
Complex Analysis: Interesting Problems
Jonathan Mostovoy

University of Toronto

March 17, 2017

Contents
1 Preface 3

2 Complex numbers and the complex plane 4
2a) Complex roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2b) Connectedness & connected components . . . . . . . . . . . . . . . . . . . . . . . . . 4
2c) Topological definitions applied in the complex plane . . . . . . . . . . . . . . . . . . 5

3 Holomorphic functions 5
3a) The Complex chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3b) Cauchy-Riemann Equations do not imply holomorphic at a point . . . . . . . . . . . 6
3c) Constant holomorphic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Power series 7
4a) Radii of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4b) Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Integration along curves 8
5a) Integrating log’s derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 The Exponential and trigonometric functions 9
6a) Hyperbolic sine & cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Cauchy’s Theorem 9
7a) Finitely many points with bounded neighbourhoods that lie on the interior of a rec-

tifiable closed curve do not impact Cauchy’s Theorem . . . . . . . . . . . . . . . . . 9

8 Cauchy’s Integral Formula 10
8a) Cauchy’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8b) Line integral computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8c) A More General Version of Liouville’s Theorem . . . . . . . . . . . . . . . . . . . . . 12
8d) An Application of Parseval’s and Cauchy’s Integral Formulae . . . . . . . . . . . . . 13
8e) The image of non-constant entire function is dense . . . . . . . . . . . . . . . . . . . 14

1



9 Residues 15
9a) A Classic residue computation question . . . . . . . . . . . . . . . . . . . . . . . . . 15
9b) Sine’s residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9c) A nice trigonometric integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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1 Preface
This document is a collection of problems I have worked on in Complex Analysis. Most of the
questions are either directly from, or a derivative of, questions from (in order of frequency) Ahlfors,
Stein, Conway, Rudin and Cartan. As a notice, there likely will be mistakes in the solutions in this
document. However, please feel free to use this document to hopefully help in your understanding
of Complex Analysis.

I recently came across this description of a course taught by Professor John Roe, which provides
a wonderful overview of the material taught in a first course in Complex Analysis, and just some
of its general applications. I thought I’d add this description here for anyone interested in learning
Complex Analysis in the near future.

(In Complex Analysis) We study the behavior of differentiable complex-valued functions f(z) of a
complex variable z. The key idea in an introductory course is that complex differentiability is a much
more restrictive condition than real differentiability. In fact, complex-differentiable functions are so
rigid that the entire behavior of such a function is completely determined if you know its values even
on a tiny open set. One understands these rigidity properties by making use of contour integration
- integration along a path in the complex plane.

The theory gains its force because there are plenty of interesting functions to which it applies. All
the usual functions - polynomials, rational functions, exponential, trigonometric functions, and so
on - are differentiable in the complex sense. Very often, complex analysis provides the solution
to “real variable” problems involving these functions; as someone said, “The shortest path between
two real points often passes through the complex domain.” Moreover, complex analysis is a key tool
for understanding other “higher transcendental functions” such as the Gamma function, the Zeta
function, and the elliptic functions, which are important in number theory and many other parts of
mathematics. A secondary aim of this course is to introduce you to some of these functions.

One of the surprises of complex analysis is the role that topology plays. Simple questions like “do I
choose the positive or negative sign with the square root” turn out to have surprisingly subtle answers,
rooted in the notion of the fundamental group of a topological space (which you will be looking at in
the Topology and Geometry course parallel to this). These topological notions eventually culminate
in the notion of a Riemann surface as the correct global context for complex analysis. We will not
develop this idea fully, but we will discuss ‘multiple-valued functions’ and their branch points; again,
we will try to illustrate how these exotic-sounding concepts help in doing practical calculations.

Also, I’d strongly recommend watching the following three (non-technical) videos to garner a little
motivation for studying Complex Analysis:

1. The Riemann Hypothesis

2. Visualizing the Riemann zeta function and analytic continuation

3. Why Complex Numbers are Awesome
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2 Complex numbers and the complex plane
2a) Complex roots

Find all values of
√

1−i
√

3
2 and all 11th roots of 1−i

√
3

2 in the form reiθ.

We recall if zn = a then if a = reiϕ, then z = r
1
n e

ϕ
n+k 2π

n . Applying these forumulas yield:
√

1−i
√

3
2 =

e
5π
6 +kπ, k = 1, 2. For the second computation: 11

√
1−i
√

3
2 = e

5π
33 +m 2π

11 , where m = 0, . . . , 10.

2b) Connectedness & connected components
Let Ω be an open set in C and x ∈ Ω. The connected component (or simply the component) of Ω
containing z is the set Cz of all points w in Ω that can be joined to z by a curve entirely contained
in Ω.

1. Check first that Cz is open and connected. Then, show that w ∈ Cz defines an equivalence
relation, that is: (i) z ∈ Cz, (ii) w ∈ Cz =⇒ z ∈ Cw, and (iii) if w ∈ Cz and z ∈ Cζ ,then
w ∈ Cζ .
Thus Ω is the union of all its connected components, and two components are either disjoint
or coincide.

2. Show that Ω can have only countably many distinct connected components.

3. Prove that if Ω is the complement of a compact set, then Ω has only one unbounded component.

[Hint: For (b), one would otherwise obtain an uncountable number of disjoint open balls. Now, each
ball contains a point with rational coordinates. For (c), note that the complement of a large disc
containing the compact set is connected.]

1. Proof. We recall that any subset of finite topological space is connected ⇐⇒ it is path-
connected. So, naturally this is true for Cn and any subset Ω.
To show Cz is open, we note that since Ω is open, ∀x ∈ Ω, ∃εx s.t. ∀y if d(x, y) < εx =⇒
y ∈ Ω where d(·, ·) is our standard metric in the complex plane. Therefore, ∀w ∈ Cz since by
definition, w ∈ Ω and Ω is open, =⇒ ∃εw to satisfy the openness definition, so Cz is open.
To show connectedness, since ∀w ∈ Cz ∃ a curve lying in Ω which connects w to z (which is a
path), and due to the equivalence of path-connectedness and connectedness in this topological
space, Cz being connected is immediate.
Since we now know ∀w ∈ Cz, ∃ a path, we may formalize this path as gw, s.t. gw : [0, 1]→ Cz
and where gw(0) = z and gw(1) = w. Formalizing the path in this fashion makes trivial (i).
For (ii), we already have our path gw, thus, we consider gz ≡ gw([1, 0]) and hence if w ∈ Cz,
∃gw which, =⇒ gz exists and hence z ∈ Cw.
For (iii), if w ∈ Cz and z ∈ Cζ , it =⇒ ∃ gw and fz where gw : [ 1

2 , 1] → Cz, fz : [0, 1
2 ] → Cζ

where gw( 1
2 ) = z, gw(1) = w, fz(0) = ζ, fz( 1

2 ) = z. Thus, by defining the path:

hw(x) =
{
fz x ∈ [0, 1

2 ]
gw x ∈ [ 1

2 , 1]

We define a path fully contained in Ω s.t. hw(0) = ζ and hw(1) = w which implies w ∈ Cζ .
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2. Proof. From part 1, we know that Ω is the union of all its connected components i.e. Ω =
∪ni=1Ci. If n =∞, let us look at the case of:

Ω =
∞⋃
i=3

{
z : log(i+ 1)

log(i) < |z| < log(i)
log(i− 1)

}

Here, we see the connected components of Ω are just the sets making up the union by which
Ω is defined. However, limn→∞ Cn = {z : |z| = 1}, which is a closed set and hence violates
our definition of a equivalence relation and thus implying Ω must only have countably many
distinct connected components.

3. Proof. Let S denote our compact set (i.e., Ω = Sc). Since S is compact, and S ⊂ C, we know
(1), ∃b ∈ C s.t. ∀s ∈ S, s < b, and (2), sup(S) ∈ S. Thus, we form Cj as follows:

Cj = {z : |z| > sup(S)}∪{z : ∃f : [0, 1]→ C|f(0) = sup(S), f(1) = z,@x ∈ f([0, 1]) s.t. x ∈ S}

We note sup(S) = {z : z = max |w|, w ∈ S} may not be a unique point, so we just take one of
its elements to form Cj).
It is now apparent after such construction that if Ω = Sc where S is compact, ∃ a unique set
∈ Ω’s connected components which is unbounded.

2c) Topological definitions applied in the complex plane
Show that the bounded regions determined by a closed curve are simply connected, while the un-
bounded region is doubly connected.

Proof. We prove this a little informally: From our discussion above (2a), we can see that both the
bounded region and unbounded regions in question are path-connected. Furthermore, we note a
more general idea from topology: If a space X is path-connected, and has n genus, then the space is
(n+ 1)-connected. Therefore, since the bounded region has a 0 genus, it is simply (or 1-connected),
and since the unbounded region has a 1 genus (the hole created by γ creates this), it is doubly
connected (2-connected).

3 Holomorphic functions
3a) The Complex chain rule
Suppose U and V are open sets in the complex plane. Prove that if f : U → V and g : V → C are
two functions that are differentiable (in the real sense, that is, as functions of the two real variables
x and y), and h(z) = g(f(z)), then:

∂h

∂z
= ∂g

∂z

∂f

∂z
+ ∂g

∂z̄

∂f̄

∂z
and ∂h

∂z̄
= ∂g

∂z

∂f

∂z̄
+ ∂g

∂z̄

∂f̄

∂z̄

5



Proof. For simplicity, we may write f = f(z, z̄). Thus, df = ∂f
∂z dz + ∂f

∂z̄ dz̄ (and similary for f̄).
Thus, dh = ∂g(f)

∂z df + ∂g(f)
∂z̄ dz̄ =⇒

dh = ∂g(f)
∂z

(
∂f

∂z
dz + ∂f

∂z̄
dz̄

)
+ ∂g(f)

∂z̄

(
∂f̄

∂z
dz + ∂f̄

∂z̄
dz̄

)
Rearranging by the dz and dz̄ terms:

dh =
(
∂g(f)
∂z

∂f

∂z
+ ∂g(f)

∂z̄

∂f̄

∂z

)
dz +

(
∂g(f)
∂z

∂f

∂z̄
+ ∂g(f)

∂z̄

∂f̄

∂z̄

)
dz̄

And hence the terms in front of dz yield ∂h
∂z and in front of dz̄ yield ∂h

∂z̄ .

3b) Cauchy-Riemann Equations do not imply holomorphic at a point
Consider the function defined by:

f(x+ iy) =
√
|x||y|, whenever x, y ∈ R

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holomorphic at 0.

Proof. We see that u(x, y) = f(z) and v(x, y) =, thus:

∂u

∂x
(0, 0) = lim

h→0,h∈R

u(h, 0)− u(0, 0)
h

=
√
|h||0| − 0
h

= 0

And similar computation shows ∂u
∂y (0, 0) = 0. Therefore, we may conclude the Cauchy-Riemann

equations of ∂u
∂y = − ∂v

∂x and ∂u
∂x = ∂v

∂y are satisfied around (0, 0). However, when we consider:

lim
h(1+i)→0,h∈R

f(h+ ih)− f(0 + i0)
h(1 + i) =

√
|h|2 − 0
h(1 + i) = |h|

h(1 + i)

We find the limit does not exist and hence f is not holomorphic at (0, 0).

3c) Constant holomorphic functions
Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following cases:

1. Re(f) is constant;

2. Im(f) is constant;

3. |f | is constant;

one can conclude that f is constant.
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Proof. We recall the definition of holomorphic on Ω if ∀z ∈ Ω, f ′(z) exists and is equal to:
limh→0,h∈C

f(z+h)−f(z)
h . Therefore, since Re(f) = u(x, y), and Re(f) = c ∀x, y, we must have:

∂u
∂x = ∂u

∂y = 0 =⇒ ∂v
∂x = ∂v

∂y = 0. And hence f = u + v is constant. The same holds for if Im(f)
is constant. If |f | = c for some c ∈ R, then lim|h|→0,h∈C

f(z+|h|)−f(z)
|h| = 0 ∀z, and hence due to the

existence of f ′(z) despite which path h takes to reach h = 0, we may conclude f is constant since
we just showed f ′(z) = 0.

4 Power series
4a) Radii of convergence
Find the radius of convergence for the following series:

(i)
∞∑
n=1

npzn, (ii)
∞∑
n=1

zn

n! , (iii)
∞∑
n=1

n!zn, (iv)
∞∑
n=1

zn!

(i) We recall 1
R = limn→∞ |an+1

an
| = limn→∞ | (n+1)p

np | = 1 and hence R = 1.

(ii) 1
R = limn→∞ |an+1

an
| = limn→∞ | n!

(n+1)! | = 0 and hence R =∞.

(iii) Our limit is the inverse of (ii) and hence R = 0.

(iv) We notice
∑∞
n=1 z

n! =
∑∞
n=1 z

nz(n−1)!. Therefore, we may think of an = z(n−1)!. We compute:

1
R

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ zn!

z(n−1)!

∣∣∣∣ = lim
n→∞

∣∣∣∣z(n−1)!(n−1)
∣∣∣∣ =


0 if |z| < 1
1 if |z| = 1
∞ if |z| > 1

Thus, R =∞ if |z| < 1, R = 1 if |z| = 1 and R = 0 if |z| > 1.

4b) Series
Show the following:

1. The series f(z) =
∑
n∈Z

1
(n−z)3 converges absolutely ∀z ∈ C\Z.

2. The partial sums
∑
|n|<N

1
(n−z)3 of the series converge normally to f .

3. f is meromorphic in C with poles at n ∈ Z having principal part 1
(n−z)3 .

4.
∫
γ
f(z)dz = 0 for any toy contour in C\Z.

5. f ′(z) =
∑
n∈Z

3
(n−z)4 (justify the term by term differentiation).

Hint: Recall that normal convergence means uniform convergence on compact subsets and that this
is equivalent to local uniform convergence.
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1. Proof. Let us separate Z into 3 disjoint parts: N1 = {n : |n| < |z|, |N − z| < 1}, N2 = {n :
|n − 1| > 1} (which will consist of 1 or 2 elements) and n3 = {n : |n| > |z|, |n − z| < 1}. So,
we have Z = n1 ∪N2 ∪N3 and Ni ∩Nj = ∅,∀j 6= i. Therefore,

f(z) =
∑
n∈N1

1
(n− z)3 +

∑
n∈N2

1
(n− z)3 +

∑
n∈N3

1
(n− z)3

From here, we recall if |f(z)| =
∑
n∈Z |

1
(n−z)3 | ≤

∑
n∈Z g(n) ∀n, and

∑
n∈Z g(n) converges, then

our series is absolutely convergent. If we denote n̂ = minn∈N+
1

(|n−z|), then
∑
n∈N1

| 1
(n−z)3 | ≤∑

n∈N1
| 1
(n̂−z)3 | = card(N1)

|(n̂−z)3| < ∞, and
∑
n∈N2

| 1
(n−z)3 | = 2 1

|(n−z)3| < ∞ and
∑
n∈N3

| 1
(n−z)3 | =

2
∑
n∈N+

3

1
(n−z)3 and since

∑∞
n=k,k∈N(n−ρ) converges ∀ρ > 1 (see Riemann zeta function), we

know this sum converges to some c <∞. Therefore, we see by constructing g as follows, that
f converges absolutely ∀z ∈ C\Z.

g(z) =
{

1
|(n̂−z)3| if n ∈ N1

f(z) if n ∈ N2 ∪N3

2. We will want to show that if fN =
∑
|n|<N

1
(n−z)3 , then limN→∞ ||fN − f ||∞ = 0. Or,

equivalently that ∀ε > 0 ∃M ∈ N such that ||fN − f || < ε whenever N ≥M .

3. This is kind of trivial, no?

4. We first note due to the uniform convergence of f :∫
γ

∑
n∈N

1
(n− z)3 dz =

∑
n∈N

∫
γ

1
(n− z)3 dz

And since z 6= n+ iy, f will be holomorphic on the toy contour in question and hence Cauchy’s
Theorem is applicable, so

∫
γ
f(z)dz = 0.

5 Integration along curves
5a) Integrating log’s derivative
Assume that f(z) is analytic and satisfies the inequality |f(z)− a| < a, a ∈ R, in a region Ω. Show
that: ∫

γ

f ′(z)
f(z) dz = 0

for every closed curve in Ω.

Proof. We recall the logarithm is analytic on C\(−∞, 0]. Therefore,∫
γ

f ′(z)
f(z) dz =

∫
γ

d

dz
log(f(z))dz =

∫ b

a

d

dz
log(γ(t))γ′(t)dt = log(γ(b))− log(γ(a)) = 0

8



6 The Exponential and trigonometric functions
6a) Hyperbolic sine & cosine
The hyperbolic cosine and sine are defined by cosh(z) = 1

2 (ez + e−z), sinh(z) = 1
2 (ez− e−z). Express

them through cos(iz), sin(iz). Derive the addition formulas, and formulas for cosh(2z), sinh(2z).
Then, use the addition formulas to separate cos(x+ iy), sin(x+ iy) in real and imaginary parts.

Proof. We recall: cos(z) = 1
2 (eiz + e−iz) and sin(z) = 1

2i (e
iz − e−iz) =⇒ cos(iz) = 1

2 (e−z + ez) and
sin(iz) = 1

2i (e
−z − ez). Therefore:

sin(iz) = i sinh(z) and cos(iz) = cosh(z)

We have:
cosh(z1) cosh(z2) = 1

2(ez1 + e−z1)1
2(ez2 + e−z2)

= 1
4(ez1+z2 + e−(z1+z2)) + 1

4(ez1−z2 + e−(z1−z2)) = 1
2(cosh(z1 + z2) + cosh(z1 − z2))

And similarly for sinh:

sinh(z1) sinh(z2) = 1
2(cosh(z1 + z2)− cosh(z1 − z2))

=⇒ cosh(z1 + z2) = cosh(z1) cosh(z2) + sinh(z1) sinh(z2)

By similar derivation, we find:

sinh(z1 + z2) = sinh(z1) cosh(z2) + cosh(z1) sinh(z2)

This now implies:

cosh(2z) = cosh2(z) + sinh2(z) and sinh(2z) = 2 cosh(z) sinh(z)

7 Cauchy’s Theorem
7a) Finitely many points with bounded neighbourhoods that lie on the

interior of a rectifiable closed curve do not impact Cauchy’s Theorem
Let Ω be a simply connected open subset of C and let γ ⊂ Ω be a rectifiable closed path contained in
Ω. Suppose that f is a function holomorphic in Ω except possibly at a finitely many points w1, . . . , wn
inside γ. Prove that if f is bounded in a neighborhood around w1, . . . , wn, then:∫

γ

f(z)dz = 0

9



Proof. Let us define ε = min(εi) where εi is selected arbitrarily from the set {x : x ∈ R,∀y ∈
Bx(wi) |f(y)| < |Mi|, x < γi−wi

2 } where γi := the shortest path between wi and any point on γ, but
does not pass through the points w1, . . . , wi−1, wi+1, . . . , wn.
Let us define the circle of radius εi centered around wi as Cεi . Thus, by Cauchy’s Theorem, if
S = γ ∪

∑n
i=1 γi ∪

∑n
i=1−Cεi ∪

∑n
i=1−γi:

0 =
∫
S

f(z)dz =
∫
γ

f(z)dz +
n∑
i=1

∫
γi

f(z)dz −
n∑
i=1

∫
Cεi

f(z)dz −
n∑
i=1

∫
γi

f(z)dz

=⇒
∫
γ

f(z)dz =
n∑
i=1

∫
Cεi

f(z)dz

Therefore, since |f | is bounded by Mi at a neighborhood of εi ≥ ε radius around wi, we have:∫
γ

f(z)dz =
n∑
i=1

∫
Cεi

f(z)dz ≤
n∑
i=1

∣∣∣∣ ∫
Cε

f(z)dz
∣∣∣∣ ≤ n∑

i=1

(
sup
z∈Cεi

|f(z)| · length(Cεi)
)

≤ n ·max( sup
z∈Cεi

|f(z)|) ·max(length(Cεi)) = n · |M |2π · ε

Where |M | = max(|Mi|).
Since epsilon can be arbitrarily small, n|M |2πε→ 0 as ε→ 0 and hence we are done.

8 Cauchy’s Integral Formula
8a) Cauchy’s Inequality
If f(z) is analytic for |z| < 1 and |f(z)| ≤ 1

1−|z| , find the best estimate of |f (n)(0)| that Cauchy’s
inequality will yield.

Proof. For r < 1, we will have Cauchy’s Inequality yields:

|f (n)(0)| ≤
n!||f ||C(0,r)

rn
≤ n!
rn(1− r) = h

To minimize h, we choose r s.t. ∂h
∂r = 0. Computing:

∂

∂r

n!
rn(1− r) = n!

(
r − n(1− r)
rn+1(1− r)2

)
= 0 ⇐⇒ r = n

1 + n
, Therefore:

|f (n)(0)| ≤ n!
( 1
n+1 )( n

1+n )n
= (n+ 1)!

(
1 + 1

n

)n

10



8b) Line integral computations
Compute:

1.
∫
|z|=2

zn(1− z)mdz, 2.
∫
|z|=1

|z − a|−2|dz|, and 3.
∫
|z|=ρ

|z − a|−4|dz|, where |a| 6= ρ

1. Proof. Case (1): If m,n ≥ 0, then zn(1 − z)m is entire and hence by Cauchy’s Theorem,∫
|z|=2 z

n(1− z)mdz = 0.

Case (2): Assume m < 0 and n ≥ 0. We now have:∫
|z|=2

zn(1− z)mdz = 1|m|−1<n
2πi

(|m| − 1)!
n!

(n− |m|)! = 1|m|−1<n2πi|m|
(
n

|m|

)

If n < 0 and m ≥ 0, simply replace m and n in the solution above and change to ± as needed.

Case (3): If m,n < 0, then:

∫
|z|=2

zn(1− z)mdz = 2πi
[

1
(n− 1)!

∂(n−1)

∂(n−1)z

(
(1− z)m

)
+ 1

(m− 1)!
∂(m−1)

∂(m−1)z

(
(z)n

)]

= 2πi
[(
|m|+ |n| − 2
|n| − 1

)
−
(
|m|+ |n| − 2
|n| − 1

)]
= 0

2. Proof. We first note if z = ρeit, t ∈ [0, 2π), (which is equivalent to γ := {z : |z| = ρ}, then
dz = iρeitdt. Thus, |dz| = |γ′(t)|dt = |ρ2(sin2(t) + cos2(t))|dt = ρ 1

ieit dz = −ρiz−1.

We next note: z̄ = ρ(cos(t) + i sin(t)) = ρ(cos(t)− i sin(t)) = ρ(cos(−t) + i sin(−t)) = ρe−it =
z−1.

First, assume a ∈ int(Γ), where ∂Γ = γ. We see:∫
γ

1
|z − a|2

|dz| =
∫
γ

−i
(z − a)(z − a)z dz −

∫
γ

−i
(z − a)(1− āz)dz

If f(ξ) = −i
(1−ξā) , then by Cauchy’s Formula we have:∫

γ

1
|z − a|2

|dz| = 2πif(a) = 2π
1− |a|2

If a 6∈ int(Γ), then ā−1 ∈ int(Γ) and therefore:∫
γ

1
|z − a|2

|dz| =
∫
γ

−i
(z − a)(1− âz)dz =

∫
γ

iā−1

(z − a)(z − ā−1)dz

11



and if g(ξ) = iā−1

(ξ−a) , then by Cauchy’s Formula we have:∫
γ

1
|z − a|2

|dz| = 2πig(â−1) = 2π
|a|2 − 1

3. Proof. This integral follows quite nicely as an augmented generalization of the previous exam-
ple. We recall the residue formula, and note if γ = {z : |z| = ρ}, then if a ∈ or 6∈ γ, then so is
ā and both a and ā are 6∈ and ∈ γ respectively. Therefore:∫

|z|=ρ

1
|z − a|4

|dz| =
∫
|z|=ρ

iρā−1

(z − a)2(z − ā)(z − ā−1)dz

So, if |a| < ρ:∫
|z|=ρ

1
|z − a|4

|dz| = 2πi
[

1
2
∂

∂z

(
iρā−1

(z − ā)(z − ā−1)

)∣∣∣∣
z=a

+ iρā−1

(ā− a)2(ā− ā−1)

]
And if |a| > ρ: ∫

|z|=ρ

1
|z − a|4

|dz| = 2πi iρā−1

(ā−1 − a)2(ā−1 − ā)

8c) A More General Version of Liouville’s Theorem
Show that if f is entire and if there exists a constant C > 0 and a positive integer n such that
|f(z)| ≤ C|z|n for all sufficiently large |z|, then f is a polynomial.

Proof. Let us first make explicit the condition of “sufficiently large |z|” (which will refere to as “The
Large |z| Condition”) . We will say that if |z| ≥ R,R ∈ R+, then ∃ C > 0 and n s.t. |f(z)| ≤ C|z|n.

Now, let us choose m s.t. m > n,m ∈ N and r ≥ R, Then, we will have (and with the parametrization
of z = γ(θ) := z0 + reiθ, θ ∈ [0, 2π]) :

12



|f (m)(z0)| =
∣∣∣∣ m!
2πi

∫
|z|=r

f(z)
(z − z0)m+1 dz

∣∣∣∣ By Cauchy’s Integral Formula

≤ m!
2π

∫
|z|=r

|f(z)|
|z − z0|m+1 |dz|

≤ m!
2π

∫
|z|=r

C|z|n

|z − z0|m+1 |dz| By The Large |z| Condition

= m!C
2π

∫ 2π

0

|reiθ|n

|reiθ|m+1 |ire
iθ|dθ

= m!C
2π

∫ 2π

0

1
rm−n

dθ Since |dz| = |γ′(θ)|dθ and |ireiθ| = r

= m!C
rm−n

Now, since f is entire and since m − n ≥ 1, we may let r → ∞, which =⇒ ∀m > n, |f (m)(z0)| =
0 ≡ f (m)(z0) = 0. Next, we recall that if f is entire, we may write f as: f(z) =

∑∞
j=0 aj(z − z0)j .

By Cacuhy’s Integral Formula, we have the formula for each aj as follows:

aj = f (j)(z0)
j!

And since it was shown that ∀m > n, f (m)(z0) = 0, we know ∀aj s.t. j > n, aj = 0. Therefore, f is
in the polynomial form (of max degree = n):

f(z) =
n∑
j=0

aj(z − z0)j

8d) An Application of Parseval’s and Cauchy’s Integral Formulae
Show that if f is an entire function satisfying |f(z)| ≤ C

√
|z|| cos(z)| for some constant C, then f

is identically zero. (Hint: compare f to the function z cos(z).)

Proof. We first prove the following Theorem:
Theorem. 8.1: Can’t Think of A Nice Name for This One... Yet.

If f(z) =
∞∑
j=0

aj(z − z0)j , z ∈ BR(a)

and if 0 < r < R, then:
∞∑
j=0
|aj |2r2j = 1

2π

∫ π

−π
|f(z0 + reiθ)|2dθ

13



Proof. We know that since f(z) has a series form as given above, then naturally:

f(z0 + reiθ) =
∞∑
n=0

ajr
jeiθj

And since r < R, this series will be converging uniformly on [−π, π]. Thus,

ajr
j = 1

2π

∫ π

−π

f(z0 + reiθ)
eiθj

dθ

And by Parseval’s Formula, we get:
∞∑
j=0
|aj |2r2j = 1

2π

∫ π

−π
|f(z0 + reiθ)|2dθ

Coming back to our question, since f is entire, we may write:

f(z) =
∞∑
j=0

aj(z − z0)j

And by applying the above theorem, and we will have:
∞∑
j=0
|aj |2r2j = 1

2π

∫ π

−π
|f(z0 + reiθ)|2dθ

≤ 1
2π

∫ π

−π

(√
|reiθ|| cos

(
reiθ

)
|
)2
dθ

≤ 1
2π

∫ π

−π

(√
|reiθ|

)2
dθ

= 1
2π

∫ π

−π
rdθ

= r

Hence, we have |a0|2 + |a1|2r2 + |a2|2r4 + · · · ≤ r, which is true ⇐⇒ aj = 0 ∀j ≥ 1, i.e. f is
constant and equal to a0. Next, we simply note that since |f(0)| ≤

√
|0|| cos(0)| = 0, then it must

be that a0 = 0, which =⇒ f is identically zero.

8e) The image of non-constant entire function is dense
Show that if f is a non-constant entire function, then f(C) is dense in C.

This statement is actually a Corollary of Liouville’s theorem:

Proof. Assume f(C) is not dense, which =⇒ ∃ z0 ∈ C and r > 0, r ∈ R s.t. Br(z0) ∩ f(C) = ∅
(⇐⇒ ∀z ∈ C, |f(z)− z0| ≥ r). Thus, if we define g as: g(z) = 1

f(z)−z0
. Then:

|g(z)| = 1
|f(z)− z0|

≤ 1
r

14



Since |g(z)| ≤ 1
r ∈ R+, and is entire since g−1(z) 6= 0 ∀z ∈ C, we may use Liouville’s theorem to say g

is constant. Thus, f must also be constant and hence we have just contradicted our assumption.

9 Residues
9a) A Classic residue computation question
Find the residue at i of 1

(1+z2)n .
Suggestion: Expand 1

(1+z2)n in powers of z− i by using the expansion of 1
(1−w)n derived by differen-

tiating the geometric series for 1
(1−w) n− 1 times.

Proof. We first note:

f(z) = 1
(1 + z2)n = 1

(z − i)n(z + i)n

Therefore,

Res(f ; i) =
∫
γ

1
(z − i)n(z + i)n = 2πi

(n− 1)!

[
∂n−1

∂n−1z

(
1

(z + i)n

)∣∣∣∣
z=i

]
= (−1)n+1

(
2n− 1
n− 1

)(
1
2i

)2n−1

9b) Sine’s residues
Using Euler’s formula: sin(πz) = 1

2i (e
iπz−e−iπz), show that the complex zeros of sin(πz) are exactly

at the integers, and that they are each of order 1. Then, calculate the residue of 1
sin(πz) at z = n ∈ Z.

Proof. Let w = eiπz, so sin(πz) = 1
2i (w −

1
w ) = 0 ⇐⇒ w − 1

w = 0 ⇐⇒ w2 = 1 ⇐⇒ w = ±1.
Therefore, sin(πz) = 0 ⇐⇒ eiπz = ±1 which happens ⇐⇒ z ∈ Z.

We note if w = eiπz, then dz = 1
iπwdw. Therefore,

Res
(

1
sin(πz) , n

)
=
∫
γ

1
iπw(w − 1

w )
= 2

∫
γ

1
(w − 1)(w + 1) = 2 1

(1 + 1) = 1

9c) A nice trigonometric integral
Prove that: ∫ 2π

0

dθ

a+ b cos(θ) = 2π√
a2 − b2

if a > |b| and a, b ∈ R
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Proof. If we let z = eiθ, then dz = ieiθdθ and hence dθ = 1
izdz. Thus,∫ 2π

0

dθ

a+ b cos(θ) =
∫
|z|=1

dz

iz(a+ b 1
2 (z + 1

z ))
=
∫
|z|=1

−2idz
bz2 + 2az + b

We simply via the handy formula of az2 +bz+c =
(
z−
[
− b

2 +
√
b2−4(a)(c)

2
])(

z−
[
− b

2−
√
b2−4(a)(c)

2
])

:∫ 2π

0

dθ

a+ b cos(θ) =
∫
|z|=1

−2idz
(z − [−2a+ i

√
b2 − a2])(z − [−2a− i

√
b2 − a2])

And hence since a > |b|, we have two poles of degree 1 within |z| = 1, and hence:∫ 2π

0

dθ

a+ b cos(θ) = 2πi
[
− 2i

(
1

2
√
b2 − a2

+ 1
2
√
b2 − a2

)]
= 2π√

b2 − a2

9d) An application of Rouché’s Theorem
Determine the number of zeros of f(z) = z3 − 3z + 4 in the closed ball {|z − 1| ≤ 1} and show that
they are simple.

Proof. We note: f(z) = z3−3z+ 4 = (z−1)3 + 3(z−1)2 + 2. Therefore, if we let w = z+ 1, we now
have the equivalent problem of analyzing the zeros of f(w) = w3 + 3w2 + 2 inside |w| ≤ 1. Thus, we
see that when |w| = 1, |f(w)−(3w2+1)| = |w3+1| ≤ 2 ≤ |3w2+1| with |3w2+1| = 2 ⇐⇒ w = i,−i,
but at i,−i, |w3+1| =

√
2 < 2, and hence |f(w)−g(w)| < |g(w)|, g(w) = 3w2+1. Since g(w) has two

roots within |w| ≤ 1, so too does f(w) by Rouché’s Theorem. Furthermore, since f ′(w) = 3w(w+3)
has roots at 0 and −3, both of which are not roots of f(w), we may conclude that the two roots of
f(w) are simple.

9e) Contour integration part I
Evaluate ∫ ∞

−∞

eαx

1 + ex
dx

(Hint: Use a contour integral around the rectangle with vertices ±R,±R+ 2πi)

Proof. Let us define Γ as a path equal to γ1 + γ2 + γ3 + γ4. We define γ1 as the path along the real
axis from −R to R, γ2 as the path from R to R + 2πi, γ3 as the path from R + 2πi to −R + 2πi,
and finally γ4 as the path from −R+ 2πi to −R. Also for simplicity of notation, f = eαz

1+ez .

We now note that inside Γ ∃ only one pole, at z = πi (since eiπ + 1 = 0 := Euler’s Identity). We
thus compute:

Res(f ; iπ) = eαz

∂
∂z (1 + ez)

∣∣∣∣
z=iπ

= −eαiπ
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Thus, by recalling the residual theorem, we have:∫
Γ
f =

∫
γ1+γ2+γ3+γ4

f = −2πieαiπ

We now look at γ2 in that:∣∣∣∣ ∫
γ2

f

∣∣∣∣ =
∣∣∣∣ ∫ 2π

0

ieα(R+it)

1 + eR+it dt

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ eα(R+it)

1 + eR+it

∣∣∣∣dt ≤ ∫ 2π

0

eαR

eR − 1dt

And hence limR→∞
∫
γ2
f = 0 since limR→∞

eαR

eR−1 = 0 when 0 < α < 1.

By using the same reasoning, we can also show that limR→∞
∫
γ4
f = 0 since:∣∣∣∣ ∫

γ4

f

∣∣∣∣ =
∣∣∣∣− ∫ 2π

0

ieα(−R+it)

1 + e−R+it dt

∣∣∣∣ ≤ ∫ 2π

0

e−αR

1− e−R dt

And noting the limit of the rightmost term above goes to 0 like for γ2.

We now look at γ3 in that:

−
∫
γ3

f =
∫ R

−R

eα(t+2πi)

1 + et
= eα2πi

∫
γ1

f

Therefore, taking R→∞, we see:

(
1− eα2πi) ∫ ∞

−∞

eαx

1 + ex
= −2πieαiπ

And by rearanging this, we may conclude that:∫ ∞
−∞

eαx

1 + ex
= π

sin(απ)

9f) Contour integration part II
Evaluate with residues: ∫ 1

−1
f(x)dx =

∫ 1

−1

√
1− x2

1 + x2 dx

Proof. Let us consider f(z) =
√

1−z2

1+z2 defined by a branch cut from −1 to 1 and let f(0) = + 1
2 on

the top side of the cut. If we define Γ := reiθ, θ ∈ [0, 2π], r > 1, then by the Residual Theorem (and
since 1 + x2 = (x+ i)(x− i)), we have:∫

Γ
f(z)dz = 2πiRes(f ;±i)−

∫ 1

−1
f(x)dx−

∫ −1

1
−f(x)dx

Since we must deform our contour, Γ, around the branch cuts and around the poles. Next, if we
have defined Γ as we did, then by letting r →∞, we have:
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lim
r→∞

∫
Γ
f(z)dz = lim

r→∞

∫ 2π

0

√
1− r2ei2θ

1 + r2eiθ
ireiθdθ

=
∫ 2π

0
dθ

= 2π

(We also note that we could have also computed the integral by considering the Laurent series of
−iz
√

1−z−2

1+z2 =
√

1−z2

1+z2 , and only one term in its expansion evaluates to a non-zero number under
integration, specifically to 2π).

Next, if we solve for 2πiRes(f ;±i):

2πi
(
Res(f ;±i)

)
= 2πi

(√
2

2i +
√

2
2i

)
= 2π

√
2

And hence: ∫ 1

−1

√
1− x2

1 + x2 dx = 1
2
(
2π
√

2− 2π
)

= π(
√

2− 1)

9g) Rational and entire polynomial functions
1. Show that an entire function is a polynomial if and only if it has a pole at infinity.

2. Show that a meromorphic function on P 1(C) is rational.

1. Proof. Let us first state a Lemma (Corollary from the Laurent Series Development found in
Conway, pg. 105):

Lemma. 9.1: Conditions for Poles

Let z be an isolated singularity of f and let f(z) =
∑∞
−∞ aj(z − z0)j be its Laurent

Expansion in A(a, 0, R). Then,

(a) z = z0 is a removable singularity ⇐⇒ an = 0 for n ≤ −1.

(b) z = z0 is a pole of order n ⇐⇒ a−n 6= 0 and am = 0 for m ≤ −(n+ 1).

The proof for (b) (in assuming (a)) is as follows (also from Conway):

Proof. Suppose am = 0 for m ≤ −(n + 1), (z − z0)nf(z) has a Laurent Expansion which has
no negative powers of (z − z0). Thus, by (a), (z − z0)nf(z) has a removable singularity at
z − z0. The converse argument retraces the steps made for the forward argument.
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Now, in coming back to our question; assume f : C→ C is an entire function with a pole, say
of order n at ∞. Since f is entire, we may write:

f(z) =
∞∑
i=0

ai(z)i

Next, by having a pole at ∞, naturally f
( 1
z

)
will have a pole (also of order n) at z = 0. Next,

by our construction of f(z) in series form, we thus see that f
( 1
z

)
will have the form:

f

(
1
z

)
=
∞∑
i=0

ai

(
1
z

)i
=

i=0∑
−∞

a−i(z)i

As such, we may now invoke part (b) of our Lemma as follows: Since f
( 1
z

)
has a pole of

order n at z = 0, we know that ∀ − i ≤ −(n + 1), a−i = 0, which is equivalent to saying:
∀i ≥ (n+ 1), ai = 0. As such, we know that:

f

(
1
z

)
=

i=0∑
−∞

a−i(z)i =
i=0∑
i=−n

a−i(z)i

=⇒ f(z) =
n∑
i=0

ai(z)i

Conversely, assume that f : C→ C is an entire function with polynomial form:

f(z) =
n∑
i=0

ai(z)i

We now once again consider the function f
( 1
z

)
, which must have series expansion:

f

(
1
z

)
=

0∑
i=−n

a−i(z)i

We now have the reverse criterion required by part (b) of or Lemma to conclude that f
( 1
z

)
must have a pole of order n at z = 0, and naturally by the exact same fashion of the preceding
argumentation, f(z) must have a pole of order n at ∞.

2. Proof. Let f : P 1(C) → P 1(C) be a meromorphic function in the extended complex plane.
First, let us recall that since:

(a) P 1(C) is compact.
(b) Any discrete and closed subset of a compact set is discrete and compact, aka finite.
(c) Any set of poles under a meromorphic function must be closed and discrete.
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The set of poles under a meromorphic function f : P 1(C)→ P 1(C) must be finite. Let us call
this set of poles: z1, z2, . . . , zk, each with a multiplicity of m1,m2, . . . ,mk respectively. If we
then define F by taking out these poles, i.e.,

F (z) = f(z)
k∏
j=1

(z − zj)mj

Then it must be that F has at most a pole at ∞ of order say m∞ ∈ N. As such, |F (z)| ≤
C|z|n ∀z ∈ C. Thus, as we showed in Question 1, F must be a polynomial of order at most
m∞, and by definition,

∏k
j=1(z − zj)mj is a polynomial of order

∑k
j=1mj . As such, we find

that:

f(z) = F (z)∏k
j=1(z − zj)mj

∈ {Rational Functions}

10 Infinite Sums and Products
10a) Proof of Wallis’s Product
Prove Wallis’s product formula:

∞∏
m=1

(2m)(2m)
(2m− 1)(2m+ 1) = π

2

(Hint: Use the product formula for sin(z) at z = π
2 .)

Proof. We recall (from Ahlfors 5.2.3, Equation 24) that:

sin(πz) = πz

∞∏
n=1

(
1−

(
z

n

)2
)

Thus, if we take z = 1
2 :

1 = sin
(
π

2

)
= π

2

∞∏
n=1

(
1− 1

4n2

)
= π

2

∞∏
n=1

(
4n2 − 1
(2n)(2n)

)
= π

2

∞∏
n=1

(
(2n+ 1)(2n− 1)

(2n)(2n)

)

=⇒ π

2 =
∞∏
n=1

(2n)(2n)
(2n− 1)(2n+ 1)
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10b) Properties of the Fibonacci Numbers
The Fibonacci numbers are defined by c0 = 0, c1 = 1,

cn = cn−1 + cn−2, n ≥ 2

Show that the cn are the Taylor coefficients for a rational function, and determine a closed expression
for cn.

Proof. Let us begin by letting f(z) :=
∑∞
k=0 ckz

k where ck are the Fibonacci numbers. Next, we
see that:

f(z) = c0 + c1z +
∞∑
k=0

zk+2ck+2

= c0 + c1z + z

∞∑
k=2

zk+1(ck+1 + ck) Since cn = cn−1 + cn−2

= c0 + c1z + z

∞∑
k=2

ck+1z
k+1 + z2

∞∑
k=2

ck+2z
k

= c0 + c1z + z

( ∞∑
k=0

ckz
k − c0

)
+ z2

∞∑
k=0

ckz
k

= (0) + (1)z + z(f(z)− 0) + z2(f(z))

=⇒ f(z) = z

1− z − z2

Now, if we let w1 = 1+
√

5
2 and w2 = 1−

√
5

2 , we make the quick realization that since w1 · w2 =
−1 =⇒ w1 = −1

w2
, and hence (1 − z − z2) = −(z + w1)(z + w2) = (1 − w1z)(1 − w2z). Hence we

may now look for A and B s.t. z
1−z−z2 = A

z−w1
+ B

z−w2
. We see that:

z

1− z − z2 = A

1− w1z
+ B

1− w2z

⇐⇒ z = A(1− w2z) +B(1− w1z)
⇐⇒ A = −B and Aw2 +Bw1 = −1

⇐⇒ B

(
1− w2

w1

)
= −1
w1

and A = −B

⇐⇒ B = −1
w1 − w2

= −1√
5

and A = 1√
5

=⇒ f(z) = z

1− z − z2 = 1√
5

(
1

1− w1z
− 1

1− w2z

)
= 1√

5

( ∞∑
k=0

(
(w1)k − (w2)k

)
zk
)

And since f(z) =
∑∞
k=0 ckz

k, by equating the coefficients here, we see that:
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ck = 1√
5

((
1 +
√

5
2

)k
−
(

1−
√

5
2

)k))

10c) Evaluating Positive even Integer Values of the Riemann Zeta Func-
tion

Comparing the coefficients in the Laurent series for cot(πz) and its expression as a sum of partial
fractions, find the values of: (Give a complete justification of the steps that are needed.)

∞∑
1

1
n2 ,

∞∑
1

1
n4

Proof. Let us begin by performing a little algebra on cot(πz):

cot(πz) = cos(πz)
sin(πz) = i

(
eiπz + e−iπz

eiπz − e−iπz

)(
eiπz

eiπz

)
= i

(
e2πiz + 1
e2πiz − 1 + 1

e2πiz − 1

)
= i

(
e2πiz − 1
e2πiz − 1 + 2

e2πiz − 1

)
= i+ 2i

e2πiz − 1

=⇒ πz cot(πz) = iπz + 2πiz
e2πiz − 1

Next, we define what are called the “Bernoulli Numbers”, denoted Bm. They are defined as:

y

ey − 1 =
∞∑
m=0

Bm
m! y

m

If we let y = 2πiz, we obtain: 2πiz
e2πiz − 1 =

∞∑
m=0

Bm
m! (2πiz)m

=⇒ πz cot(πz) =iπz +
∞∑
m=0

Bm
m! (2πiz)m

Now, we turn our attention to the series (derived in Ahlfors, 5.2.1 Equation 11), which states:
π cot(πz) = 1

z +
∑∞
n=1

2z
z2−n2 , therefore for |z| < 1:
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zπ cot(πz) = 1 +
∞∑
n=1

2z2

z2 − n2

= 1−
∞∑
n=1

2z2

n2
(
1−

(
z
n

)2)
= 1− 2

∞∑
n=1

((
z

n

)2( ∞∑
k=0

(
z

n

)2k
)

Since if |w| < 1,
∞∑
k=0

wk = 1
1− w

= 1− 2
∞∑
n=1

∞∑
k=1

(
z

n

)2k

= 1− 2
∞∑
k=1

z2k
∞∑
n=1

n−2k Since the series are absolutely convergent

Thus, we can now equate our two formulas for πz cot(πz):

1− 2
∞∑
k=1

z2k
∞∑
n=1

n−2k = iπz +
∞∑
m=0

Bm
m! (2πiz)m ⇐⇒

z2
∞∑
n=1

1
n2 + z4

∞∑
n=1

1
n4 · · · =

1− iπz
2 − B0

2 · 0! −
B1(2πiz)

2 · 1! + B2(2πz)2

2 · 2! − B3(2iπz)3

2 · 3! − B4(2πz)3

2 · 4! · · ·

=⇒
∞∑
n=1

1
n2k = (−1)k+1 ·

(
22k−1π2kB2k

(2k)!

)
∀k ∈ N

Now, since Bi = 1, 1
2 ,

1
6 , 0,

−1
30 , 0,

1
42 , 0,

−1
30 , . . . =⇒

∞∑
n=1

1
n2 = π2

6
∞∑
n=1

1
n4 = π4

90
∞∑
n=1

1
n6 = π6

945
...
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10d) The cotangent function’s properties with regard to infinite sums
Express:

∞∑
−∞

1
z3 − n3

in closed form.

Proof. First, let us recall the formulae: a3−b3 = (a−b)(a2+ab−b2) and ax2+bx+c = −b
2a ±

√
b2−4ac

2a ,
thus we will have:

z3 − n3 = (z − n)(z2 + zn+ n2)

= (z − n)
(
z + n · 1 + i

√
3

2

)(
z + n · 1− i

√
3

2

)
= (z − n)

(
z + nei

π
3
)(
z + ne−i

π
3
)

We now look for a way to write: 1
z3−n3 in the form of: A

(z−n) + B(
z+nei

π
3
)+ C(

z+ne−i
π
3
) . However, before

doing this, let us make simplify 3z2

z3−n3 first since this will tremendously simplify our derivations.
Furthermore, for the remainder, we denote w = nei

π
3 (and hence w̄ = ne−i

π
3 ). Our first simplification

will be that if we consider 3z2

z3−n3 in the form of A
(z−n) + D

(z2+zn+n2) :

3z2

z3 − n3 = A

(z − n) + D

(z2 + zn+ n2)
⇐⇒ A(z2 + zn+ n2) +D(z − n) = 3z2

Setting A = 1 and D = 2z+n nicely solves this equation. Now, we look for B,C as specified before:

2z + n

z2 + zn+ n2 = A

z + w
+ B

z + w̄

⇐⇒ 2z + n = A(z + w̄) +B(z + w)
⇐⇒ A+B = 2, and Aw̄ +Bw = n

⇐⇒ B = n(2w − 1)
w − w̄

=
(2( 1

2 (eiπ3 ))− 1)
2iIm(w) = n(

√
3)i

2ni
√

3
2

= 1, and A = 1

Therefore, we now have that:

3z2

z3 − n3 = 1
z − n

+ 1
z + w

+ 1
z + w̄

= 1
z − n

+ w̄

zw̄ + n
+ w

zw + n

= 1
z − n

+ −w̄
z(−w̄)− n + −w

z(−w)− n
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Next, we recall (from Ahlfors 5.2.1 Equation 10) that if |z| < 1, that: limm→∞
∑m
n−m

1
z−n , and

since if |z| < 1 =⇒ | − wz| < 1 and |wz| < 1 (|w| = |w̄| = 1), and as such:

∞∑
n=−∞

1
z3 − n3 = 1

3z2 lim
m→∞

1
z3 − n3

= 1
3z2 lim

m→∞

(
1

z(−w̄)− n −
w̄

zw̄ − n
− w

z(−w)− n

= 1
3z2

(
π cot(πz)− w̄π cot(−w̄πz)− wπ cot(−wπz)

)
= 1

3z2

(
π cot(πz)− πe−iπ3 cot(−e−iπ3 πz)− eiπ3 cot(−eiπ3 πz)

)

10e) The Blaschke Product
Suppose f(z) is a holomorphic function defined on the unit disk with a zero at 0 of order s and the
other zeros ak satisfying

∑
k(1−|ak|) <∞ (or equivalently

∑
k log |ak| > −∞). Show that it admits

a factorization f = BG where B is a product of:

B(z) = zs
∏
k

|ak|
ak

ak − z
1− akz

and G(z) is a holomorphic functions without zeroes. Show that B(z) is holomorphic.

Proof. We would first like to prove that for any holomorphic function, f , which is defined on the unit
disk (plus has the noted constraints in the question), it may be written as f = g |β|β ·

( (β−z)
(1−βz)

)sβ :=
g(ϕβ(z))sβ , where β is a zero of f of order sβ , β 6= 0, and g has all the zeros as f except β. If this is
true, then it’ll follow immediately that we can write f = BG as defined in the question above. To
prove this, we first note that:

∣∣ |β|
β

∣∣ = 1. Next, by the Schwarz Lemma, if |f(z)| = |z| for some non-
zero z or |f ′(0)| = 1, then f(z) = az for some a ∈ C with |a| = 1. If we say h1 := f ◦

(
(ϕβ(z))sβ

)−1,
then since f(β) = 0 =⇒ h1(β) = |β| =⇒ f = gϕβ as we wanted to show.

Now, let us define ϕak(z) = |ak|ak−|ak|z
ak−|ak|2z , which is holomorphic since the quotient of holomorphic

functions on Ω, (f = h
g ), is holomorphic on Ω\{S} where g(s) = 0 ∀s ∈ S. Thus, since ak−|ak|2z 6=

0∀|z| < 1 =⇒ ϕk(z) is holomorphic ∀k ∈ N inside the unit disc.

Let us now recall that if ϕn(z) = 1 + φk(z) and
∑∞
n=1 |φk(z)| converges uniformly on a compact

subsets, then
∏∞
n=1 ϕn(z) also converges uniformly on a compact subsets. Thus, we take a look at

φak(z) = ϕak(z)− 1:
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|ak|
ak
· ak − z1− akz

− 1 = |ak|(an − z)− ak(1− akz)
ak(1− akz)

= |ak|ak − ak + |ak|2z − |ak|z
ak(1− akz)

= (|ak| − 1)ak + |ak|(|ak| − 1)z
ak(1− akz)

= (|ak| − 1)(ak + |ak|z)
ak(1− akz)

=
(|ak| − 1)

(
1 + |ak|

ak
z
)

1− akz

Now, since we are operating within the context of a unit disk, we may assume |z| < r, r ≤ 1; thus:

∣∣∣∣ |ak|ak · ak − z1− akz
− 1
∣∣∣∣ =

∣∣∣∣−(1− |ak|)
(
1 + |ak|

ak
z
)

1− akz

∣∣∣∣
≤ (1 + |z|)(1− |ak|)

1− |z|

≤ 1 + r

1− r · (1− |ak|)

Now, we recall that the Blaschke Condition of:
∑
k(1− |ak|) <∞, and hence:∑

k

∣∣∣∣ |ak|ak · ak − z1− akz
− 1
∣∣∣∣ ≤ 1 + r

1− r
∑
k

(1− |ak|) <∞

And hence we have proven that B(z) converges uniformly on compact subsets, and hence is holo-
morphic by Weirstrauss’ Theorem.

10f) Existence of a function mapping from an arbitrary sequence of com-
plex numbers to another

Let a1, a2, a3, . . . be a sequence of distinct complex numbers with an → ∞. Let b1, b2, b3, . . . be an
arbitrary sequence of complex numbers. Show that there exists an entire function f : C → C such
that f(an) = bn ∀n.

Proof. Let us define the function f as:

f(z) =
∞∑
k=0

fkbk where fn =
{
1 if n = k

0 otherwise

However, we might run into problems unless we first alter the series {ai} and {bi}, we first remove
all duplicate entries since we will want to have the property of if aj = ak, then bj = bk. Next, if
∃j ∈ N s.t. aj = 0, let us remove this entry and it’s corresponding bj . If we solve the problem
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with a function g, which maps ai to, say, b′i = bi−b1
an

, then by making f(z) = zb1 + b1, we see that
f(an) = bn∀n, when a1 = 0.
Now, if we let

g(z) :=
∞∏
i=1

(
1− z

ai

)
e
∑∞

i=1
z
i·ai

And fi be defined as:

fi(z) := 1
g′(ai)

· g(z)
z − ai

eγn(z−ai)

Then, naturally we see that g(ai) = 0 and limz→ai fn(ai) = 1, and hence ai is a removable singularity
of fn and hence fn is entire. Thus, if we can find γi s.t. f as defined as a sum of fk’s and bk’s which
converges uniformly on all compact sets, by Weirstrass’ Theorem, f will be an entire function.
Let S := {z : |z| < r}. On S, g is bounded and hence we will have that |g(z)| ≤ Cr. Also, since
ai →∞, ∃nr ∈ N s.t. ∀i > nr|ai| > 2r + 1. Therefore, |z − ai| ≥ 2r + 1− r = r + 1 > 1. Thus,

|fi(z)| ≤
∣∣∣∣ bi
g′(ai)

∣∣∣∣ · |g(z)|
|z − ai|

∣∣∣eγi(z−ai)∣∣∣
≤
∣∣∣∣ bi
g′(ai)

∣∣∣∣Cr∣∣∣eγi(z−ai)∣∣∣
=
∣∣∣∣ bi
g′(ai)

∣∣∣∣Cr∣∣∣eξi( zai−1)
∣∣∣ where ξi = γi

ai

=
∣∣∣∣ bi
g′(ai)

∣∣∣∣Creξi(Re( zai )−1)

≤
∣∣∣∣ bi
g′(ai)

∣∣∣∣Creξi( r
|ai|
−1) if ξi ≥ 0

≤
∣∣∣∣ bi
g′(ai)

∣∣∣∣Cre−ξi2

Now, if we choose ξi = 2
(∣∣ bi
g′ (ai)

∣∣+i−1
)

=⇒ e
−ξi

2 = e
1−
∣∣ bi

g
′ (ai)

∣∣
e−i. And as such,

∣∣ bi
g′ (ai)

∣∣e−ξi2 ≤ e−i,
and hence we can conclude that: not only have we constructed a function with the proprieties
specified, but also that this function is entire since:

f(z) ≤ sup(Cr)
∞∑
i=1

∣∣ bi
g′(ai)

∣∣e−ξi2 ≤ sup(Cr)
∞∑
i=1

e−i <∞

10g) Riemann Zeta Function Convergence
Show that the Riemann zeta function:

ζ(z) =
∞∑
n=1

n−z

converges for Re(z) > 1, and represent its derivative in series form.
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Proof.
∂mζ(z)
∂mz

= (−1)m
∞∑
n=2

logm(n)n−z . . .

The rest is forthcoming...

11 Normal Families and Automorphisms
11a) zn is a Normal Family except on the unit circle
Show that the functions zn, n a non-negative integer, form a normal family in the extended sense
on |z| < 1, also on |z| > 1, but not in any region that contains a point of the unit circle.

(Outline of Proof)

Proof. If |z| < 1, we claim that any infinite sequence of functions, say, znk always has a converging
subsequence. This is because if n→∞, then naturally the functions go to zero uniformly on compact
subset. If n 6→ ∞, then there must be some index which occurs infinitely many times and hence
there is the convergence is obvious.

For the region outsides |z| > 1, either zn goes to infinity uniformly on compact subsets (if nk
diverges) or goes to some function zk if some exponents occurs infinitely many times.

However, for |z| = 1, then consider the family zn, where n goes from 1 to ∞. Then it convergence
to a function which is not continuous which contradicts the defintion of a normal family.

11b) Derivatives of normal families are normal families
Let {fα} be a normal family in the extended sense of holomorphic functions on a domain Ω. Show
that {f ′α} is a normal family.

Proof. Let us begin by stating the following Lemma (cpt := “compact set” and open := “open set”):

Lemma. 11.1: Uniform Convergence of Derivatives

Let fj : Ωopen → C, j ∈ N be a sequence of holomorphic functions and f : Ωopen → C s.t.
∀Kcpt ⊂ Ωopen, fj(Kcpt)→ f(Kcpt). Then ∀k ∈ N ∪ {0}, we will have:(

∂

∂z

)k
fj(z)→

(
∂

∂z

)k
f(z)

Proof. Let Kcpt ⊂ Ω. Therefore, ∃r > 0 s.t. ∀z ∈ K, ∆(z, 2r) ⊂ Ω. If we fix such an r, then
Kcpt
r = ∪z∈Ω∆(z, r) ⊂ Ω and is compact. Next, ∀z ∈ Kr, we have from Cauchy’s Inequality, that:

∣∣∣∣∣
(
∂

∂z

)k(
fj1(z)− fj2(z)

)∣∣∣∣∣ ≤ k!
rk

sup
|ζ−z|≤r

∣∣fj1(z)− fj2(z)
∣∣

≤ k!
rk

sup
ζ∈Kcpt

r

∣∣fj1(z)− fj2(z)
∣∣
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Thus, the right hand side above goes to zero as j1, j2 → ∞, and since Kr, {fj} must converge
uniformly on Kr. And as such,

{(
∂
∂z

)k
fj
}

is uniformly Cauchy on K.

Now, we return to the problem at hand. Let us pick any sequence s.t. {f ′n} ⊆ {f ′α}; therefore, we
know that ∃ a subsequence, say nk which converges uniformly on compact sets: K ⊂ Ω. Now, by
our above Lemma, we know that {fnk} converges uniformly on K. Hence, for any sequence of {f ′n},
we can find a subsequence which converges uniformly on compact subsets, which implies that {f ′α}
is a normal family by definition.

11c) An automorphic injective hol. mapping on a bounded domain given
one point being the identity implies the whole mapping is too

Let Ω be a bounded domain and let φ be an injective holomorphic mapping of Ω to itself. Let a ∈ Ω
and suppose that φ(a) = a and φ′(a) = 1. Prove that φ must be the identity.
(Hint: Write the power series for φ centred at a

φ(z) = a+ (z − a) + higher order terms

and consider φ, φ ◦ φ, φ ◦ φ ◦ φ, . . . . Estimate the coefficient of the first nonzero term in the power
series after the linear term, assuming that it exists, and show that it must in fact be zero.)

Proof. First and foremost, we recall Montel’s (Simpler) Theorem:

Lemma. 11.2: Montel’s (Simpler) Theorem

Any uniformly bounded family of holomorphic functions defined on an open subset of the
complex numbers is normal.

Thus, we can say that the family Φ = {φn|n ∈ N} (φn = φ ◦ · · · ◦ φ n-times) is normal. Let us now
assume that a = 0 since this will not affect any of our derivations. Let us now choose r > 0 s.t.
∆(a = 0, r) ⊂ Ω. Now since Φ is a normal holomorphic family, hence we may write φ as:

φ(z) = z +
∞∑
n=2

anz
n

If we now assume for sake of contradiction that ak = 0 ∀1 < k < n, but not for ak, k ≥ n then (ht:=
higher [order] terms):

φ(z) = z + anz
n + ht

We would like to prove by induction that φn = z + nanz
n + ht, for m = 2, we have:

φ ◦ (φ(z)) = φ(z) + anφ(z)n + ht
= z + amz

n + ht + am(z + amz
n + ht)n + ht

= z + 2amzn + ht

And if we assume a standard inductive hypothesis of truth for n− 1, we have that:
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φm(z) = φ ◦ (φm−1(z)) = φm−1(z) + an(φm−1(z))n + ht
= z + (n− 1)anzn + ht + an(z + (m− 1)anzn + ht)n + ht
= z +manz

n + ht

Now, we may make use of Cauchy’s Inequality: I.e., since φ is holomorphic in ∆(0, r),∣∣∣∣ ∂k∂zk
(
φm(z)

)∣∣∣∣ ≤ k! supz∈∆(0,r) |φm(z)|
rk

However, by our previous work for φm, we see that if k ≤ n:

∂k

∂zk
φm(z) = (k!)(m)(an)zn−k

Therefore combining these two findings, and setting k = n, we can see that:

|am| =
∣∣∣∣ 1
k!m

∂n

∂zn
φm(z)

∣∣∣∣
≤
∣∣∣∣ 1
k!m

∣∣∣∣∣∣∣∣ ∂n∂znφm(z)
∣∣∣∣

≤
(

1
k!m

)(
k! supz∈∆(0,r) |φm(z)|

rk

)
=

supz∈∆(0,r) |φm(z)|
mrn

Now, we proceed as follows: Since n is fixed, an and rn are constant. Next, since φ : Ω→ Ω, and Ω
is a bounded domain, sup∆ |φm| is uniformly bounded by some constant, say C, independent of m.
This corresponds to the norm of the point farthest from the origin in the domain.

Thus, we have: |an| ≤ K
m where K ∈ N independent of m. Since m can be chosen arbitrarily large,

we have an = 0, and hence have reached a contradiction.

Thus, we have shown that ∀n > 1, an = 0 =⇒ since φ is injective, we cannot have φ(z) = a∀z, and
hence must therefore be the identity.

11d) Bijective automorphisms properties
Let Ω be a simply connected domain in C and let p, q be distinct points of Ω. Let f1, f2 ∈ Aut(Ω).
Show that if f1(p) = f2(p) and f1(q) = f2(q), then f1 = f2.

Proof. Since Ω ⊂ C and is simply connected, by the Riemann Mapping Theorem, Ω is either
conformally equivalent to the unit disk, ∆, or to the entire complex plane C. We now state the
following Lemma from Greene and Krantz’s Function Theory of One Complex Variable:
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Lemma. 11.3: Uniqueness of Biholomorphic Automorphisms

1. If Ω as defined in the problem is conformally equivalent to the unit disk, ∆, then if

f ∈ A(Ω), f must take the form: f(z) = eiθ
(
z+a
1+az

)
.

2. If Ω as defined in the problem is conformally equivalent to C, then if f ∈ A(Ω), f must
take the form: f(z) = a+ bz, a 6= 0.

We first assume that Ω is in the second case (Ω conformally equivalent to C). Thus, we see that if
p 6= q, then:

f1(p) = a1 + b1p = f2(p) = a2 + b2p, and f1(q) = a1 + b1q = f2(q) = a2 + b2q

⇐⇒ f1(p)− f2(p) = f1(q)− f2(q) = 0
⇐⇒ f1(p)− f1(q) = f2(p)− f2(q)
⇐⇒ b1(p− q) = b2(p− q)
⇐⇒ b1 = b2 since p 6= q

=⇒ a1 = a2 else f1(p) 6= f2(p)

As such, assume Ω is in the first case (Ω conformally equivalent to the unit disk). Thus, we have:

fi(z) = eiθ
(
z + a

1 + az

)
⇐⇒ f−1

i (fi(z)) = e−iθ
(
fi(z)− a
1− afi(z)

)
Therefore following this reasoning and noting fi(z) = z ⇐⇒ z2 +z(1−eiφ)/a−eiφa/a = 0, solving
for creates like above a system of linear equations and hence implies that a1 = a2.
And hence we have shown that f1 = f2 in both cases.
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