Tradeoff Between Register Usage and Parallelism 713
10.2.4 Phase Ordering Between Register Allocation and Code

. Scheduling 716
. 10.2.5 Control Dependence 716

. 10.2.6 Speculative Execution Support 717
. 10.2.7 A Basic Machine Model 719

. 10.2.8 Exercises for Section 10.2 720
. 10.3 Basic-Block Scheduling 721

. 10.3.1 Data-Dependence Graphs 722
. 10.3.2 List Scheduling of Basic Blocks 723
. 10.3.3 Prioritized Topological Orders 725

. 10.3.4 Exercises for Section 10.3 726
. 10.4 Global Code Scheduling 727

. 10.4.1 Primitive Code Motion 728
. 10.4.2 Upward Code Motion 730

. 10.4.3 Downward Code Motion 731
. 10.4.4 Updating Data Dependences 732
. 10.4.5 Global Scheduling Algorithms 732

. 10.4.6 Advanced Code Motion Techniques 736
. 10.4.7 Interaction with Dynamic Schedulers 737

. 10.4.8 Exercises for Section 10.4 737
. 10.5 Software Pipelining 738

. 10.5.1 Introduction 738
. 10.5.2 Software Pipelining of Loops 740

TABLE OF CONTENTS xxi

. 10.5.3 Register Allocation and Code Generation 743
. 10.5.4 Do-Across Loops 743

. 10.5.5 Goals and Constraints of Software Pipelining 745
. 10.5.6 A Software-Pipelining Algorithm 749

. 10.5.7 Scheduling Acyclic Data-Dependence Graphs 749
. 10.5.8 Scheduling Cyclic Dependence Graphs 751

. 10.5.9 Improvements to the Pipelining Algorithms 758
. 10.5.10 Modular Variable Expansion 758

. 10.5.11 Conditional Statements 761
. 10.5.12 Hardware Support for Software Pipelining 762

. 10.5.13 Exercises for Section 10.5 763
. 10.6 Summary of Chapter 10 765

. 10.7 References for Chapter 10 766

11 Optimizing for Parallelism and Locality 769
. 11.1 Basic Concepts 771

. . 11.1 1 Multiprocessors 772
. 11.1.2 Parallelism in Applications 773

11.1.3 Loop-Level Parallelism . 775
11.1.4 Data Locality . 777

. 11.1.5 Introduction to Affine Transform Theory 778
. 11.2 Matrix Multiply: An In-Depth Example 782

. 11.2.1 The Matrix-Multiplication Algorithm 782
. 11.2.2 Optimizations 785

11.2.3 Cache Interference . 788
. 11.2.4 Exercises for Section 11.2 788

11.3 Iteration Spaces . 788
11.3.1 Constructing Iteration Spaces from Loop Nests 788
11.3.2 Execution Order for Loop Nests 791
11.3.3 Matrix Formulation of Inequalities 791
11.3.4 Incorporating Symbolic Constants 793
11.3.5 Controlling the Order of Execution 793
11.3.6 Changing Axes . 798
11.3.7 Exercises for Section 11.3 799

11.4 Affine Array Indexes . 801
11.4.1 Affine Accesses . 802
11.4.2 Affine and Nonaffine Accesses in Practice 803
11.4.3 Exercises for Section 11.4 804

11.5 Data Reuse . 804
11.5.1 Types of Reuse . 805
11.5.2 Self Reuse . 806
11.5.3 Self-spatial Reuse . 809
11.5.4 Group Reuse . 811
11.5.5 Exercises for Section 11.5 814

11.6 Array Data-Dependence Analysis 815

xxii TABLE OF CONTENTS

11.6.1 Definition of Data Dependence of Array Accesses 816
11.6.2 Integer Linear Programming 817

. 11.6.3 The GCD Test 818
11.6.4 Heuristics for Solving Integer Linear Programs 820
11.6.5 Solving General Integer Linear Programs 823
11.6.6 Summary . 825

. 11.6.7 Exercises for Section 11.6 826
11.7 Finding Synchronization-Free Parallelism 828

11.7.1 An Introductory Example 828
. 11.7.2 Affine Space Partitions 830

11.7.3 Space-Partition Constraints 831
11.7.4 Solving Space-Partition Constraints 835
11.7.5 A Simple Code-Generation Algorithm 838
11.7.6 Eliminating Empty Iterations 841
11.7.7 Eliminating Tests from Innermost Loops 844
11.7.8 Source-Code Transforms 846
11.7.9 Exercises for Section 11.7 851

11.8 Synchronization Between Parallel Loops 853
11.8.1 A Constant Number of Synchronizations 853
11.8.2 Program-Dependence Graphs 854
11.8.3 Hierarchical Time . 857
11.8.4 The Parallelization Algorithm 859

. 11.8.5 Exercises for Section 11.8 860
. 11.9 Pipelining 861

. 11.9.1 What is Pipelining? 861
. 11.9.2 Successive Over-Relaxation (SOR): An Example 863

. 11.9.3 Fully Permutable Loops 864
. 11.9.4 Pipelining Fully Permutable Loops 864

. 11.9.5 General Theory 867
. 11.9.6 Time-Partition Constraints 868

11.9.7 Solving Time-Partition Constraints by Farkas' Lemma . . 872
. 11.9.8 Code Transformations 875

. 11.9.9 Parallelism With Minimum Synchronization 880
. 11.9.10 Exercises for Section 11.9 882

. 11.10 Locality Optimizations 884
. 11.10.1 Temporal Locality of Computed Data 885

. 11.10.2 Array Contraction 885
. 11.10.3 Partition Interleaving 887

. 11.10.4 Putting it All Together 890
. 11.10.5 Exercises for Section 11.10 892
. 11.11 Other Uses of Affine Transforms 893

. I1 .1 1.1 Distributed memory machines 894
. 11.11.2 Multi-Instruction-Issue Processors 895

. 11 .l 1.3 Vector and SIMD Instructions 895
. 11.11.4 Prefetching 896

TABLE OF CONTENTS xxiii

. 11.12 Summary of Chapter 11 897
. 11.13 References for Chapter 11 899

12 Interprocedural Analysis 903
. 12.1 Basic Concepts 904

. 12.1.1 Call Graphs 904
. 12.1.2 Context Sensitivity 906

. 12.1.3 Call Strings 908
. 12.1.4 Cloning-Based Context-Sensitive Analysis 910

. 12.1.5 Summary-Based Context-Sensitive Analysis 911
. 12.1.6 Exercises for Section 12.1 914

. 12.2 Why Interprocedural Analysis? 916
. 12.2.1 Virtual Method Invocation 916

. 12.2.2 Pointer Alias Analysis 917
. 12.2.3 Parallelization 917

. 12.2.4 Detection of Software Errors and Vulnerabilities 917
. 12.2.5 SQL Injection 918

. 12.2.6 Buffer Overflow 920
. 12.3 A Logical Representation of Data Flow 921

. 12.3.1 Introduction to Datalog 921
. 12.3.2 Datalog Rules 922

. 12.3.3 Intensional and Extensional Predicates 924
. 12.3.4 Execution of Datalog Programs 927

. 12.3.5 Incremental Evaluation of Datalog Programs 928
. 12.3.6 Problematic Datalog Rules 930

12.3.7 Exercises for Section 12.3 932
12.4 A Simple Pointer-Analysis Algorithm 933

12.4.1 Why is Pointer Analysis Difficult 934
12.4.2 A Model for Pointers and References 935
12.4.3 Flow Insensitivity . 936
12.4.4 The Formulation in Datalog 937
12.4.5 Using Type Information 938
12.4.6 Exercises for Section 12.4 939

12.5 Context-Insensitive Interprocedural Analysis 941
12.5.1 Effects of a Method Invocation 941
12.5.2 Call Graph Discovery in Datalog 943
12.5.3 Dynamic Loading and Reflection 944

. 12.5.4 Exercises for Section 12.5 945
12.6 Context-Sensitive Pointer Analysis 945

12.6.1 Contexts and Call Strings 946
. 12.6.2 Adding Context to Datalog Rules 949

12.6.3 Additional Observations About Sensitivity 949
. 12.6.4 Exercises for Section 12.6 950

12.7 Datalog Implementation by BDD's 951
12.7.1 Binary Decision Diagrams 951

TABLE OF CONTENTS

12.7.2 Transformations on BDD7s 953
12.7.3 Representing Relations by BDD7s 954

. 12.7.4 Relational Operations as BDD Operations 954
. 12.7.5 Using BDD7s for Points-to Analysis 957

. 12.7.6 Exercises for Section 12.7 958
. 12.8 Summary of Chapter 12 958

. 12.9 References for Chapter 12 961

A A Complete Front End 965
. A.l The Source Language 965

. A.2 Main 966
. A.3 Lexical Analyzer 967

. A.4 Symbol Tables and Types 970
. A.5 Intermediate Code for Expressions 971

. A.6 Jumping Code for Boolean Expressions 974
. A.7 Intermediate Code for Statements 978

. A.8 Parser 981
. A.9 Creating the Front End 986

B Finding Linearly Independent Solutions 989

Index 993

Chapter 1

Introduction

Programming languages are notations for describing computations to people
and to machines. The world as we know it depends on programming languages,
because all the software running on all the computers was written in some
programming language. But, before a program can be run, it first must be
translated into a form in which it can be executed by a computer.

The software systems that do this translation are called compilers.
This book is about how to design and implement compilers. We shall dis-

cover that a few basic ideas can be used to construct translators for a wide
variety of languages and machines. Besides compilers, the principles and tech-
niques for compiler design are applicable to so many other domains that they
are likely to be reused many times in the career of a computer scientist. The
study of compiler writing touches upon programming languages, machine ar-
chitecture, language theory, algorithms, and software engineering.

In this preliminary chapter, we introduce the different forms of language
translators, give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine architecture
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of compiler technology that go beyond compilation. We end with
a brief outline of key programming-language concepts that will be needed for
our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-
guage - the source language - and translate it into an equivalent program in
another language - the target language; see Fig. 1.1. An important role of the
compiler is to report any errors in the source program that it detects during
the translation process.

CHAPTER 2. INTRODUCTION

source program

Compiles h +
target program

Figure 1.1 : A compiler

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs; see Fig. 1.2.

Target Program output t-
Figure 1.2: Running the target program

An in terpreter is another common kind of language processor. Instead of
producing a target program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3.

source program 1 Interpreter t- output
input

Figure 1.3: An interpreter

The machine-language target program produced by a compiler is usually
much faster than an interpreter at mapping inputs to outputs . An interpreter,
however, can usually give better error diagnostics than a compiler, because it
executes the source program statement by statement.

Example 1.1 : Java language processors combine compilation and interpreta-
tion, as shown in Fig. 1.4. A Java source program may first be compiled into
an intermediate form called bytecodes. The bytecodes are then interpreted by a
virtual machine. A benefit of this arrangement is that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compil-
ers, called just- in- t ime compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input.

1.1. LANGUAGE PROCESSORS

source program

Translator

intermediate program

input

Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A source program may be
divided into modules stored in separate files. The task of collecting the source
program is sometimes entrusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guage st at ements.

The modified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its output, because assembly lan-
guage is easier to produce as output and is easier to debug. The assembly
language is then processed by a program called an assembler that produces
relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine
code may have to be linked together with other relocatable object files and
library files into the code that actually runs on the machine. The l inker resolves
external memory addresses, where the code in one file may refer to a location
in another file. The loader then puts together all of the executable object files
into memory for execution.

1 .11 Exercises for Section 1.1

Exercise 1.1.1 : What is the difference between a compiler and an interpreter?

Exercise 1.1.2 : What are the advantages of (a) a compiler over an interpreter
(b) an interpreter over a compiler?

Exercise 1.1.3 : What advantages are there to a language-processing system in
which the compiler produces assembly language rather than machine language?

Exercise 1.1.4 : A compiler that translates a high-level language into another
high-level language is called a source-to-source translator. What advantages are
there to using C as a target language for a compiler?

Exercise 1.1.5 : Describe some of the tasks that an assembler needs to per-
form.

CHAPTER 1 . INTRODUCTION

source program

i
Preprocessor J

t
modified source program

I

Compiler fi
t

target assembly program

i / Assembler 1
i

relocatable machine code

library files
relocatable obiect files

t
target machine code

Figure 1.5: A language-processing system

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a source
program into a semantically equivalent target program. If we open up this box
a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and
imposes a grammatical structure on them. It then uses this structure to cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically ill formed or semanti-
cally unsound, then it must provide informative messages, so the user can take
corrective action. The analysis part also collects information about the source
program and stores it in a data structure called a symbol table, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-
diate representation and the information in the symbol table. The analysis part
is often called the front end of the compiler; the synthesis part is the back end.

If we examine the compilation process in more detail, we see that it operates
as a sequence of phases, each of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
constructed explicitly. The symbol table, which stores information about the

1.2. THE STRUCTURE O F A COMPILER

Symbol Table E l

, characte; stream ,
/ Lexical Analyzer 1

token Atream
f

Syntax Analyzer

syntax tree +
1 Semantic Analyzer

I Intermediate Code Generator I
I I

I

intermediate represent ation
i

Machine-Independent

intermediate representation

i 1 Code Generator I
I I

I

target-machine code
C

Machine-Dependent I Code Optimizer
I ,

I

t arget-machine code
t

Figure 1.6: Phases of a compiler

entire source program, is used by all phases of the compiler.
Some compilers have a machine-independent optimization phase between

the front end and the back end. The purpose of this optimization phase is to
perform transformations on the intermediate representation, so that the back
end can produce a better target program than it would have otherwise pro-
duced from an unoptimized intermediate representation. Since optimization is
optional, one or the other of the two optimization phases shown in Fig. 1.6 may
be missing.

1.2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The lex-
ical analyzer reads the stream of characters making up the source program

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lexemes. For each
lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the
first component token-name is an abstract symbol that is used during syntax
analysis, and the second component attribute-value points to an entry in the
symbol table for this token. Information from the symbol-table entry 'is needed
for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

pos i t i on = i n i t i a l + r a t e * 60 (1.1)

The characters in this assignment could be grouped into the following lexemes
and mapped into the following tokens passed on to the syntax analyzer:

1. pos i t ion is a lexeme that would be mapped into a token (id, I) , where id
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for pos i t i on . The symbol-table entry for an identifier holds
information about the identifier, such as its name and type.

2. The assignment symbol = is a lexeme that is mapped into the token (=).
Since this token needs no attribute-value, we have omitted the second
component. We could have used any abstract symbol such as assign for
the token-name, but for notational convenience we have chosen to use the
lexeme itself as the name of the abstract symbol.

3. i n i t i a l is a lexeme that is mapped into the token (id, 2), where 2 points
to the symbol-table entry for i n i t i a l .

4. + is a lexeme that is mapped into the token (+).

5 . r a t e is a lexeme that is mapped into the token (id, 3), where 3 points to
the symbol-table entry for r a t e .

6. * is a lexeme that is mapped into the token (*) .

7. 60 is a lexeme that is mapped into the token (60) .'
Blanks separating the lexemes would be discarded by the lexical analyzer.

Figure 1.7 shows the representation of the assignment statement (1.1) after
lexical analysis as the sequence of tokens

In this representation, the token names =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

'Technically speaking, for the lexeme 60 we should make up a token like (number,4),
where 4 points to the symbol table for the internal representation of integer 60 but we shall
defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques
for building lexical analyzers.

1.2. THE STRUCTURE OF A COMPILER

;m
3 r a t e

p o s i t i o n = i n i t i a l + r a t e * 60

t
Lexical Analyzer

t
(id, 1) (=) (id, 2) (+) (id, 3) (*) (60)

t
Syntax Analyzer

(id, 2)/ JF

(id, 3)/
\

60

Semantic Analyzer s
\+,

(id, 2)' *
\

(id, 3)' int t ofloat

t
I

60
I Intermediate Code Generator I
t

t l = i n t t o f l o a t (6 0)
t 2 = i d 3 * ti
t 3 = i d2 + t 2
i d 1 = t 3

t l = i d 3 * 60.0
i d 1 = i d2 + t1

LDF R2, i d 3
MULF R2, R2, #60.0
LDF R1, i d 2
ADDF R 1 , R 1 , R2
STF i d l y R l

Figure 1.7: Translation of an assignment statement

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser uses
the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream. A typical representation is a syntax tree in which each
interior node represents an operation and the children of the node represent the
arguments of the operation. A syntax tree for the token stream (1.2) is shown
as the output of the syntactic analyzer in Fig. 1.7.

This tree shows the order in which the operations in the assignment

pos i t i on = i n i t i a l + r a t e * 60

are to be performed. The tree has an interior node labeled * with (id, 3) as
its left child and the integer 60 as its right child. The node (id, 3) represents
the identifier r a te . The node labeled * makes it explicit that we must first
multiply the value of r a t e by 60. The node labeled + indicates that we must
add the result of this multiplication to the value of i n i t i a l . The root of the
tree, labeled =, indicates that we must store the result of this addition into the
location for the identifier p o s i t ion. This ordering of operations is consistent
with the usual conventions of arithmetic which tell us that multiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequent phases of the compiler use the grammatical structure to help
analyze the source program and generate the target program. In Chapter 4
we shall use context-free grammars to specify the grammatical structure of
programming languages and discuss algorithms for constructing efficient syntax
analyzers automatically from certain classes of grammars. In Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the translation of
programming language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check the source program for semantic consistency with the language
definition. It also gathers type information and saves it in either the syntax tree
or the symbol table, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many program-
ming language definitions require an array index to be an integer; the compiler
must report an error if a floating-point number is used to index an array.

The language specification may permit some type conversions called coer-
cions. For example, a binary arithmetic operator may be applied to either a
pair of integers or to a pair of floating-point numbers. If the operator is applied
to a floating-point number and an integer, the compiler may convert or coerce
the integer into a floating-point number.

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that pos i t i on , i n i t i a l , and
r a t e have been declared to be floating-point numbers, and that the lexeme 60
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator * is applied to a floating-point number r a t e and
an integer 60. In this case, the integer may be converted into a floating-point
number. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator inttofloat, which explicitly converts its integer
argument into a floating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-
ers generate an explicit low-level or machine-like intermediate representation,
which we can think of as a program for an abstract machine. This intermedi-
ate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

In Chapter 6, we consider an intermediate form called three-address code,
which consists of a sequence of assembly-like instructions with three operands
per instruction. Each operand can act like a register. The output of the inter-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t l = i n t t o f l o a t (60)
t 2 = i d3 * t l
t 3 = i d2 + t 2
i d 1 = t 3

There are several points worth noting about three-address instructions.
First, each three-address assignment instruction has at most one operator on the
right side. Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition in the source program (1.1). Sec-
ond, the compiler must generate a temporary name to hold the value computed
by a three-address instruction. Third, some "three-address instructions" like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in
compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation
for typical programming language constructs such as expressions, flow-of-control
constructs, and procedure calls.

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be desired, such as shorter code, or target code
that consumes less power. For example, a straightforward algorithm generates
the intermediate code (1.3), using an instruction for each operator in the tree
representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-
tion is a reasonable way to generate good target code. The optimizer can deduce
that the conversion of 60 from integer to floating point can be done once and for
all at compile time, so the inttofloat operation can be eliminated by replacing
the integer 60 by the floating-point number 60.0. Moreover, t3 is used only
once to transmit its value to id1 so the optimizer can transform (1.3) into the
shorter sequence

There is a great variation in the amount of code optimization different com-
pilers perform. In those that do the most, the so-called "optimizing compilers,"
a significant amount of time is spent on this phase. There are simple opti-
mizations that significantly improve the running time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source
program and maps it into the target language. If the target language is machine
code, registers or memory locations are selected for each of the variables used by
the program. Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same task. A crucial aspect of code
generation is the judicious assignment of registers to hold variables.

For example, using registers R 1 and R2, the intermediate code in (1.4) might
get translated into the machine code

LDF R 2 , i d3
MULF R 2 , R 2 , #60.0
LDF R l , id2
ADDF R l , R l , R2
STF i d l , R l

The first operand of each instruction specifies a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in

1.2. THE STRUCTURE OF A COMPILER 11

(1.5) loads the contents of address id3 into register R2, then multiplies it with
floating-point constant 60.0. The # signifies that 60.0 is to be treated as an
immediate constant. The third instruction moves id2 into register R 1 and the
fourth adds to it the value previously computed in register R2. Finally, the value
in register R1 is stored into the address of i d l , so the code correctly implements
the assignment statement (1.1). Chapter 8 covers code generation.

This discussion of code generation has ignored the important issue of stor-
age allocation for the identifiers in the source program. As we shall see in
Chapter 7, the organization of storage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2.7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the
source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the ca,se of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or by
reference), and the type returned.

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly. Symbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In
an implementation, activities from several phases may be grouped together
into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and
intermediate code generation might be grouped together into one pass. Code
optimization might be an optional pass. Then there could be a back-end pass
consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-
termediate representations that allow the front end for a particular language to
interface with the back end for a certain target machine. With these collections,
we can produce compilers for different source languages for one target machine
by combining different front ends with the back end for that target machine.
Similarly, we can produce compilers for different target machines, by combining
a front end with back ends for different target machines.

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern
software development environments containing tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general software-development tools, other more specialized tools have
been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-
cific components, and many use quite sophisticated algorithms. The most suc-
cessful tools are those that hide the details of the generation algorithm and
produce components that can be easily integrated into the remainder of the
compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a
grammatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syntax-directed translat ion engines that produce collections of routines
for walking a parse tree and generating intermediate code.

4. Code-generator generators that produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information
about how values are transmitted from one part of a program to each
other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construct ion toolk2ts that provide an integrated set of routines
for constructing various phases of a compiler.

We shall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940's and were programmed in
machine language by sequences of 0's and 1's that explicitly told the computer
what operations to execute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and error prone. And once written, the
programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnemonic assembly languages in the early 1950's. Initially,
the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly
languages so that a programmer could define parameterized shorthands for
frequently used sequences of machine instructions.

A major step towards higher-level languages was made in the latter half of
the 1950's with the development of Fortran for scientific computation, Cobol
for business data processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could more easily write numerical computations, business appli-
cations, and symbolic programs. These languages were so successful that they
are still in use today.

In the following decades, many more languages were created with innovative
features to help make programming easier, more natural, and more robust.
Later in this chapter, we shall discuss some key features that are common to
many modern programming languages.

Today, there are thousands of programming languages. They can be classi-
fied in a variety of ways. One classification is by generation. First-generation
languages are the machine languages, second-generation the assembly languages,
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,
C++, C#, and Java. Fourth-generation languages are languages designed
for specific applications like NOMAD for report generation, SQL for database
queries, and Postscript for text formatting. The term fifth-generation language
has been applied to logic- and constraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages
in which a program specifies how a computation is to be done and declarative
for languages in which a program specifies what computation is to be done.
Languages such as C, C++, C#, and Java are imperative languages. In imper-
ative languages there is a notion of program state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages such as Prolog are often considered to be declarative languages.

The term von Neumann language is applied to programming languages
whose computational model is based on the von Neumann computer archi-
tecture. Many of today's languages, such as Fortran and C are von Neumann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects
that interact with one another. Simula 67 and Smalltalk are the earliest major
object-oriented languages. Languages such as C++, C#, Java, and Ruby are
more recent ob ject-oriented languages.

Scripting languages are interpreted languages with high-level operators de-
signed for "gluing toget her" computations. These computations were originally

14 CHAPTER 1. INTRODUCTION

called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-
ular examples of scripting languages. Programs written in scripting languages
are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler writ-
ers. They had to devise algorithms and representations to translate and support
the new language features. Since the 1940's, computer architecture has evolved
as well. Not only did the compiler writers have to track new language fea-
tures, they also had to devise translation algorithms that would take maximal
advantage of the new hardware capabilities.

Compilers can help promote the use of high-level languages by minimizing
the execution overhead of the programs written in these languages. Compilers
are also critical in making high-performance computer architectures effective
on users' applications. In fact, the performance of a computer system is so
dependent on compiler technology that compilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Moreover, many modern language-processing systems handle several source lan-
guages and target machines within the same framework; that is, they serve as
collections of compilers, possibly consisting of millions of lines of code. Con-
sequently, good software-engineering techniques are essential for creating and
evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs
that could be written in the source language. The problem of generating the
optimal target code from a source program is undecidable in general; thus,
compiler writers must evaluate tradeoffs about what problems to tackle and
what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler design. It is not the intention of this text to teach all the
algorithms and techniques that could be used for building a st ate-of-the-art
language-processing system. However, readers of this text will acquire the basic
knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1 : Indicate which of the following terms:

a) imperative b) declarative c) von Neumann
d) object-oriented e) functional f) third-generation
g) fourth-generation h) scripting

1.4. THE SCIENCE OF BUILDING A COMPILER

apply to which of the following languages:

1) C 2) C++ 3) Cobol 4) Fortran 5) Java
6) Lisp 7) ML 8) Per1 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by abstracting the essence of the problem mathematically. These
serve as excellent illustrations of how abstractions can be used to solve prob-
lems: take a problem, formulate a mathematical abstraction that captures the
key characteristics, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification
of the language; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lines of code. Any transformation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have influence
over not just the compilers they create, but all the programs that their com-
pilers compile. This leverage makes writing compilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generality and power against simplicity and efficiency.

Some of most fundamental models are finite-state machines and regular
expressions, which we shall meet in Chapter 3. These models are useful for de-
scribing the lexical units of programs (keywords, identifiers, and such) and for
describing the algorithms used by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the syntactic structure of programming languages such as the nesting of
parentheses or control constructs. We shall study grammars in Chapter 4. Sim-
ilarly, trees are an important model for representing the structure of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term "optimization" in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient than the obvious code. "Op-
timization" is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed to be as fast or faster than any other code
that performs the same task.

CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex because
processor architectures have become more complex, yielding more opportunities
to improve the way code executes. It is more important because massively par-
allel computers require substantial optimization, or their performance suffers by
orders of magnitude. With the likely prevalence of multicore machines (com-
puters with chips that have large numbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of "hacks."
Thus, an extensive and useful theory has been built up around the problem of
optimizing code. The use of a rigorous mathematical foundation allows us to
show that an optimization is correct and that it produces the desirable effect
for all possible inputs. We shall see, starting in Chapter 9, how models such
as graphs, matrices, and linear programs are necessary if the compiler is to
produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many real-world
problems, there are no perfect answers. In fact, most of the questions that
we ask in compiler optimization are undecidable. One of the most important
skills in compiler design is the ability to formulate the right problem to solve.
We need a good understanding of the behavior of programs to start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must meet the following design objectives:

The optimization must be correct, that is, preserve the meaning of the
compiled program,

The optimization must improve the performance of many programs,

The compilation time must be kept reasonable, and

The engineering effort required must be manageable.

It is impossible to overemphasize the importance of correctness. It is trivial
to write a compiler that generates fast code if the generated code need not
be correct! Optimizing compilers are so difficult to get right that we dare say
that no optimizing compiler is completely error-free! Thus, the most important
objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-
formance of many input programs. Normally, performance means the speed of
the program execution. Especially in embedded applications, we may also wish
to minimize the size of the generated code. And in the case of mobile devices,
it is also desirable that the code minimizes power consumption. Typically, the
same optimizations that speed up execution time also conserve power. Besides
performance, usability aspects such as error reporting and debugging are also
import ant.

Third, we need to keep the compilation time short to support a rapid devel-
opment and debugging cycle. This requirement has become easier to meet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without
program optimizations. Not only is the compilation time reduced, but more
importantly, unoptimized programs are easier to debug, because the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizations in the compiler sometimes
exposes new problems in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing sometimes deters
the use of optimizations in applications, especially if their performance is not
critical.

Finally, a compiler is a complex system; we must keep the system sim-
ple to assure that the engineering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations that we
could implement, and it takes a nontrivial amount of effort to create a correct
and effective optimization. We must prioritize the optimizations, implementing
only those that lead to the greatest benefits on source programs encountered in
practice.

Thus, in studying compilers, we learn not only how to build a compiler, but
also the general methodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion. We normally start by formulating the problem based on our intuitions on
what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-
ogy learned by studying compilers in school, yet have never, strictly speaking,
written (even part of) a compiler for a major programming language. Compiler
technology has other important uses as well. Additionally, compiler design im-
pacts several other areas of computer science. In this section, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler must
translate that program to the target language. Generally, higher-level program-
ming languages are easier to program in, but are less efficient, that is, the target
programs run more slowly. Programmers using a low-level language have more
control over a computation and can, in principle, produce more efficient code.
Unfortunately, lower-level programs are harder to write and - worse still -
less portable, more prone to errors, and harder to maintain. Optimizing com-
pilers include techniques to improve the performance of generated code, thus
offsetting the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2 : The register keyword in the C programming language is an
early example of the interaction between compiler technology and language evo-
lution. When the C language was created in the mid 1970s, it was considered
necessary to let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and most modern programs no longer use this language feature.

In fact, programs that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-level matters like register
allocation. The optimal choice of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-level resource-management
decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written.

The many shifts in the popular choice of programming languages have been
in the direction of increased levels of abstraction. C was the predominant
systems programming language of the 80's; many of the new projects started
in the 90's chose C++; Java, introduced in 1995, gained popularity quickly
in the late 90's. The new programming-language features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Practically all common programming languages, including C, Fortran and
Cobol, support user-defined aggregate data types, such as arrays and structures,
and high-level control flow, such as loops and procedure invocations. If we just
take each high-level construct or data-access operation and translate it directly
to machine code, the result would be very inefficient. A body of compiler
optimizations, known as data-flow optimizations, has been developed to analyze
the flow of data through the program and removes redundancies across these
constructs. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

both of which have been found to make programs more modular and easier to
maintain. Object-oriented programs are different from those written in many
other languages, in that they consist of many more, but smaller, procedures
(called methods in object-oriented terms). Thus, compiler optimizations must
be able to perform well across the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is particularly useful here. Optimizations to speed up virtual
met hod dispatches have also been developed.

APPLICATIONS OF COMPILER TECHNOLOGY

Java has many features that make programming easier, many of which have
been introduced previously in other languages. The Java language is type-safe;
that is, an object cannot be used as an object of an unrelated type. All array
accesses are checked to ensure that they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
garbage-collection facility that automatically frees the memory of variables that
are no longer in use. While all these features make programming easier, they
incur a run-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objects that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithms also have been developed to minimize
the overhead of garbage collection.

In addition, Java is designed to support portable and mobile code. Programs
are distributed as Java bytecode, which must either be interpreted or compiled
into native code dynamically, that is, at run time. Dynamic compilation has also
been studied in other contexts, where information is extracted dynamically at
run time and used to produce better-optimized code. In dynamic optimization,
it is important to minimize the compilation time as it is part of the execution
overhead. A common technique used is to only compile and optimize those
parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable
demand for new compiler technology. Almost all high-performance systems
take advantage of the same two basic techniques: parallelism and memory hi-
erarchies. Parallelism can be found at several levels: at the instruction level,
where multiple operations are executed simultaneously and at the processor
level, where different threads of the same application are run on different pro-
cessors. Memory hierarchies are a response to the basic limitation that we can
build very fast storage or very large storage, but not storage that is both fast
and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
parallelism can be hidden from the programmer. Programs are written as if all
instructions were executed in sequence; the hardware dynamically checks for
dependencies in the sequential instruction stream and issues them in parallel
when possible. In some cases, the machine includes a hardware scheduler that
can change the instruction ordering to increase the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instructions to make instruction-level parallelism more effective.

Instruction-level parallelism can also appear explicitly in the instruction set.
VLIW (Very Long Instruction Word) machines have instructions that can issue

CHAPTER 2. INTRODUCTION

multiple operations in parallel. The Intel IA64 is a well-known example of such
an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.
Compiler techniques have been developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become prevalent ; even personal computers of-
ten have multiple processors. Programmers can write multithreaded code for
multiprocessors, or parallel code can be automatically generated by a com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, distributing the
computation across the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can benefit greatly from parallel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machine, but they must be harnessed effectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found in all machines. A processor usually has
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes to megabytes, physical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabytes and
beyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsystem. While compilers traditionally focus on optimizing
the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in
optimizing a program. Unlike registers that have to be managed explicitly in
software, caches and physical memories are hidden from the instruction set and
are managed by hardware. It has been found that cache-management policies
implemented by hardware are not effective in some cases, especially in scientific
code that has large data structures (arrays, typically). It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layout of code to improve the effectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level languages is the norm, the performance of a computer system is determined
not by its raw speed but also by how well compilers can exploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, is used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Instruction-Set
Computer) architecture. Prior to this invention, the trend was to develop pro-
gressively complex instruction sets intended to make assembly programming
easier; these architectures were known as CISC (Complex Instruction-Set Com-
puter). For example, CISC instruction sets include complex memory-addressing
modes to support data-structure accesses and procedure-invocation instructions
that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-
ber of simpler operations by eliminating the redundancies across complex in-
structions. Thus, it is desirable to build simple instruction sets; compilers can
use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x86 architecture-the most popular microprocessor-has a CISC instruction
set, many of the ideas developed for RISC machines are used in the imple-
mentation of the processor itself. Moreover, the most effective way to use a
high-performance x86 machine is to use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include data flow machines, vector machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-
cessors, systolic arrays, multiprocessors with shared memory, and multiproces-
sors with distributed memory. The development of each of these architectural
concepts was accompanied by the research and development of corresponding
compiler technology.

Some of these ideas have made their way into the designs of embedded
machines. Since entire systems can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better
cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-
chitectures. Compiler technology is needed not only to support programming
for these architectures, but also to evaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
guage to the machine level, the same technology can be applied to translate
between different kinds of languages. The following are some of the important
applications of program-translation techniques.

Binary Translation

Compiler technology can be used to translate the binary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by various
computer companies to increase the availability of software for their machines.
In particular, because of the domination of the x86 personal-computer mar-
ket, most software titles are available as x86 code. Binary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
translation was also used by Transmeta Inc. in their implementation of the x86
instruction set. Instead of executing the complex x86 instruction set directly in
hardware, the Transmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MC
68040 to the PowerPC in 1994, binary translation was used to allow PowerPC
processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-
signs are mostly described in high-level hardware description languages like
Verilog and VHDL (Very high-speed integrated circuit Hardware Description
Language). Hardware designs are typically described at the register trans-
fer level (RTL), where variables represent registers and expressions represent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which are then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other
applications. For example, query languages, especially SQL (Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

Language), are used to search databases. Database queries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technique used in many scientific and engineering disci-
plines to understand a phenomenon or to validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that particular simulation run. Simulations can be very expensive. We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each experiment may take days to complete on a high-performance
machine. Instead of writing a simulator that interprets the design, it is faster
to compile the design to produce machine code that simulates that particular
design natively. Compiled simulation can run orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
before the program will work completely. As a result, errors are rampant in
programs; errors may crash a system, produce wrong results, render a system
vulnerable to security attacks, or even lead to catastrophic failures in critical
systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow
analysis to locate errors statically (that is, before the program is run). Data-
flow analysis can find errors along all the possible execution paths, and not
just those exercised by the input data sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originally developed for compiler
optimizations, can be used to create tools that assist programmers in their
software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-
sis may be designed to warn the programmers of all possible statements violating
a particular category of errors. But if most of these warnings are false alarms,
users will not use the tool. Thus, practical error detectors are often neither
sound nor complete. That is, they may not find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Nonetheless, var-
ious static analyses have been developed and shown to be effective in finding
errors, such as dereferencing null or freed pointers, in real programs. The fact
that error detectors may be unsound makes them significantly different from
compiler optimizations. Optimizers must be conservative and cannot alter the
semantics of the program under any circumstances.

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pro-
gram analysis, building upon techniques originally developed to optimize code
in compilers, have improved software productivity. Of special importance are
techniques that detect statically when a program might have a security vulner-
ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
operation is applied to the wrong type of object, or if parameters passed to a
procedure do not match the signature of the procedure. Program analysis can
go beyond finding type errors by analyzing the flow of data through a program.
For example, if a pointer is assigned n u l l and then immediately dereferenced,
the program is clearly in error.

The same technology can be used to catch a variety of security holes, in
which an attacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type "dangerous." If
this string is not checked for proper format, then it remains "dangerous," and
if a string of this type is able to influence the control-flow of the code at some
point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than
a higher-level one. For example, many security breaches in systems are caused
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure that the arrays are not accessed
out of bounds. Failing to check that the data supplied by the user can overflow
a buffer, the program may be tricked into storing user data outside of the
buffer. An attacker can manipulate the input data that causes the program to
misbehave and compromise the security of the system. Techniques have been
developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic
range checking, this problem would not have occurred. The same data-flow
analysis that is used to eliminate redundant range checks can also be used to
locate buffer overflows. The major difference, however, is that failing to elimi-
nate a range check would only result in a small run-time cost, while failing to
identify a potential buffer overflow may compromise the security of the system.
Thus, while it is adequate to use simple techniques to optimize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed to get high-quality results in error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-
ciency and a combination of ease of programming and software reliability. Au-
tomatic memory management obliterates all memory-management errors (e.g.,
"memory leaks"), which are a major source of problems in C and C++ pro-
grams. Various tools have been developed to help programmers find memory
management errors. For example, Purify is a widely used tool that dynamically
catches memory management errors as they occur. Tools that help identify
some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. It is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader is familiar with at least one of C, C++, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynarnic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issue, then we say
that the language uses a static policy or that the issue can be decided at compile
t ime. On the other hand, a policy that only allows a decision to be made when
we execute the program is said to be a dynamic policy or to require a decision
at r u n t ime.

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of x is the region of the program in which uses of x refer to
this declaration. A language uses static scope or lexical scope if it is possible to
determine the scope of a declaration by looking only a t the program. Otherwise,
the language uses dynamic scope. With dynamic scope, as the program runs,
the same use of x could refer to any of several different declarations of x.

Most languages, such as C and Java, use static scope. We shall discuss static
scoping in Section 1.6.3.

Example 1.3 : As another example of the staticldynamic distinction, consider
the use of the term "static" as it applies to data in a Java class declaration. In
Java, a variable is a name for a location in memory used to hold a data value.
Here, "static" refers not to the scope of the variable, but rather to the ability of
the compiler to determine the location in memory where the declared variable
can be found. A declaration like

publ ic s t a t i c i n t x ;

CHAPTER 1. INTRODUCTION

makes x a class variable and says that there is only one copy of x, no matter how
many objects of this class are created. Moreover, the compiler can determine a
location in memory where this integer x will be held. In contrast, had "static"
been omitted from this declaration, then each object of the class would have its
own location where x would be held, and the compiler could not determine all
these places in advance of running the program.

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring as the program runs affect the values of
data elements or affect the interpretation of names for that data. For example,
the execution of an assignment such as x = y + 1 changes the value denoted by
the name x. More specifically, the assignment changes the value in whatever
location is denoted by x.

It may be less clear that the location denoted by x can change at run time.
For instance, as we discussed in Example 1.3, if x is not a static (or "class")
variable, then every object of the class has its own location for an instance
of variable x. In that case, the assignment to x can change any of those "in-
stance" variables, depending on the object to which a method containing that
assignment is applied.

environment state

names
n n

locations values
(variables)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since
variables refer to locations ('L1-values" in the terminology of C), we could
alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the
state maps 1-values to their corresponding r-values, in the terminology of
C.

Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is
declared a global variable, and also declared as a variable local to function f .
When f is executing, the environment adjusts so that name i refers to the

1.6. PROGRAMMING LANGUAGE BASICS

i n t i ;
...
void f(.--) {

i n t i ;

/* global i */

/* local i */

/* use of local i */

x = i + I ; /* use of global i */

Figure 1.9: Two declarations of the name i

location reserved for the i that is local to f , and any use of i , such as the
assignment i = 3 shown explicitly, refers to that location. Typically, the local
i is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of i cannot refer to
the i that is local to f . Uses of name i in g must be within the scope of some
other declaration of i. An example is the explicitly shown statement x = i+l,
which is inside some procedure whose definition is not shown. The i in i + 1
presumably refers to the global i . As in most languages, declarations in C must
precede their use, so a function that comes before the global i cannot refer to
it.

The environment and state mappings in Fig. 1.8 are dynamic, but there are
a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of
names to locations is dynamic, and we discuss several approaches to this
binding throughout the section. Some declarations, such as the global i
in Fig. 1.9, can be given a location in the store once and for all, as the
compiler generates object code.2

2. Static versus dynamic binding of locations to values. The binding of lo-
cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants are an exception. For instance, the C definition

#define ARRAYSIZE 1000
-- --

2~echnically, the C compiler will assign a location in virtual memory for the global i,
leaving it to the loader and the operating system to determine where in the physical memory
of the machine i will be located. However, we shall not worry about "relocation" issues such
as these, which have no impact on compiling. Instead, we treat the address space that the
compiler uses for its output code as if it gave physical memory locations.

28 CHAPTER I . INTRODUCTION

Names, Identifiers, and Variables

Although the terms "name" and "variable," often refer to the same thing,
we use them carefully to distinguish between compile-time names and the
run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers to (identifies) an entity, such as a data object, a procedure, a class,
or a type. All identifiers are names, but not all names are identifiers.
Names can also be expressions. For example, the name x.y might denote
the field y of a structure denoted by x. Here, x and y are identifiers, while
x.y is a name, but not an identifier. Composite names like x.y are called
qualified names.

A variable refers to a particular location of the store. It is common for
the same identifier to be declared more than once; each such declaration
introduces a new variable. Even if each identifier is declared just once, an
identifier local to a recursive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine
this binding by looking at the statement, and we know that it is impossible
for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules
for C are based on program structure; the scope of a declaration is determined
implicitly by where the declaration appears in the program. Later languages,
such as C++, Java, and C#, also provide explicit control over scopes through
the use of keywords like public, private, and protected.

In this section we consider static-scope rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces I and
) to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5 : To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables
and functions.

2. Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying "procedures, functions, or methods," each time we want
to talk about a subprogram that may be called, we shall usually refer to
all of them as "procedures." The exception is that when talking explicitly
of programs in languages like C that have only functions, we shall refer
to them as "functions." Or, if we are discussing a language like Java that
has only methods, we shall use that term instead.

A function generally returns a value of some type (the "return type"),
while a procedure does not return any value. C and similar languages,
which have only functions, treat procedures as functions that have a special
return type "void," to signify no return value. Object-oriented languages
like Java and C++ use the term "methods." These can behave like either
functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name x consists of the entire
program that follows, with the exception of those statements that lie
within a function that also has a declaration of x.

The additional detail regarding the C static-scope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6.

In C, the syntax of blocks is given by

1. One type of statement is a block. Blocks can appear anywhere that other
types of statements, such as assignment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,
all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages
has block structure, except that a function may not be defined inside another
function.

We say that a declaration D "belongs" to a block B if B is the most closely
nested block containing D; that is, D is located within B , but not within any
block that is nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages is as follows. If declaration D of name x belongs to block B, then the
scope of D is all of B , except for any blocks B' nested to any depth within B ,
in which x is redeclared. Here, x is redeclared in B' if some other declaration
D' of the same name x belongs to B'.

30 CHAPTER 1. INTRODUCTION

An equivalent way to express this rule is to focus on a use of a name x.
Let B1, B2, . . . , Bk be all the blocks that surround this use of x, with Bk the
smallest, nested within Bk-1, which is nested within Bk-2, and so on. Search
for the largest i such that there is a declaration of x belonging to Bi. This use
of x refers to the declaration in Bi. Alternatively, this use of x is within the
scope of the declaration in Bi.

'int b = 2; \

.€
B2

int a = 3;
cout << a << b;

3

int b = 4;
cout << a << b;

3
,cout << a << b;

J

cout << a << b;

1

Figure 1.10: Blocks in a C++ program

Example 1.6 : The C++ program in Fig. 1.10 has four blocks, with several
definitions of variables a and b. As a memory aid, each declaration initializes
its variable to the number of the block to which it belongs.

For instance, consider the declaration int a = I in block B1. Its scope
is all of B1, except for those blocks nested (perhaps deeply) within B1 that
have their own declaration of a. B2, nested immediately within B1, does not
have a declaration of a, but B3 does. B4 does not have a declaration of a, so
block B3 is the only place in the entire program that is outside the scope of the
declaration of the name a that belongs to B1. That is, this scope includes f i
and all of B2 except for the part of B2 that is within B3. The scopes of all five
declarations are summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block
B4 and bind the variables a and b used there to the proper declarations. The
list of surrounding blocks, in order of increasing size, is Bq , B2, B1. Note that
B3 does not surround the point in question. B4 has a declaration of b, so it
is to this declaration that this use of b refers, and the value of b printed is 4.
However, B4 does not have a declaration of a, so we next look at B2. That
block does not have a declaration of a either, so we proceed to B1. Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS

DECLARATION
int a = 1;
int b = 1;
int b = 2;
int a = 3;
int b = 4;

Figure 1.11: Scopes of declarations in Example 1.6

there is a declaration int a = 1 belonging to that block, so the value of a
printed is I. Had there been no such declaration, the program would have been
erroneous. C1

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an
object of a class with a field (member) x, then the use of x in p.x refers to
field x in the class definition. In analogy with block structure, the scope of a
member declaration x in a class C extends to any subclass C', except if C' has
a local declaration of the same name x.

Through the use of keywords like public, private, and protected, object-
oriented languages such as C++ or Java provide explicit control over access
to member names in a superclass. These keywords support encapsulation by
restricting access. Thus, private names are purposely given a scope that includes
only the method declarations and definitions associated with that class and any
"friend" classes (the C++ term). Protected names are accessible to subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. Therefore, a name x associated with the class C may
have a region of the code that is outside its scope, followed by another region (a
method definition) that is within its scope. In fact, regions inside and outside
the scope may alternate, until all the methods have been defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can
be known only when the program executes. The term dynamic scope, however,
usually refers to the following policy: a use of a name x refers to the declaration
of x in the most recently called procedure with such a declaration. Dynamic
scoping of this type appears only in special situations. We shall consider two ex-
amples of dynamic policies: macro expansion in the C preprocessor and method
resolution in ob ject-oriented programming.

32 CHAPTER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms "declaration" and "definition" for program-
ming-language concepts are actually quite different. Declarations tell us
about the types of things, while definitions tell us about their values. Thus,
int i is a declaration of i, while i = I is a definition of i .

The difference is more significant when we deal with methods or other
procedures. In C++, a method is declared in a class definition, by giving
the types of the arguments and result of the method (often called the
signature for the method. The method is then defined, i.e., the code for
executing the method is given, in another place. Similarly, it is common
to define a C function in one file and declare it in other files where the
function is used.

Example 1.7 : In the C program of Fig. 1.12, identifier a is a macro that
stands for expression (x + I). But what is x? We cannot resolve x statically,
that is, in terms of the program text.

int x = 2;

void b() (int x = I ; printf (ll%d\nll, a) ; 3

void c () (printf("%d\nI1, a);

void main() (b(); c () ; 3

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret x, we must use the usual dynamic-scope rule.
We examine all the function calls that are currently active, and we take the most
recently called function that has a declaration of x. It is to this declaration that
the use of x refers.

In the example of Fig. 1.12, the function main first calls function b. As b
executes, it prints the value of the macro a. Since (x + 1) must be substituted
for a, we resolve this use of x to the declaration int x=l in function b. The
reason is that b has a declaration of x, so the (x + 1) in the printf in b refers
to this x. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro
a. However, the only x accessible to c is the global x. The printf statement
in c thus refers to this declaration of x, and value 2 is printed.

Dynamic scope resolution is also essential for polymorphic procedures, those
that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,
there is an interesting relationship between the normal (block-structured)
static scoping rule and the normal dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the declaration whose
unit (procedure invocation) most closely surrounds the time of the use.

types of the arguments. In some languages, such as ML (see Section 7.3.3), it
is possible to determine statically types for all uses of names, in which case the
compiler can replace each use of a procedure name p by a reference to the code
for the proper procedure. However, in other languages, such as Java and C++,
there are times when the compiler cannot make that determination.

Example 1.8 : A distinguishing feature of object-oriented programming is the
ability of each object to invoke the appropriate method in response to a message.
In other words, the procedure called when x.m() is executed depends on the
class of the object denoted by x at that time. A typical example is as follows:

1. There is a class iC with a method named m().

2. D is a subclass of C, and D has its own method named m().

3. There is a use of m of the form x.m(), where x is an object of class C.

Normally, it is impossible to tell at compile time whether x will be of class
C or of the subclass D. If the method application occurs several times, it is
highly likely that some will be on objects denoted by x that are in class C but
not D, while others will be in class D. It is not until run-time that it can be
decided which definition of rn is the right one. Thus, the code generated by the
compiler must determine the class of the object x, and call one or the other
method named m.

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures get their arguments. In this section, we shall consider
how the actual parameters (the parameters used in the call of a procedure)
are associated with the formal parameters (those used in the procedure defi-
nition). Which mechanism is used determines how the calling-sequence code
treats parameters. The great majority of languages use either "call-by-value,"
or "call-by-reference," or both. We shall explain these terms, and another
method known as "call-by-name," that is primarily of historical interest.

CHAPTER 1. INTRODUCTION

In call-by-value, the actual parameter is evaluated (if it is an expression) or
copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is
used in C and Java, and is a common option in C++, as well as in most
other languages. Call-by-value has the effect that all computation involving the
formal parameters done by the called procedure is local to that procedure, and
the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variable to be changed by the callee. Likewise, array names passed as param-
eters in C, C++, or Java give the called procedure what is in effect a pointer
or reference to the array itself. Thus, if a is the name of an array of the calling
procedure, and it is passed by value to corresponding formal parameter x, then
an assignment such as x[i] = 2 really changes the array element a[2]. The
reason is that, although x gets a copy of the value of a, that value is really a
pointer to the beginning of the area of the store where the array named a is
located.

Similarly, in Java, many variables are really references, or pointers, to the
things they stand for. This observation applies to arrays, strings, and objects
of all classes. Even though Java uses call-by-value exclusively, whenever we
pass the name of an object to a called procedure, the value received by that
procedure is in effect a pointer to the object. Thus, the called procedure is able
to affect the value of the object itself.

Call- by-Reference

In call- b y-reference, the address of the actual parameter is passed to the callee as
the value of the corresponding formal parameter. Uses of the formal parameter
in the code of the callee are implemented by following this pointer to the location
indicated by the caller. Changes to the formal parameter thus appear as changes
to the actual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-reference is used for "ref" parameters in C++ and is an option in
many other languages. It is almost essential when the formal parameter is a
large object, array, or structure. The reason is that strict call-by-value requires
that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying
only a reference to those objects. The effect is that Java behaves as if it used
call-by-reference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS

Call- by-Name

A third mechanism - call-by-name - was used in the early programming
language Algol 60. It requires that the callee execute as if the actual parameter
were substituted literally for the formal parameter in the code of the callee, as
if the formal parameter were a macro standing for the actual parameter (with
renaming of local names in the called procedure, to keep them distinct). When
the actual parameter is an expression rather than a variable, some unintuitive
behaviors occur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or
its simulation, as in Java, where references to objects are passed by value. It
is possible that two formal parameters can refer to the same location; such
variables are said to be aliases of one another. As a result, any two variables,
which may appear to take their values from two distinct formal parameters, can
become aliases of each other, as well.

Example 1.9 : Suppose a is an array belonging to a procedure p, and p calls
another procedure q(x, y) with a call q(a, a) . Suppose also that parameters
are passed by value, but that array names are really references to the location
where the array is stored, as in C or similar languages. Now, x and y have
become aliases of each other. The important point is that if within q there is
an assignment x [lo] = 2, then the value of y[10] also becomes 2.

It turns out that understanding aliasing and the mechanisms that create it
is essential if a compiler is to optimize a program. As we shall see starting in
Chapter 9, there are many situations where we can only optimize code if we
can be sure certain variables are not aliased. For instance, we might determine
that x = 2 is the only place that variable x is ever assigned. If so, then we can
replace a use of x by a use of 2; for example, replace a = x+3 by the simpler
a = 5. But suppose there were another variable y that was aliased to x. Then
an assignment y = 4 might have the unexpected effect of changing x. It might
also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1 : For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, x, y, and x.

Exercise 1.6.2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3 : For the block-structured code of Fig. 1.14, assuming the usual
static scoping of declarations, give the scope for each of the twelve declarations.

CHAPTER 1. INTRODUCTION

i n t w , x , y, z ;
i n t i = 4 ; i n t j = 5 ;
(i n t j = 7 ;

i = 6 ;
w = i + j ;

3
x = i + j ;
{ i n t i = 8 ;

y = i + j ;

i n t w , x, y, z ;
i n t i = 3; i n t j = 4;
(i n t i = 5 ;

w = i + j ;
3
x = i + j ;
(i n t j = 6 ;

i = 7;
y = i + j ;

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

C i n t w, x, y, z ; /* Block B 1 */
C i n t x , z ; /* Block B2 */

(i n t w , x; /* Block B3 */ 3
3
{ i n t w , x ; /* Block B4 */

{ i n t y , z ; /* Block B5 */ 3
3

3

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4 : What is printed by the following C code?

#def ine a (x+l)
i n t x = 2;
void b() (x = a ; p r i n t f (l l%d\nl f , x) ; 3
void c () (i n t x = 1; p r i n t f ("%d\n"), a ;)
void main() (b(); c () ; 3

1.7 Summary of Chapter 1

+ Language Processors. An integrated software development environment
includes many different kinds of language processors such as compilers,
interpreters, assemblers, linkers, loaders, debuggers, profilers.

+ Compiler Phases. A compiler operates as a sequence of phases, each of
which transforms the source program from one intermediate representa-
tion to another.

1.7. SUMMARY OF CHAPTER 1

+ Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro-
gramming in these languages was time consuming and error prone.

+ Modeling in Compiler Design. Compiler design is one of the places where
theory has had the most impact on practice. Models that have been found
useful include automata, grammars, regular expressions, trees, and many
others.

+ Code Optimization. Although code cannot truly be "optimized," the sci-
ence of improving the efficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation.

+ Higher-Level Languages. As time goes on, programming languages take
on progressively more of the tasks that formerly were left to the program-
mer, such as memory management, type-consistency checking, or parallel
execution of code.

+ Compilers and Computer Architecture. Compiler technology influences
computer architecture, as well as being influenced by the advances in ar-
chitecture. Many modern innovations in architecture depend on compilers
being able to extract from source programs the opportunities to use the
hardware capabilities effectively.

+ Software Productivity and Software Security. The same technology that
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov-
ering that a program is vulnerable to one of the many kinds of intrusions
that "hackers" have discovered.

+ Scope Rules. The scope of a declaration of x is the context in which uses
of x refer to this declaration. A language uses static scope or lexical scope
if it is possible to determine the scope of a declaration by looking only at
the program. Otherwise, the language uses dynamic scope.

+ Environments. The association of names with locations in memory and
then with values can be described in terms of environments, which map
names to locations in store, and states, which map locations to their
values.

+ Block Structure. Languages that allow blocks to be nested are said to
have block structure. A name x in a nested block B is in the scope of a
declaration D of x in an enclosing block if there is no other declaration
of x in an intervening block.

+ Parameter Passing. Parameters are passed from a calling procedure to
the callee either by value or by reference. When large objects are passed
by value, the values passed are really references to the objects themselves,
resulting in an effective call-by-reference.

38 CHAPTER 1. INTRODUCTION

+ Aliasing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that
were created by 1982, including C, C++, Pascal, and Smalltalk, see [I].

The GNU Compiler Collection, gcc, is a popular source of open-source
compilers for C, C-t- +, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
ing the program analysis, code generation, and code optimization phases of
compilers discussed in this book [3].

For more information about programming language concepts, we recom-
mend [5,6]. For more on computer architecture and how it impacts compiling,
we suggest [4].

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http: //gcc .gnu.org/ .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-
cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006.

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996.

7. Wexelblat, R. L., History of Programming Languages, Academic Press,
New York, 1981.

Chapter 2

A Simple Syntax-Directed
Translator

This chapter is an introduction to the compiling techniques in Chapters 3
through 6 of this book. It illustrates the techniques by developing a working
Java program that translates representative programming language statements
into three-address code, an intermediate representation. In this chapter, the
emphasis is on the front end of a compiler, in particular on lexical analysis,
parsing, and intermediate code generation. Chapters 7 and 8 show how to
generate machine instructions from three-address code.

We start small by creating a syntax-directed translator that maps infix arith-
metic expressions into postfix expressions. We then extend this translator to
map code fragments as shown in Fig. 2.1 into three-address code of the form
in Fig. 2.2.

The working Java translator appears in Appendix A. The use of Java is
convenient, but not essential. In fact, the ideas in this chapter predate the
creation of both Java and C.

<
i n t i ; i n t j ; f loat [100] a ; f l o a t v ; f l o a t x ;

while (t r u e) (
do i = i + l ; whi le (a[i] < v) ;
do j = j - I ; while (a[j] > v) ;
i f (i >= j) break;
x = a [i l ; a [i l = a [j] ; a [j] = x ;

Figure 2.1: A code fragment to be translated

39

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

2.1 Introduction

The analysis phase of a compiler breaks up a source program into constituent
pieces and produces an internal representation for it, called intermediate code.
The synthesis phase translates the intermediate code into the target program.

Analysis is organized around the "syntax" of the language to be compiled.
The syntax of a programming language describes the proper form of its pro-
grams, while the semantics of the language defines what its programs mean; that
is, what each program does when it executes. For specifying syntax, we present
a widely used notation, called context-free grammars or BNF (for Backus-Naur
Form) in Section 2.2. With the notations currently available, the semantics of
a language is much more difficult to describe than the syntax. For specifying
semantics, we shall therefore use informal descriptions and suggestive examples.

Besides specifying the syntax of a language, a context-free grammar can be
used to help guide the translation of programs. In Section 2.3, we introduce
a grammar-oriented compiling technique known as syntax-directed translation.
Parsing or syntax analysis is introduced in Section 2.4.

The rest of this chapter is a quick tour through the model of a compiler
front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the
syntax-directed translation of infix expressions to postfix form, a notation in
which operators appear after their operands. For example, the postfix form of
the expression 9 - 5 + 2 is 95 - 2+. Translation into postfix form is rich enough
to illustrate syntax analysis, yet simple enough that the translator is shown in
full in Section 2.5. The simple translator handles expressions like 9 - 5 + 2,
consisting of digits separated by plus and minus signs. One reason for starting
with such simple expressions is that the syntax analyzer can work directly with
the individual characters for operators and operands.

2.1. INTRODUCTION

Symbol 1 Table 1
Figure 2.3: A model of a compiler front end

t hree-address
code

A lexical analyzer allows a translator to handle multicharacter constructs
like identifiers, which are written as sequences of characters, but are treated
as units called tokens during syntax analysis; for example, in the expression
count + 1, the identifier count is treated as a unit. The lexical analyzer in
Section 2.6 allows numbers, identifiers, and "white space" (blanks, tabs, and
newlines) to appear within expressions.

Next, we consider intermediate-code generation. Two forms of intermedi-
ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or
simply syntax trees, represents the hierarchical syntactic structure of the source
program. In the model in Fig. 2.3, the parser produces a syntax tree, that
is further translated into three-address code. Some compilers combine parsing
and intermediate-code generation into one component.

body

I

syntax
tree Parser

source
prograz

assign

/ \

Intermediate
Code

Generator

Figure 2.4: Intermediate code for "do i = i + 1 ; while (a [il < v) ; "

Y

~ ~ ~ i ~ ~ l
Analyzer

The root of the abstract syntax tree in Fig. 2.4(a) represents an entire do-
while loop. The left child of the root represents the body of the loop, which
consists of only the assignment i = i + 1 ; . The right child of the root repre-
sents the condition a Cil < v. An implementation of syntax trees appears in
Section 2.8(a).

The other common intermediate representation, shown in Fig. 2.4(b), is a

tokens
c-

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

sequence of "three-address" instructions; a more complete example appears in
Fig. 2.2. This form of intermediate code takes its name from instructions of
the form x = y op z, where op is a binary operator, y and z the are addresses
for the operands, and x is the address for the result of the operation. A three-
address instruction carries out at most one operation, typically a computation,
a comparison, or a branch.

In Appendix A, we put the techniques in this chapter together to build a
compiler front end in Java. The front end translates statements into assembly-
level instructions.

2.2 Syntax Definition

In this section, we introduce a notation - the "context-free grammar," or
"grammar" for short - that is used to specify the syntax of a language. Gram-
mars will be used throughout this book to organize compiler front ends.

A grammar naturally describes the hierarchical structure of most program-
ming language constructs. For example, an if-else statement in Java can have
the form

if (expression) statement else statement

That is, an if-else statement is the concatenation of the keyword if, an open-
ing parenthesis, an expression, a closing parenthesis, a statement, the keyword
else, and another statement. Using the variable expr to denote an expres-
sion and the variable stmt to denote a statement, this structuring rule can be
expressed as

stmt -+ if (expr) stmt else stmt

in which the arrow may be read as "can have the form." Such a rule is called a
production. In a production, lexical elements like the keyword if and the paren-
theses are called terminals. Variables like expr and stmt represent sequences of
terminals and are called nonterminals.

2.2.1 Definition of Grammars

A context-free grammar has four components:

1. A set of terminal symbols, sometimes referred to as "tokens." The termi-
nals are the elementary symbols of the language defined by the grammar.

2. A set of nonterminals, sometimes called "syntactic variables." Each non-
terminal represents a set of strings of terminals, in a manner we shall
describe.

3. A set of productions, where each production consists of a nonterminal,
called the head or left side of the production, an arrow, and a sequence of

2.2. SYNTAX DEFINITION 43

Tokens Versus Terminals

In a compiler, the lexical analyzer reads the characters of the source pro-
gram, groups them into lexically meaningful units called lexemes, and pro-
duces as output tokens representing these lexemes. A token consists of two
components, a token name and an attribute value. The token names are
abstract symbols that are used by the parser for syntax analysis. Often,
we shall call these token names terminals, since they appear as terminal
symbols in the grammar for a programming language. The attribute value,
if present, is a pointer to the symbol table that contains additional infor-
mation about the token. This additional information is not part of the
grammar, so in our discussion of syntax analysis, often we refer to tokens
and terminals synonymously.

terminals and/or nonterminals, called the body or right side of the produc-
tion. The intuitive intent of a production is to specify one of the written
forms of a construct; if the head nonterminal represents a construct, then
the body represents a written form of the construct.

4. A designation of one of the nonterminals as the start symbol.

We specify grammars by listing their productions, with the productions
for the start symbol listed first. We assume that digits, signs such as < and
<=, and boldface strings such as while are terminals. An italicized name is a
nonterminal, and any nonitalicized name or symbol may be assumed to be a
terminal.' For notational convenience, productions with the same nonterminal
as the head can have their bodies grouped, with the alternative bodies separated
by the symbol 1 , which we read as "or."

Example 2.1 : Several examples in this chapter use expressions consisting of
digits and plus and minus signs; e.g., strings such as 9-5+2, 3-1, or 7. Since a
plus or minus sign must appear between two digits, we refer to such expressions
as "lists of digits separated by plus or minus signs." The following grammar
describes the syntax of these expressions. The productions are:

list -+ list + digit

list -+ list - digit

list -+ digit

digit -+ 0 1 1 1 2) 3) 4 (5 1 6 1 7 1 8 1 9

l~ndividual italic letters will be used for additional purposes, especially when grammars
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a
symbol that is either a terminal or a nonterminal. However, any italicized name containing
two or more characters will continue to represent a nonterminal.

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The bodies of the three productions with nonterminal l ist as head equiva-
lently can be grouped:

l is t + l is t + digit 1 l is t - digit I digit

According to our conventions, the terminals of the grammar are the symbols

The nonterminals are the italicized names l ist and digit, with l ist being the start
symbol because its productions are given first.

We say a production is for a nonterminal if the nonterminal is the head of
the production. A string of terminals is a sequence of zero or more terminals.
The string of zero terminals, written as E , is called the e m p t y string2

2.2.2 Derivations

A grammar derives strings by beginning with the start symbol and repeatedly
replacing a nonterminal by the body of a production for that nonterminal. The
terminal strings that can be derived from the start symbol form the language
defined by the grammar.

Example 2.2 : The language defined by the grammar of Example 2.1 consists
of lists of digits separated by plus and minus signs. The ten productions for the
nonterminal digit allow it to stand for any of the terminals 0,1, . . . ,9. From
production (2.3), a single digit by itself is a list. Productions (2.1) and (2.2)
express the rule that any list followed by a plus or minus sign and then another
digit makes up a new list.

Productions (2.1) to (2.4) are all we need to define the desired language.
For example, we can deduce that 9-5+2 is a l ist as follows.

a) 9 is a l ist by production (2.3), since 9 is a digit.

b) 9-5 is a l ist by production (2.2), since 9 is a l ist and 5 is a digit.

c) 9-5+2 is a l ist by production (2.1), since 9-5 is a l ist and 2 is a digit.

Example 2.3 : A somewhat different sort of list is the list of parameters in a
function call. In Java, the parameters are enclosed within parentheses, as in
the call max(x, y) of function max with parameters x and y. One nuance of such
lists is that an empty list of parameters may be found between the terminals
(and). We may start to develop a grammar for such sequences with the
productions:

2~echnically, e can be a string of zero symbols from any alphabet (collection of symbols).

2.2. SYNTAX DEFINITION

call + id (optparams)
optparams -+ params I 6

params -+ params , param I param

Note that the second possible body for optpamms ("optional parameter list")
is t, which stands for the empty string of symbols. That is, optparams can be
replaced by the empty string, so a call can consist of a function name followed
by the two-terminal string () . Notice that the productions for params are
analogous to those for dist in Example 2.1, with comma in place of the arithmetic
operator + or -, and param in place of digit. We have not shown the productions
for param, since parameters are really arbitrary expressions. Shortly, we shall
discuss the appropriate productions for the various language constructs, such
as expressions, statements, and so on.

Parsing is the problem of taking a string of terminals and figuring out how
to derive it from the start symbol of the grammar, and if it cannot be derived
from the start symbol of the grammar, then reporting syntax errors within the
string. Parsing is one of the most fundamental problems in all of compiling;
the main approaches to parsing are discussed in Chapter 4. In this chapter, for
simplicity, we begin with source programs like 9-5+2 in which each character
is a terminal; in general, a source program has multicharacter lexemes that are
grouped by the lexical analyzer into tokens, whose first components are the
terminals processed by the parser.

2.2.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a
string in the language. If nonterminal A has a production A -+ XYZ, then a
parse tree may have an interior node labeled A with three children labeled X,
Y, and Z, from left to right:

/ 1 \
X Y Z

Formally, given a context-free grammar, a parse tree according to the gram-
mar is a tree with the following properties:

1. The root is labeled by the start symbol.

2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal.

4. If A is the nonterminal labeling some interior node and XI , Xz, . . . , Xn are
the labels of the children of that node from left to right, then there must
be a production A -+ X1X2 . . Xn. Here, X1, X2, . . . , X, each stand

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Tree Terminology

Tree data structures figure prominently in compiling.

A tree consists of one or more nodes. Nodes may have labels, which
in this book typically will be grammar symbols. When we draw a
tree, we often represent the nodes by these labels only.

Exactly one node is the root. All nodes except the root have a unique
parent; the root has no parent. When we draw trees, we place the
parent of a node above that node and draw an edge between them.
The root is then the highest (top) node.

If node N is the parent of node M , then M is a child of N. The
children of one node are called siblings. They have an order, from
the left, and when we draw trees, we order the childen of a given
node in this manner.

A node with no children is called a leaf. Other nodes - those with
one or more children - are interior nodes.

A descendant of a node N is either N itself, a child of N , a child of
a child of N, and so on, for any number of levels. We say node N is
an ancestor of node M if M is a descendant of N.

for a symbol that is either a terminal or a nonterminal. As a special case,
if A -+ c is a production, then a node labeled A may have a single child
labeled E .

Example 2.4: The derivation of 9-5+2 in Example 2.2 is illustrated by the
tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An
interior node and its children correspond to a production; the interior node
corresponds to the head of the production, the children to the body.

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in
Example 2.1. The children of the root are labeled, from left to right, list, +,
and digit. Note that

list -+ list + digit

is a production in the grammar of Example 2.1. The left child of the root is
similar to the root, with a child labeled - instead of +. The three nodes labeled
digit each have one child that is labeled by a digit.

From left to right, the leaves of a parse tree form the yield of the tree, which
is the string generated or derived from the nonterminal at the root of the parse

2.2. SYNTAX DEFINITION

list

l ist -----' 1 ' d i g i t

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1

l ist
/

I
digit

I

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown
at the bottom level. Henceforth, we shall not necessarily line up the leaves in
this way. Any tree imparts a natural left-to-right order to its leaves, based on
the idea that if X and Y are two children with the same parent, and X is to
the left of Y, then all descendants of X are to the left of descendants of Y.

Another definition of the language generated by a grammar is as the set of
strings that can be generated by some parse tree. The process of finding a parse
tree for a given string of terminals is called parsing that string.

\
digit

2.2.4 Ambiguity

We have to be careful in talking about the structure of a string according to a
grammar. A grammar can have more than one parse tree generating a given
string of terminals. Such a grammar is said to be ambiguous. To show that a
grammar is ambiguous, all we need to do is find a terminal string that is the
yield of more than one parse tree. Since a string with more than one parse tree
usually has more than one meaning, we need to design unambiguous grammars
for compiling applications, or to use ambiguous grammars with additional rules
to resolve the ambiguities.

Example 2.5 : Suppose we used a single nonterminal string and did not dis-
tinguish between digits and lists, as in Example 2.1. We could have written the
grammar

string -+ string + string I s t k g - string 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 / 9

Merging the notion of digit and list into the nonterminal string makes superficial
sense, because a single digit is a special case of a list.

However, Fig. 2.6 shows that an expression like 9-5+2 has more than one
parse tree with this grammar. The two trees for 9-5+2 correspond to the two
ways of parenthesizing the expression: (9-5) +2 and 9- (5+2) . This second
parenthesization gives the expression the unexpected value 2 rather than the
customary value 6. The grammar of Example 2.1 does not permit this inter-
pretation.

