Completions of Orthomodular Lattices II

JOHN HARDING*

Department of Mathematics, Vanderbilt University, Nashville, Tennessee, 37240, U.S.A.

Communicated by B. Jónsson

(Received: 21 July 1992; accepted: 5 May 1993)

Abstract. If \mathcal{K} is a variety of orthomodular lattices generated by a set of orthomodular lattices having a finite uniform upper bound om the length of their chains, then the MacNeille completion of every algebra in \mathcal{K} again belongs to \mathcal{K} .

Mathematics Subject Classifications (1991). 06A10, 20B14.

Key words: Orthomodular lattices, MacNeille completion, Boolean algebra.

It is often of interest to know when the fundamental operations of an ordered structure A can be extended to operations of the MacNeille completion of A, subject to certain constraints. As an important example, the MacNeille completion of a Boolean algebra B carries the structure of a Boolean algebra, which is the injective hull of B [10]. Other examples naturally occur; the MacNeille completion of a Heyting algebra H can be given a Heyting algebra structure extending that of H ([2], p. 238), the MacNeille completion of an ortholattice L can be given a northolattice structure extending that of L [18], and of course, the MacNeille completion of a lattice L can be given a lattice structure extending that of L [19]. For a variety V of algebras whose members carry a natural partial ordering, we say that V is closed under MacNeille completions if the operations of an algebra A in V can be extended to the MacNeille completion of A so that the resultant belongs in V. So that the examples given above do not mislead anyone, it is shown in [13] that the only varieties of lattices which are closed under MacNeille completions are the trivial variety and the variety of all lattices.

In [4], it was shown that any variety of orthomodular lattices which is generated by a single finite orthomodular lattice is closed under MacNeille completions, in contrast to the fact that the variety of all orthomodular lattices is not closed under MacNeille completions [1, 11]. In this paper we extend the results of [4] to show that any variety of orthomodular lattices which is generated by a set of orthomodular lattices having a finite uniform upper bound on the lengths of their chains is closed under MacNeille completions. A natural example of such a variety is one generated by a set of n-dimensional orthocomplemented projective geometries. Our approach has the added advantage of constructing the MacNeille completion

^{*} The author gratefully acknowledges the support of NSERC.

of an algebra A in such a variety as a subalgebra of a reduced product of quotients of A.

The methods used here seem to be of some independent interest. For any algebra A whose complemented congruences form a Boolean sublattice of the congruence lattice of A, we construct an algebra $\Re A$ which lies in the variety generated by A. For a distributive lattice $D, \Re D$ is the injective hull of D. For rings, this construction is equivalent to taking the quotient ring with respect to a certain torsion theory, and has been investigated by Carson in [6]. In the special case of Boolean rings, $\Re R$ is the maximal ring of quotients of R (the analogue to Boolean rings of the MacNeille completion).

The paper has been divided into three sections. Section 1 gives the background on Pierce sheaves we require. In Section 2 we define the algebra $\Re A$ and discuss its properties in a general setting, and in Section 3 we apply our results to orthomodular lattices. For typographical reasons, the lattice operations of join and meet are written as + and \cdot respectively.

1. The Pierce Sheaf

The basis of this paper is the Pierce sheaf representation of an algebra, see [5, 7, 8, 17, 20]. A description of the Pierce sheaf, and the properties we require, will comprise the remainder of this section.

DEFINITIONS. For an algebra A whose congruence lattice is distributive, the complemented elements of the congruence lattice of A form a Boolean sublattice B of the congruence lattice of A. The collection of prime ideals of B is denoted by $\beta(B)$. A topology is constructed on $\beta(B)$ from the basis of open sets $\{\beta(x) : x \in B\}$, where $\beta(x)$ is the set of all prime ideals of B containing x. The topological space $\beta(B)$ is customarily called the *Stone space* [5] of B. Note that for each point P in $\beta(B)$, P is an updirected family of congruences on A. Therefore $\bigcup P$ is a congruence on A which we will denote also by P. The system consisting of $\beta(B)$ and the indexed family of algebras $(A/P)_{P \in \beta(B)}$ is collectively referred to as the *Pierce sheaf* [20] of A.

It will save a good deal of essentially useless notation if we assume that A/P is disjoint from A/Q for distinct points P and Q of $\beta(B)$. Of course, this assumption is quite harmless. Setting $S = \bigcup \{A/P : P \in \beta(B)\}$, the usual Cartesian product is given by

$$\prod_{P \in \beta(B)} A/P = \{ f : \beta(B) \to S : f(P) \text{ is in } A/P \text{ for each } P \in \beta(B) \}.$$

For an element a of A, we define a function \tilde{a} in $\prod A/P$ by setting $\tilde{a}(P)$ equal to a/P for each point P of $\beta(B)$. We refer to such an \tilde{a} as a *constant function*. The situation is depicted in the figure below.

In the following we assume that A is an algebra whose congruence lattice is distributive and B is the Boolean algebra of complemented congruences of A.

PROPOSITION 1. (Pierce).

1. $\{\tilde{a}[\beta(x)] : a \in A, x \in B\}$ is a basis for a topology on S.

2. With respect to this topology, a function $f \in \prod A/P$ is continuous at a point P of $\beta(B)$ if and only if there is some open neighbourhood $\beta(x)$ of P and some a in A so that f agrees with \tilde{a} on $\beta(x)$.

3. $\{f \in \prod A/P : f \text{ is continuous }\}$ is a subalgebra of $\prod A/P$ which we denote by ΓA .

4. For $a, b \in A$ and $x \in B$, \tilde{a} agrees with \tilde{b} on $\beta(x)$ if and only if $(a, b) \in x$.

5. The map $\alpha : A \to \Gamma A$ defined by $a \rightsquigarrow \tilde{a}$ is an embedding. It is an isomorphism if and only if the congruences in B are pairwise permuting.

Proof. 1. If the point a/P is contained in the intersection of the basic open sets $\tilde{b}[\beta(x)]$ and $\tilde{c}[\beta(y)]$, then $P \in \beta(x) \cap \beta(y) = \beta(x+y)$ and a/P = b/P = c/P. So for some $z \in P$, (a, b) and (b, c) are elements of the congruence z, giving that a/P is an element of the basic open set $\tilde{a}[\beta(x+y+z)]$ which is contained in the intersection of $\tilde{b}[\beta(x)]$ and $\tilde{c}[\beta(y)]$.

2. From part 1, $\{\tilde{a}[\beta(x)]: x \in P\}$ is a neighbourhood basis for the point a/P. Therefore if f agrees with \tilde{a} on $\beta(x)$ then f is continuous at each point of $\beta(x)$. But if f is continuous at the point P and f(P) equals a/P, then there is a basic open neighbourhood $\beta(x)$ of P so that $f[\beta(x)]$ is contained in $\tilde{a}[\beta(B)]$. So f agrees with \tilde{a} on $\beta(x)$.

3. To see that ΓA is a subalgebra of $\prod A/P$, suppose $f, g \in \Gamma A$ and \oplus is a binary operation in the language of A. By part 2, for each point P of $\beta(B)$ there is an open neighbourhood N of P, and $a, b \in A$ so that f agrees with \tilde{a} on N and g agrees with \tilde{b} on N. Let $c = a \oplus b$, then as operations in $\prod A/P$ are componentwise, $f \oplus g$ agrees with \tilde{c} on N. Therefore $f \oplus g$ is continuous at each point of $\beta(B)$. The generalization to operations depending on one or more variables is obvious, and

for a constant operation μ of A, the corresponding constant of ΓA is the function $\tilde{\mu}$.

4. If the pair (a, b) is in the congruence x, then as $x \in P$ for each point P of $\beta(x)$, we have that \tilde{a} and \tilde{b} agree on $\beta(x)$. Conversely, if (a, b) is not in x, then x is not in $\{w \in B : (a, b) \in w\} = F$. For x' the complement of x in B, we can extend $F \cup \{x'\}$ to an ultrafilter U over B. The complement of U in B is a prime ideal P of B which contains x. As $\tilde{a}(P)$ is not equal to $\tilde{b}(P)$, \tilde{a} and \tilde{b} do not agree on $\beta(x)$.

5. To check that α is well defined we must only check that \tilde{a} is continuous for each $a \in A$, but this is shown in part 2. Also, α is a homomorphism since the operations in ΓA are componentwise and for each $P \in \beta(B)$ the natural map from A onto A/P is a homomorphism. That α is an embedding is a special case of part 4. If α maps A onto ΓA , we must show that the congruences in B are pairwise permuting. Equivalently, for congruences x, y in B, if (a, b) is in the congruence x + y we must show there is some $c \in A$ with $(a, c) \in x$ and $(c, b) \in y$. If (a, b)is in x + y then \tilde{a} and \tilde{b} agree on $\beta(x + y) = \beta(x) \cap \beta(y)$. Define $f \in \prod A/P$ so that f agrees with \tilde{b} on $\beta(y)$ and agrees with \tilde{a} otherwise. As $\beta(y)$ is clopen, f is continuous, so $f = \tilde{c}$ for some $c \in A$. Then as \tilde{a} and \tilde{c} agree on $\beta(x)$ and \tilde{c}, \tilde{b} agree on $\beta(y)$, we have that (a, c) is in x and (c, b) is in y. Conversely, suppose the congruences in B permute. For $f \in \Gamma A$, using part 2 and the fact that $\beta(B)$ is compact, we can find $a_1, \ldots, a_n \in A$ and $z_1, \ldots, z_n \in B$ so that $\beta(z_1), \ldots, \beta(z_n)$ is an open cover of $\beta(B)$ and f agrees with \tilde{a}_i on $\beta(z_i)$ for each $1 \leq i \leq n$. Then if $n \ge 2$, \tilde{a}_1 and \tilde{a}_2 agree on $\beta(z_1 + z_2)$ giving that (a_1, a_2) is in $z_1 + z_2$. As congruences in B permute, there is some $c \in A$ with (a_1, c) in z_1 and (c, a_2) in z_2 . Then \tilde{a}_1 , \tilde{c} agree on $\beta(z_1)$ and \tilde{c} , \tilde{a}_2 agree on $\beta(z_2)$, giving that f agrees with \tilde{c} on $\beta(z_1) \cup \beta(z_2)$. Repeating this procedure we see that $f = \tilde{a}$ for some $a \in A$.

2. The Algebra of Dense Open Sections

We introduce $\Re A$, the algebra of dense open sections of A, and describe some of its properties in a general setting.

DEFINITIONS. We will refer to a continuous function f in $\prod A/P$ as a global section of A and call ΓA the algebra of global sections of A. We say a function $f \in \prod A/P$ is a dense open section of A if the set of all points at which f is continuous contains a dense open subset of $\beta(B)$. As the collection of all dense open subsets of $\beta(B)$ is a filter base over $\beta(B)$, the set of all dense open sections is a subalgebra of $\prod A/P$ which we denote by $\Gamma_D A$. The filter base of dense open subsets of $\beta(B)$ naturally gives a congruence \simeq over $\prod A/P$ where $f \simeq g$ if f and g agree on a dense open subset of $\beta(B)$. The quotient $(\Gamma_D A)/\simeq$ is the algebra of dense open sections of A and we denote it by $\Re A$. We say that the algebra A is Hausdorff if $S = \bigcup A/P$ is a Hausdorff space, and A is weakly Hausdorff if the natural map $A \to \Re A$ is an embedding.

NOTATION. For functions f, g from a topological space X to a topological space Y, let Cf be the set of points at which f is continuous, and let $[\![f = g]\!]$ be the set of points at which f and g agree. Note that for $f \in \prod A/P$, part 2 of Proposition 1 gives that Cf is open in $\beta(B)$. Finally, we let Δ denote the smallest congruence on A. Note that $\beta(\Delta)$ contains all points in $\beta(B)$.

PROPOSITION 2.

1. The following are equivalent,

- (i) A is Hausdorff.
- (ii) For each $a, b \in A$, $[\tilde{a} = \tilde{b}]$ is clopen.
- (iii) For each $a, b \in A$ there is a least congruence in B which contains (a, b).
- 2. The following are equivalent and are implied by each of the above conditions
- (iv) A is weakly Hausdorff.
- (v) If $T \subseteq B$ and Δ is the meet of T in B, then Δ is the meet of T in the congruence lattice of A.
- (vi) All existing meets in B agree with those in the congruence lattice of A.
- (vii) The natural map $\Gamma A \to \Re A$ is an embedding.
- (viii) If two dense open sections of A agree on a dense open set, then they agree at every point where both are continuous.

Proof. 1. To see that the first condition implies the second, note that $[\tilde{a} = \tilde{b}] = \tilde{b}^{-1}[\tilde{a}[\beta(\Delta)]]$ is open since \tilde{b} is continuous. But $[\tilde{a} = \tilde{b}]$ is closed if S is Hausdorff.

To see that the second condition implies the third, for $a, b \in A$ we have by part 4 of Proposition 1 that (a, b) is in z if and only if $[\tilde{a} = \tilde{b}] \supseteq \beta(z)$. As $[\tilde{a} = \tilde{b}]$ is clopen, $[\tilde{a} = \tilde{b}] = \beta(w)$ for some $w \in B$. Then w is the least member of B which contains (a, b).

To see that the third condition implies the first, we must show that any two distinct points in S can be separated by disjoint open neighbourhoods. If P and Q are distinct, obviously a/P and b/Q can be separated since $\beta(B)$ is Hausdorff. If $a, b \in A$ and a/P and b/P are distinct, let z be the least member of B which contains (a, b). For z' the complement of z in B, as z is not in P we have that z' is in P. Then a/P is in $\tilde{a}[\beta(z')]$ and b/P is in $\tilde{b}[\beta(z')]$. We have only to show that $\tilde{a}[\beta(z')]$ and $\tilde{b}[\beta(z')]$ are disjoint. If c/Q is a point in their intersection, then a/Q = b/Q implying that z is in Q, an impossibility.

2. To see that the fourth condition implies the fifth, suppose that T is a subset of B and Δ is the meet of T in B. Then $E = \bigcup \{\beta(x) : x \in T\}$ is a dense open set. If $(a, b) \in \bigcap T$, then \tilde{a} and \tilde{b} agree on E. So if A is weakly Hausdorff, then a = b.

To see that the fifth condition implies the sixth, suppose that T is a subset of B and z is the meet of T in B. For z' the complement of z in B, Δ is the meet of $T \cup \{z'\}$ in B. By our assumption $\bigcap T \cap z'$ is also equal to Δ , and from general considerations $\bigcap T$ contains z. Using the modular law and the fact that z and z' are complements we have that $\bigcap T$ is equal to z.

To see that the sixth condition implies the seventh, suppose that f and g are global sections of A, and $f \simeq g$. As f and g are continuous, for a point P in $\beta(B)$ there is a basic open neighbourhood $\beta(z)$ of P and $a, b \in A$ so that f agrees with \tilde{a} on $\beta(z)$ and g agrees with \tilde{b} on $\beta(z)$. As f and g agree on a dense open set, $E = [f = g] \cap \beta(z)$ contains an open set which is dense in $\beta(z)$. So for $T = \{x \in B : \beta(x) \subseteq E\}$, z is the meet of T in B. But \tilde{a} and \tilde{b} agree on $\beta(x)$ for each $x \in T$, so (a, b) is in $\cap T$. Therefore (a, b) is in z, giving f(P) = g(P).

To see that the seventh condition implies the eighth, let f and g be dense open sections of A which agree on a dense subset of $\beta(B)$. If P is a point of continuity of both f and g, then by part 2 of Proposition 1 there is a basic open neighbourhood $\beta(x)$ of P and elements a, b in A so that f agrees with \tilde{a} on $\beta(x)$ and g agrees with \tilde{b} on $\beta(x)$. Define h in $\prod A/P$ so that h agrees with \tilde{b} on $\beta(x)$ and h agrees with \tilde{a} otherwise. As $\beta(x)$ is clopen h is a global section of A. But h agrees with \tilde{a} everywhere that f agrees with g, so $h \simeq \tilde{a}$. As the map $\Gamma A \to \Re A$ is an embedding, h equals \tilde{a} , so f(P) = g(P).

It is obvious that the eighth condition implies the fourth, since \tilde{a} is continuous for each a in A.

That the first condition implies the fourth follows from the general fact that continuous maps into a Hausdorff space which agree on a dense set are equal.

The equivalence of conditions (i) and (ii) was first shown in [17].

REMARK. For any algebra A, if B is some collection of complemented congruences of A which form a Boolean sublattice of the congruence lattice of A, then one could proceed as above to produce a sheaf for A over the Stone space of B. Proposition 1 remains valid in this more general setting as does the first part of Proposition 2. The second part of Proposition 2 seems to require the modularity of the congruence lattice of A.

PROPOSITION 3. If A is a weakly Hausdorff algebra which generates a congruence distributive variety, then the natural embedding $\Gamma A \rightarrow \Re A$ is an essential extension.

Proof. We must show that every nontrivial congruence of $\Re A$ restricts to a nontrivial congruence of ΓA . Suppose that θ is a nontrivial congruence on $\Re A$, then there are f and g in $\Gamma_D A$ with $(f/\simeq, g/\simeq)$ in θ and $\neq g$. So by part (viii) of Proposition 2 there is a point P at which both f and g are continuous and f(P) is not equal to g(P). Then there is a clopen neighbourhood K of P and elements a and b of A so that f agrees with \tilde{a} on K and g agrees with \tilde{b} on K. Define h in $\prod A/P$ so that h agrees with \tilde{a} on K and h agrees with \tilde{b} otherwise. Then h is in ΓA . We will show that $(h/\simeq, \tilde{b}/\simeq)$ is in θ . Let

 $\lambda = \{ (p/\simeq, q/\simeq) : p \text{ and } q \text{ agree on a dense open subset of } K \}$ $\phi = \{ (p/\simeq, q/\simeq) : p \text{ and } q \text{ agree on a dense open subset of } \neg K \}.$ Then λ and ϕ are congruences on $\Re A$ and as A is weakly Hausdorff $\lambda \cdot \phi = \Delta$. As A generates a congruence distributive variety, $\theta = (\theta + \lambda) \cdot (\theta + \phi)$. Obviously $(h/\simeq, \tilde{b}/\simeq)$ is in ϕ so we need only show that $(h/\simeq, \tilde{b}/\simeq)$ is in $\theta + \lambda$. But $(h/\simeq, f/\simeq)$ and $(g/\simeq, b/\simeq)$ are in λ and $(f/\simeq, g/\simeq)$ is in θ , so $(h/\simeq, b/\simeq)$ is in $\theta + \lambda$.

PROPOSITION 4. Let A be a weakly Hausdorff algebra which has a bounded lattice as a reduct, and let B be the Boolean algebra of complemented congruences of A. If there is a dense open subset G of $\beta(B)$ and a natural number n so that for each point P in G every chain in A/P has at most n elements, then $\Re A$ is the MacNeille completion of ΓA .

Proof. As A has a bounded lattice as a reduct, the congruence lattice of A is distributive ([5], p. 80), and as ΓA and $\Re A$ are in the variety generated by A, ΓA and $\Re A$ also have bounded lattices as reducts. As A is weakly Hausdorff, by Proposition 2 there is a natural embedding of ΓA into $\Re A$, so the lattice reduct of ΓA is a sublattice of the lattice reduct of $\Re A$. We must show [3] that the lattice reduct of $\Re A$ is complete and that every element of $\Re A$ is both the join and meet (of images) of elements of ΓA . To show that this lattice is complete, it is enough to show that for any nonempty set T of dense open sections of A, $\{f/\simeq: f \in T\}$ has a supremum in $\Re A$. Let C be the set of all points of G at which *some* member of T is continuous. Choose g in $\prod A/P$ so that $g(P) = \sum \{f(P) : f \in T \text{ and } P \in Cf\}$ for each P in C.

CLAIM. g is a dense open section of A.

Proof. For each nonempty open set N of $\beta(B)$, we must show g is continuous at some point of N. Consider a tower of nonempty open sets $N \supseteq M_1 \supseteq \cdots \supseteq M_k$ which satisfies the following conditions

- for each $1 \leq i \leq k$ there is $f_i \in T$ and $a_i \in A$ so that f_i agrees with \tilde{a}_i on M_i
- for each point P in M_k , $f_1(P)$, $f_1(P) + f_2(P), \ldots, \sum_{i=1}^k f_i(P)$ is a strictly increasing chain in A/P.

Clearly there is at least one such tower, since T is nonempty and a member of T is dense open section of A. However, any such tower can be of length at most n, since each nonempty open set intersects G nontrivially. Therefore we can choose such a tower $N \supseteq M_1 \supseteq \cdots \supseteq M_q$ of maximal length, with f_1, \ldots, f_q in T and a_1, \ldots, a_q in A satisfying the above conditions.

Let $a = \sum_{i=1}^{q} a_i$, we wish to show that g agrees with \tilde{a} on M_q thereby proving our claim. Suppose that Q is a point in M_q and g does not agree with \tilde{a} at Q. Since f_i is continuous at Q for each $1 \leq i \leq q$, we have that $\tilde{a}(Q) \leq g(Q)$, so there must be some f_{q+1} in T which is continuous at Q with $f_{q+1}(Q) \leq \tilde{a}(Q)$. By part 2 of Proposition 1 we can find an open neighbourhood $\beta(x) \subseteq M_q$ of Q and an element a_{q+1} in A so that f_{q+1} agrees with \tilde{a}_{q+1} on $\beta(x)$. Set $b = \sum_{i=1}^{q+1} a_i$ and define h in $\prod A/P$ so that h agrees with \tilde{b} on $\beta(x)$ and h agrees with \tilde{a} otherwise. As $\beta(x)$ is clopen, h is a global section of A. But h does not agree with \tilde{a} at Q, and as A is weakly Hausdorff h can not agree with \tilde{a} on a dense open set. The set where h agrees with \tilde{a} is given by $h^{-1}[\tilde{a}[\beta(\Delta)]]$ which is open, so there is a nonempty open set M_{q+1} on which h and \tilde{a} differ. From the definition of h, M_{q+1} is contained in $\beta(x)$, which in turn is contained in M_q . Then for each P in M_{q+1} , $f_1(P), \ldots, \sum_{i=1}^{q+1} f_i(P)$ is a strictly increasing chain in A/P. This contradicts our choice of a tower of maximal length establishing our claim.

For each f in T and each point P at which both f and g are continuous we have $f(P) \leq g(P)$. Therefore $(f+g) \simeq g$ and as \simeq is a congruence $f/\simeq + g/\simeq$ is equal to g/\simeq giving that $f/\simeq \leq g/\simeq$. So g/\simeq is an upper bound of $\{f/\simeq: f \in T\}$. Suppose that h is a dense open section of A and h/\simeq is an upper bound of $\{f/\simeq: f \in T\}$. Then for each f in T, $(f+h) \simeq h$ so by part (viii) of Proposition 2, (f+h) agrees with h at each point where both are continuous. So $f(P) \leq h(P)$ for each point P at which f and h are both continuous. If P is a point in C at which h is continuous then $g(P) \leq h(P)$. But C and Ch are dense open sets, so $(g+h) \simeq h$ giving $g/\simeq \leq h/\simeq$. Therefore g/\simeq is the least upper bound of $\{f/\simeq: f \in T\}$.

We are left to show that each element of $\Re A$ is the join and meet (of images) of elements of ΓA . Let h be a dense open section of A. For each point P at which h is continuous we can find a clopen neighbourhood $\beta(x_P)$ of P and an element a_P in A so that h agrees with \tilde{a}_P on $\beta(x_P)$. Let f_P be the global section of A which agrees with \tilde{a}_P on $\beta(x_P)$ and agrees with $\tilde{0}$ otherwise, where $\tilde{0}$ is the zero of the lattice reduct of A. Using an argument similar to that of the preceding paragraph it is easily seen that h is the least upper bound of $\{f_P | \simeq: P \in Ch\}$.

3. Applications to Orthomodular Lattices

An ortholattice is a bounded lattice $(L, +, \cdot, 0, 1)$ with an additional unary operation ' which is an order inverting complementation of period two. An orthomodular lattice is an ortholattice which satisfies the following condition known as the orthomodular law;

for all x, y in L, if $x \leq y$ then $x + (x' \cdot y) = y$.

It is not difficult to see that orthomodular lattices can be defined by equations, and therefore form a variety of algebras.

An element c of a bounded lattice L is called *central* if c has a complement in L and for each $a, b \in L$, the sublattice of L generated by $\{a, b, c\}$ is distributive. It is easily seen that the collection of all central elements of a lattice L forms a Boolean sublattice of L. An element c of an orthomodular lattice A is called central if c is central in the lattice reduct of A. For an orthomodular lattice A and c in the centre of A define

$$\gamma(c) = \{(a,b) \in A^2 : a \cdot c' = b \cdot c'\}.$$

It is shown in ([16], pp. 73–80) that $\gamma(c)$ is a congruence of A, and in fact γ is an isomorphism between the Boolean algebra of central elements of A and the Boolean algebra of complemented congruences of A. It follows that an orthomodular lattice is directly irreducible if and only if its centre consists just of the bounds 0 and 1.

DEFINITIONS. Let S be a set of directly irreducible orthomodular lattices, and φ be a first order formula in the language of ortholattices. We say that a term t returns the truth value of φ for S if for each L in S and each x in L,

$$t(\mathbf{x}) = \begin{cases} 1 & \text{if } L \models \varphi(\mathbf{x}) \\ 0 & \text{otherwise.} \end{cases}$$

We say that a term $p(\mathbf{x}, y)$ returns least central upper bounds for φ and S if for each L in S and each \mathbf{x} in L with $L \models \varphi(\mathbf{x})$

$$p(\mathbf{x}, y) = \begin{cases} 1 & \text{if } y \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

Such a term $p(\mathbf{x}, y)$ is said to be *consistent* if for any orthomodular lattice L and any \mathbf{x} in L

 $p(\mathbf{x}, y) = y$ if y is central in L.

The following two theorems were proved in [12].

THEOREM 1. Let S be a set of directly irreducible orthomodular lattices with a finite uniform upper bound on the lengths of their chains. Then there is a first order formula φ , satisfiable in some member of S, and terms $t(\mathbf{x})$ and $p(\mathbf{x}, y)$ so that t returns the truth value of φ for S, while p is consistent and returns least central upper bounds for φ and S.

THEOREM 2. Let S be a set of orthomodular lattices having a finite uniform upper bound n on the lengths of their chains. Then any directly irreducible algebra A in the variety generated by S is simple, and each chain in A has at most n elements.

PROPOSITION 5. Let A be an algebra in a variety generated by a set of orthomodular lattices having a finite uniform upper bound on the lengths of their chains, and let B be the Boolean algebra of complemented congruences of A. Then

- 1. A is weakly Hausdorff.
- 2. $\{P \in \beta(B) : each chain in A/P has at most n elements \}$ contains a dense open set.

Proof. Let \mathcal{K} be the set of orthomodular lattices generating our variety V. As every orthomodular lattice has a lattice reduct, the congruence lattice of an orthomodular lattice is distributive. So by Jónsson's theorem [15], the subdirectly irreducibles in V are in $HSP_u(\mathcal{K})$. Then by Łoś' theorem ([5], p. 280) each chain in a subdirectly irreducible in V has at most n elements. By Birkhoff's theorem ([5], p. 58), A is isomorphic to subdirect product of a family $(A_i)_I$ of subdirectly irreducibles in V. For convenience, we identify A with its image in $\prod A_i$. Note that as each A_i is subdirectly irreducible, and therefore directly irreducible, Theorem 2 implies that a chain in A_i can have at most n elements. The following simple observation will be of great use;

c is in the centre of A if and only if $c(i) \in \{0, 1\}$ for each $i \in I$.

1. To show that A is weakly Hausdorff, it is enough to verify the equivalent statement given in part (v) of Proposition 2. Suppose that T is a subset of B, and the meet of T in the congruence lattice of A is not equal to Δ . We must show that the meet of T in B is not equal to Δ . As congruences in an orthomodular lattice are determined by one of their equivalence classes ([16], pp. 73–80), there is some nonzero a in A with (0, a) in $\bigcap T$. Let U be the set of all central elements c of A such that $\gamma(c)$ is in T. As (0, a) is in $\gamma(c)$ for each c in U, it follows that a is a lower bound of U.

Having seen that each A_i is directly irreducible, and that a chain in A_i has at most *n* elements, we may apply Theorem 1 to the set $S = \{A_i : a(i) \neq 0\}$. Let φ , *t*, and *p* be the resulting formula and terms. As φ is satisfiable in some member of *S*, we can find some **x** in *A* so that $A_j \models \varphi(\mathbf{x}(j))$ for some A_j in *S*. Let *b* be the element of *A* given by

$$b = t(\mathbf{x}) \cdot p(\mathbf{x}, a).$$

As b(i) is either 0 or 1 for each i in I, b is in the centre of A. Also, b(j) = 1, since $A_j \models \varphi(\mathbf{x}(j))$. And for each i in I with b(i) equal to 1, a(i) is nonzero. As a is a lower bound of U, and U is contained in the centre of A, b is also a lower bound of U. Therefore the meet of U in the centre of A is not equal to 0, and as γ is an isomorphism, the meet of T in B is not equal to Δ .

2. By Theorem 2, it is enough to show that the set of all points P in $\beta(B)$, for which A/P is directly irreducible, contains a dense open set. This is equivalent to showing that beneath each nonzero central element c of A there is a nonzero central element d of A with A/P directly irreducible for each P in $\beta(d')$.

Let c be a nonzero central element of A. As before, we may apply Theorem 1 to the set $S = \{A_i : c(i) = 1\}$. Let φ , t, and p be the resulting formula and terms. As φ is satisfiable in some member of S, we can find x in A so that $A_j \models \varphi(\mathbf{x}(j))$ for some A_i in S. Let d be the element of A defined by

$$d = c \cdot t(\mathbf{x}).$$

Then d is a nonzero element in the centre of A and further, for each a in A

 $p(\mathbf{x}, a \cdot d)$ is in the centre of A.

We have only to show that A/P is directly irreducible for each P in $\beta(d')$. Note that for any e in the centre of A,

$$e/P = \begin{cases} 0/P & \text{if } \gamma(e) \text{ is in } P\\ 1/P & \text{otherwise.} \end{cases}$$

In particular, d/P = 1/P. If a/P is in the centre of A/P, then as p is consistent

$$a/P = p(\mathbf{x}/P, a/P) = p(\mathbf{x}, a \cdot d)/P.$$

So the centre of A/P consists of just 0/P and 1/P, giving that A/P is directly irreducible.

THEOREM 3. If V is a variety generated by a set of orthomodular lattices having a finite uniform upper bound on the lengths of their chains, then for each A in V, $\Re A$ is the MacNeille completion of A and $\Re A$ is in V.

Proof. It is well known that all orthomodular lattices have permuting congruences ([16], p. 83), so the result follows by part 5 of Proposition 1, Proposition 4 and Proposition 5.

While Theorem 3 gives sufficient conditions for a variety of orthomodular lattices to be closed under MacNeille completions, these conditions are not necessary. Let V be the variety of orthomodular lattices defined by the identity $\gamma(x, \gamma(y, z)) \approx 0$ where $\gamma(x, y)$ is defined by

$$\gamma(x, y) = (x + y) \cdot (x + y') \cdot (x' + y) \cdot (x' + y').$$

The term $\gamma(x, y)$ is usually referred to as the *commutator* of x and y. It can be shown that V is closed under MacNeille completions, but is not generated by any set of orthomodular lattices having a finite uniform upper bound on the lengths of their chains. The proof of this fact is non-trivial. It is based upon properties of the algebra $\Re A$ developed in [6], and the observation that each algebra in V is weakly Hausdorff.

An orthomodular lattice A is said to have n commutators if there are n elements in the image of the map $\gamma : A^2 \to A$. The variety of Boolean algebras is generated by the class of all orthomodular lattices having one commutator, while the variety V above is generated by the class of all orthomodular lattices having at most two commutators. This suggests the following question.

PROBLEM. If V is generated by the class of all orthomodular lattices having at most n commutators, is V closed under MacNeille completions?

An encouraging step towards a positive solution to this problem is given in a recent result of Greechie [9], which states that the MacNeille completion of a commutator finite orthomodular lattice is a commutator finite orthomodular lattice.

Acknowledgement

I would like to thank the referee for carefully reading the manuscript and making several helpful comments, particularly for shortening the proof of Proposition 3.

References

- 1. D. H. Adams (1969) The completion by cuts of an orthocomplemented modular lattice, Bull. Austral. Math. Soc. 1, 279-280.
- 2. D. R. Balbes and P. Dwinger (1974) Distributive Lattices, University of Missouri Press.
- 3. B. Banaschewski (1956) Hullensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik Grundl. Math. 2, 35-46.
- 4. G. Bruns, R. J. Greechie, J. Harding, and M. Roddy (1990) Completions of orthomodular lattices, Order 7, 67-76.
- 5. S. Burris and H. P. Sankappanavar (1981) A Course in Universal Algebra, Springer.
- 6. A. Carson (1989) Model Completions, Ring Representations and the Topology of the Pierce Sheaf, Pitman research notes in mathematics series 209.
- S. D. Comer (1971) Representations by algebras of sections over Boolean spaces, Pacific J. of Math. 38, 29-38.
- 8. B. A. Davey (1973) Sheaf spaces and sheaves of universal algebras, Math. Zeit. 134, 275-290.
- 9. R. J. Greechie, private communication.
- 10. P. R. Halmos (1967) Lectures on Boolean Algebras, Van Nostrand.
- 11. J. Harding (1991) Orthomodular lattices whose MacNeille completions are not orthomodular, Order 8, 93-103.
- 12. J. Harding (1992) Irreducible orthomodular lattices which are simple, Algebra Universalis 29, 556-563.
- 13. J. Harding (1994) Any lattice can be embedded into the MacNeille completion of a distributive lattice (to appear in *The Houston Journal of Math.*).
- 14. P. T. Johnstone (1982) Stone Spaces, Cambridge University Press.
- 15. B. Jónsson (1967) Algebras whose congruence lattices are distributive, Math. Scand. 21, 110-121.
- 16. G. Kalmbach (1983) Orthomodular Lattices, Academic Press.
- 17. A. Macintyre (1973) Model-completeness for sheaves of structures, Fund. Math. 81, 73-89.
- 18. M. D. MacLaren (1964) Atomic orthocomplemented lattices, Pac. J. Math. 14, 597-612.
- 19. H. M. MacNeille (1937) Partially ordered sets, Trans. AMS 42, 416-460.
- 20. R. S. Pierce (1967) Modules over commutative regular rings, Mem. Amer. Math. Soc. 70.
- 21. J. Schmidt (1956) Zur Kennzeichnung der Dedekind MacNeilleschen Hulle einer geordneten Menge, Archiv d. Math. 7, 241-149.