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Outline

• Summary	of	Status	of	Anomalies:
There	are	SEVERAL,	generally	consistent	within	“types”,
but	not	obviously	consistent	with	each	other	globally.
See	talk	by	Danny	Marfatia for	one	possible	approach	–
a	sterile	sector	WITH	Non-Standard	Interactions

• Review	of	Physics	and	Analysis:
Pros	and	Cons	of	various	experimental	approaches	to
characterizing	short-baseline	steriles with	CEvNS

• Projection	of	Sensitivity	with	CEvNS:
Complementarity	of	beam	and	reactor	searches
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Formalism

• Transition	to	self	and	transition	to	alternate	flavor

• At	the	matrix	element	level:	Sum	over	intermediate	states	and	square	the	amplitude
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REACTOR	and	GALLIUM	ANOMALIES
• Nuclear reactors produce �̅�# flavor states; effect of steriles is *disappearance*

• The “REACTOR ANOMALY”: There is a global ~ 3𝜎 flux deficit relative to the
theoretical expectation. This is amplified by recent reevaluation of the theory
(Huber / Mueller et. al 1101.2663 & 1106.0687). Observed/Expected is ~ 94%

• Radiactive source experiments with Gallium (GALLEX and SAGE – 0711.4222 &
1006.3244) likewise show a flux deficit.

• There is an observed “bump” in the reactor spectrum near 5 MeV (1610.04326)

• Daya Bay (1704.02276) has used time evolution of the fuel composition to break
down flux contributions. There is a suggestion that the anomaly is associated
with 235U, while 239Pu is consistent. This would disfavor a sterile interpretation.
However, there is some disagreement on methodolgoy (1510.08948)

• Dentler et. al (1709.04294) find goodness of fit 73% with free flux normalizations
vs. 18% with fixed flux plus sterile Δ𝑚(~eV(.

• However, DANSS and NEOS prefer sterile to flux rescaling. This weakens the
global preference. Including time-dependence of decay chains and neutron
capture on fission productsr reduces Daya Bay’s preference below 2𝜎 – P. Huber
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Dentler, Hernandez-Cabezudo, 
Kopp, Machado, Maltoni, 
Schwetz,’18

Without reactors, 
a larger |Ue4 |2~ 5 - 6 x 10-2 is ok

MiniBooNe:

From	Dutta
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Daya Bay	DANSS	and	NEOS

• Newer	(1607.01174,	1610.0534,	1606.02896)	reactor	analyses	take	RATIOS	of	
observations	at	different	baselines	in	order	to	REMOVE	dependence	upon	the	flux	
normalization	and	intrinsic	spectral	shape.

• Inclusion	of	a	sterile	improves	the	fit	at	the	level	of	3𝜎 (1803.10661)
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LSND	and	MiniBooNE

• At MiniBooNE, 8 GeV protons from FNAL Booster strike a Be target. Magnetically
focused charged pions produce 𝜈- or �̅�- beams. Detector is 818 tons of mineral oil at
~ 540 m baseline. Detection is flavor-sensitive CCQE off electrons. Neutrino energies
are around 500 MeV. (1805.12028)

• Around 10(0 protons on target

• There is 4.8𝜎 evidence of an excess of electron neutrino appearance.

• Two neutrino mu to e oscillation has goodness of fit 20.1%. Background only
hypothesis is 5×1067 relative to best fit with 𝐿/𝐸; ≈ 1[m/MeV].

• This is MUCH too short for standard neutrino oscillation to be responsible. BUT – the
transition could occur *through* a sterile.

• In combination with results form the prior similar LSND experiments at Los Alamos
(which is compatible) the significance is 6.1𝜎
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MiniBooNE Results
• 1805.12028	Left:	Neutrino	Mode	and	Right:	Combined	with	Anti-Neutrino
• Best	fit	“dot”	should	not	be	strongly	preferred	over	regions	in	contours
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Neutrino	4

• Hosted at a megawatt research reactor in Russia. 95% 235U. 480 live days.

• Baseline is 6-12 meters. Core is compact and detector is segmented.

• Gadolineum-doped liquid scintillator with 1.8 m3 detects neutrinos via inverse beta
decay (�̅�# + 𝑝 → 𝑒F + n).

• Analysis uses RATIOS of events and plots in 𝐿/𝐸; to extract oscillation without
dependence upon normalization of flux.

• Claim 3𝜎 preference for oscillation. NOTE: this is a DELTA 𝜒(. The no-oscillation
hypothesis is a reasonably good fit. This is NOT a 3𝜎	exclusion of the SM.

• The IBD detection FULLY RECONSTRUCTS the neutrino energy – this allows for
“coherency” of the oscillation over many cycles, with deep cuts as a function of
∆𝑚(. It is also flavor sensitive.

• But, the cross-section is very low compared to coherent scattering
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Neutrino	4
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Neutrino	4

• Yellow,	Green,	and	Blue	are	increasingly	favored
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|Uµ4|2	≤	0.01

From	Dutta



Searching	for	New	Physics	with	CEvNS

• Large	statistics	allow	precision	discrimination
• Can	search	for	new	neutral	currents,	e.g.	Z’,	NSI	
– this	creates	a	modification	to	the	RATE	only

• Sensitivity	is	BEST	to	models	that	impact	also	
the	expected	event	distribution	SHAPE:

• Light	mediators,	magnetic	moment,	sterile



SM	&	BSM	Event	Rates

• Huge	event	rates	of	~	1/kg/hour	are	possible	in	the	SM
• The	signal	region	stands	out	b/c	of	narrow	bandwidth	and	coherency	enhancement
• For	BSM	physics	look	to	distinguish	rate,	shape,	and	Si	Vs.	Ge

SM Coherent Nuclear Scattering

μν = 10-10 × μBohr CEνNS

MZ' = 1 TeV (E6 χ Model) CEνNS

SM Elastic Electron Scattering

μν = 10-10 × μBohr Electron Scattering
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Oscillation	to	Sterile	4th Flavor	Neutrino

• Probability	for	oscillation	depends	on	mixing	(amplitude)	and	mass	gap	(phase)
• For	the	region	of	interest,	an	experimental	baseline	on	the	order	of	meters	is	relevant
• Dimensionless	scale-invariant	basis	functions	encapsulate	all	aspects	of	theory



Depletion	via	Oscillation
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• Larger	values	in	the	vertical	correspond	to	greater	depletion	via	oscillation
• Universal	curve	bases	are	rescaled	(vert.)	by	mixing	amplitude	and	(horiz.)	mass	gap
• Bins	are	selected	for	approximately	equivalent	population	event	rates
• Even	with	a	fixed	length	scale,	multiple	energy	samples	give	sensitivity	to	oscillation
• Oscillation	decoheres over	multiple	cycles	&	with	mixing	in	the	neutrino	energy
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COHERENT	at	the	SNS
• Stopped Positive Pion produces isotropic muon

neutrino 𝜈-of fixed energy ~ 30 MeV

• This is ~ 20X the mean energy of a reactor neutrino

• Subsequently the delayed decay of the 𝜇F to 𝑒F𝜈#�̅�-
yields calculable SPECTRA with endpoint energy 𝑚-
(1804.09459). The 𝜈-	: 𝜈# ∶ 	 �̅�- flavors are produced
in equal proportion. BUT, for a NR threshold ~ 5 keV,
the coherent scattering rates are around 0.2 : 0.3 : 0.5
due to rate enhancement at higher energy.

• INTEGRATED cross section is 202 = 400X larger and
recoils are similarly more energetic – this is why low
threshold is less critical for COHERENT. In principle, it
also allows for much more massive detectors.

• Timing information helps with background
suppression.

• BUT flux is ~ 105 times lower than a reactor.
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Coherent	Scattering	at	a	Reactor

• Flux is high, (1012 – 1013 per cm2 per second) and backgrounds are challenging

• The reactor spectrum is (reasonably) well known.

• Because of the neutral current coherent, scattering detection never resolves flavor.

• Because of the differential cross-section, a given neutrino can produce many
different recoils, and the map is NOT INVERTABLE. BUT harder neutrinos will tend to
produce harder recoils, so binning in energy is essential.

• On an event-by-event basis one never knows what the neutrino energy was
(directional detection would resolve this)



Reactor	Anti-Neutrino	Source

• 235U	yields	a	thermal	energy	of	202	MeV	per	fission
• Neutrino	yield	in	cascade	is	6.14	with	1.5	MeV	mean	energy
• If	reactor	power	is	known,	then	the	neutrino	flux	is	known
• Spectrum	is	experimental	(Schreckenbach et	al.)	above	2	MeV
• Below	inverse	𝛽 threshold,	spectrum	is	theoretical	(Kopeiken)
• Coherency	of	scattering	is	naturally	well-maintained
• MW	reactor	delivers	flux	of	1.5	×	100(/cm2/sec	@	1	m	(vs.	Solar	~	5	×	10P/cm2/sec)	
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Integrated	Event	Rate

• Integrate	in	the	physical	region	over	recoils	and	over	the	normalized	𝐸; spectrum
• Result	is	proportional	to	flux,	time,	and	mass,	and	inversely	so	to	distance-square
• Form	factor	𝐹((𝑞() is	suppressed	(assumed	equal	to	unity)
• For	MeV	order	neutrinos,	an	ultra-low	detection	threshold	is	vital
• Note	“area”	is	from	the	interaction	cross	section	– NOT	the	physical	detector	dimension
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Formalism

• CEvNS Neutral	current	touches	all	flavors	– use	unitarity at	reactors

• And	at	the	SNS	beamline.		If	we	idealize	prompt	and	delayed	as	separate	
experiments	we	can	solve	the	system.
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SNS	Delayed

22

SNS	Delayed
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SNS	Prompt
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Reactor
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SNS	Delayed
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SNS	Prompt
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Reactor
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Reactor
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SNS	Delayed
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Reactor	Threshold
• Low	threshold	is	essential	for	additional	channels
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Reactor	Binning
• One	must	bin	in	order	to	separate	correlated	effects
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Reactor	Systematics
• Large	systematics	require	low	thresholds
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