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Abstract. The notion of a analytic-geometric category was introduced by

v.d. Dries and Miller in [4]. It is a category of subsets of real analytic manifolds
which extends the category of subanalytic sets. This paper discusses connec-

tions between the subanalytic category, or more generally analytic-geometric

categories, and complex analytic geometry. The questions are of the following
nature: We start with a subset A of a complex analytic manifold M and as-

sume that A is an object of an analytic-geometric category (by viewing M as

a real analytic manifold of double dimension). We then formulate conditions
under which A, its closure or its image under a holomorphic map is a complex

analytic set.

In the second part of the paper we consider the notion of a complex S-
manifold, which generalizes that of a compact complex manifold. We discuss

uniformity in parameters, in this context, within families of complex manifolds

and their high-order holomorphic tangent bundles. We then prove a result on
uniform embeddings of analytic subsets of S-manifolds into a projective space,

which extends theorems of Campana ([1]) and Fujiki ([6]) on compact complex
manifolds.

1. Introduction

In a series of papers ([13], [12], [14]) we considered holomorphic manifolds and
maps definable in o-minimal structures, over arbitrary real closed fields. A large
part of that work was devoted to developing complex analytic tools in nonstandard
setting, where the topology on the algebraically closed field is not assumed to be
locally compact. Here we focus on the the field of complex numbers and investi-
gate the restrictions which o-minimality puts on subsets of complex manifolds. We
work in the more general setting of a geometric-analytic category, introduced by
v. d. Dries and Miller in their paper “Geometric categories and o-minimal struc-
tures” ([4]).

In that paper the authors presented a category extending the category of suban-
alytic sets whose objects share many of the properties of the subanalytic category
and yet allows a much richer collection of sets and maps. Thus, for example, the
subset {x, e1/x : x > 0} of R2, while not subanalytic in R2, is part of the category in
question. Their paper was written in the midst of of intensive work on o-minimality
and since it was published new expansions of the field of real numbers were proved
to be o-minimal thus providing new examples of analytic-geometric categories (see
for example [19], [18], [5], [17] ).
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The general problem we consider in the first part of this paper (Sections 2-6)
can be viewed as removing singularities from subsets of complex manifolds which
are also objects of an analytic-geometric category: We start with a subset A of
a complex analytic manifold M and assume that A is an object of an analytic-
geometric category in the above sense (by viewing M as a real analytic manifold of
double dimension). We then formulate conditions under which A or its closure is a
complex analytic subset of M . The proofs make use of the “tameness” features of
sets in the analytic-geometric categories. In particular, we make extensive use of
the fact that if such a set is relatively compact then its boundary is well-behaved.

Here is a variety of results from the first part of the paper, formulated in the
language of subanalytic sets (the results are actually proved in the more general
setting of an arbitrary analytic-geometric category).

Theorem 2. If M is a complex manifold and X is a closed subset of M then X is
a complex analytic subset of M if and only if X is subanalytic in M and for every
open U ⊆M ,

dimR SingC(U ∩X) 6 dimR(U ∩X)− 2.

(By SingCX we mean all points at which the germ of X is not a C-submanifold).

The above theorem follows from a theorem of Shiffman when RegC(X) is of pure
dimension. It fails in general without the subanalyticity assumption on X.

Theorem 4. Let M be a complex manifold and E ⊆M a complex analytic of M
(of arbitrary dimension). If A is a complex analytic subset of M \ E which is also
subanalytic in M then Cl(A) is a complex analytic subset of M .

Again, the above theorem is the just the Remmert-Stein Theorem when we put
an extra dimension assumption on E. It fails without the subanalyticity assump-
tion on A.

Theorem 3. Assume that A is a closed and subanalytic subset of a complex
manifold M such that the set of its complex regular points is dense in A. Assume
also that at no point z0 ∈ A, the germ of A at z0 is a real manifold with a boundary.
Then A is a complex analytic subset of M .

We also prove the following strong variant of Remmert’s Proper Mapping The-
orem.

Theorem 1. Let f : M → N be a holomorphic map between complex analytic
manifolds and A a complex analytic subset of M . If f(A) is closed in N and sub-
analytic in N then f(A) is complex analytic in N .

Finally, we prove:

Theorem 4. Let M,N be complex manifolds, S an irreducible C-analytic subset
of M and assume that L ∈ C(M) a closed subset of S which contains the set of
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singular points of S. Assume that f : S r L → N is a holomorphic map whose
graph is in C(M ×N).

If dimR L 6 dimR A − 2 then the closure of the graph of f in M × N is a C-
analytic subset of M ×N .

In the second part of the paper (Sections 7-9) we consider the notion of a complex
S-manifold, a notion extending that of a compact complex manifold. We then
formulate several results concerning uniformity in parameters of definable families
of analytic subsets of such manifolds. We review some basic notions regarding
tangent bundles of high order of a complex manifold and show the definability of
these objects for S-manifolds. Finally, we consider a theorem, proved independently
by Campana and Fujiki (see [1], [6]), about a uniform embedding of analytic sets in
projective space. This theorem has recently drew the attention of model theorists
(see [11] [16] and [10]) because it provides a general tool to establish connections
between structures in different model theoretic settings and algebraic varieties.

Here we prove a slight generalization of the original theorem, by replacing com-
pact complex manifolds with S-manifolds. We prove

Theorem 2. Let N,M be complex S- manifolds, and S an irreducible analytic
S-subset of N ×M . Then there is a holomorphic vector S-bundle π : V → M , a
meromorphic S-map λ : S → P(V ), and a Zariski open subset S0 of S such that
σ(b, a) = σ(b′, a) if and only if Sb = Sb′ near a, for all (b, a), (b′, a) ∈ S0, and the
following diagram is commutative

S0 P(V )

M

wσ

[[[]
πM

�
��� π

A model theoretic remark
Although the paper discusses results for structures over the real and complex

fields it is written with an eye for the more general setting of an o-minimal structure
over an arbitrary real closed field R and its algebraic closure K. Thus, most proofs
can easily be transferred from the R to an arbitrary real closed field after making
proper adjustments, such as replacing the notion of a holomorphic function with
a K-holomorphic function (see [13], [12]), and notions such as “connected” with
“definably connected”.

This however excludes the few places where we use classical results from complex
geometry such as Shiffman’s Theorem and Chow’s Theorem. In unpublished noted
we proved analogues of these theorems, as well as other results, in the more general
setting, but these will be presented elsewhere.

Acknowledgments The paper was written during the year 2003-2004, which the first
author spent at the University of Illinois at Urbana-Champaign. The authors thank
Chris Miller for commenting on earlier versions of this paper.
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2. Preliminaries

2.1. Analytic-geometric categories. The following definition is taken from [4]:

Definition 2.1. An analytic-geometric category C is, for every real analytic mani-
fold M , a collection C(M) of subsets of M , such that:

AG1. M ∈ C(M), and C(M) is closed under complement, finite intersections
and finite unions.

AG2. If A ∈ C(M) then A× R ∈ C(M × R).
AG3. If N is a real analytic manifold, f : M → N is a proper, real-analytic

map and A ∈ C(M) then f(A) ∈ C(N).
AG4. If A ⊆ M and U is an open covering of M then A ∈ C(M) if and only if

A ∩ U ∈ C(U) for every U ∈ U .
AG5. Every bounded set in C(R) has a finite boundary.

An example of such an analytic-geometric category is that of the subanalytic
sets.

2.2. Definable sets. As pointed out in [4], for every analytic-geometric category
C and every real analytic manifold M , all subanalytic subsets of M are in C(M).
Also, to every analytic-geometric category C corresponds an o-minimal structure
S(C) over R whose definable sets are those subsets of Rn, n ∈ N, which are in
C(Pn(R)) (under the usual identification of Rn with an open subset of Pn(Rn)). As
usual, a function is definable in S(C) if its graph is in S(C).

When C is the category of subanalytic sets then S(C) is the structure denoted
by Ran, obtained by expanding the real field with all real analytic functions on the
closed unit n-cubes. (For more details on o-minimal structures, one may consult v.
d. Dries’ book [3]).

When M is a real analytic manifold and U ∈ C(M) is a relatively compact open
subset ofM , then U , together with all subsets of U which are in C(M), can be viewed
as definable in S(C) (for any analytic-geometric C) as follows: U can be written as
the union of finitely many relatively compact open charts, each isomorphic to an
open box in Rn, such that the transition maps are real-analytic on the closure of
their domain. Furthermore, these boxes can be chosen to be pairwise disjoint. The
boxes, and the transition maps are now definable in S(C) and every subset of U
which is in C(M) is mapped via these isomorphisms to a definable subset of Rn.

In the opposite direction, every o-minimal structure S expanding Ran, let C(S)
be all sets A ⊆ M such that for every x ∈ M there is an open neighborhood
U ⊆ M of x, an open V ⊆ Rn and a real analytic isomorphism h : U → V such
that h(U ∩A) is definable in S.

The above transforms, from an analytic-geometric category to an o-minimal
structure and vise-versa, are inverse to each other. Thus, when we are given a set
A in C(M) and want to analyze A near a point z0 ∈ M , we will often consider
U ∩ A for a relatively compact open neighborhood U ∈ C(M) of z0, together with
a proper real analytic isomorphism f between U and an open subset V of Rn. We
may then replace U and A by V and f(A), (which are both definable in S(C)) and
assume that U and U ∩A are definable in S(C).

We now fix, for the rest of the paper, an analytic-geometric category
C and a corresponding o-minimal structure S = S(C) containing all re-
stricted analytic functions.
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2.3. Local connectedness. For topological spaces X ⊆ Y , we let frY (X) =
ClY (X) \X be the frontier of X in Y . We omit Y when the reference to it is clear
from the context.

Definition 2.2. Let X be a subset of Rn. For U ⊆ Rn an open set containing x,
we let #(U ∩X) be the number of connected components of U ∩X (it can be ∞)
and let #(U ∩ X)x be the number of those components of U ∩ X whose closure
contains x.

Notice that if x ∈ V ⊆ U then #(U ∩X)x 6 #(V ∩X)x. For ε > 0 and x ∈ Rn,
let B(x; ε) be the open ball of radius ε centered at x. If X ⊆ Rn is definable then,
by o-minimality, limε→0 #(B(x; ε)∩X) and limε→0(#B(x; ε)∩X)x both exist and
are finite. Moreover, for all sufficiently small definable open neighborhood V of x,
we have #(V ∩X)x = limε→0 #(B(x; ε) ∩X)x.

Lemma 2.3. For every definable X ⊆ Rn and x ∈ Rn

lim
ε→0

#(B(x; ε) ∩X) = lim
ε→0

#(B(x; ε) ∩X)x.

In particular, there is an ε > 0 such that for all open V ⊆ B(x; ε) containing x,
#(V ∩X)x is the same.

Proof It is immediate that limε→0 #(B(x; ε) ∩X) > limε→0 #(B(x; ε) ∩X)x.
Assume that limε→0 #(B(x; ε) ∩ X) > limε→0 #(B(x; ε) ∩ X)x. Then for all

sufficiently small ε there is x(ε) ∈ B(x; ε)∩X which is not in any of the components
of B(x; ε) ∩X that contain x in their closure.

But, for all sufficiently small ε, say ε < ε0, the map ε 7→ x(ε), from (0, ε0)
into X, is definable and continuous and hence its image is contained in one of the
connected components of B(x; ε0)∩X. This component must have x in its closure,
contradicting our choice of x(ε). �

Notice that the above lemma implies that for sufficiently small ε every connected
component of B(x; ε) ∩X has x in its closure.

Definition 2.4. For X and x as in the last lemma, we call the limit of #(B(x; ε)∩
X) the number of connected components of the germ of X at x.

Let M be a real analytic manifold, X ∈ C(M), and x ∈M . Then the number of
connected components of the germ of X at x is computed with respect to an open
relatively compact chart U containing x and thus assuming that U and U ∩X are
definable. (the number we get does not depend on the choice of the chart).

It is not hard to see that the following holds (and therefore X is locally connected
at x in the classical sense if and only if the number of components of the germ of
X at x, in the above sense, is 1).

Lemma 2.5. For X ∈ C(M) and x ∈ M , the number of connected components of
the germ of X at x equals the minimal number n such that every neighborhood U
of x contains an open V with x ∈ V and #(V ∩X) = n.

Remark By o-minimality, given a definable set X ⊆ Rm, we can partition Rm into
finitely many definable sets Y1, . . . , Yr such that for each i, the number of connected
components of the germ of X at every point of Yi is the same.
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2.4. Complex and real analytic manifolds. We are going to consider in this
paper subsets of complex manifolds which are defined via their real and imaginary
coordinates. This can be done by viewing every complex manifold M as a real
analytic manifold of double dimension.

Recall that a subset A ⊆ M of a complex manifold M is called locally analytic
in M (to avoid ambiguity we write locally C-analytic in M) if for every x ∈ A there
exists an open neighborhood U ⊆M of x such that A∩U is the zero set of finitely
many holomorphic functions on U . A ⊆M is called an analytic subset of M (or a
C-analytic subset of M) if A is locally C-analytic in M and in addition A is closed
in M .

Given any set A ∈ C(M), we denote by RegCA the set of points z ∈ A such that
the germ of A at z is a complex submanifold of M , and by SingCA its complement
in A.

Notice that every C-analytic subset of M is in C(M), since it is given near every
point in M as the zero set of real analytic functions.
Remark We emphasize that the C-analytic sets we consider are point-subsets of
complex manifolds and we do not view them as ringed spaces. Although we treat
in this paper only subsets of complex manifolds, we believe that much of this
treatment can go through for complex analytic spaces, once we formulate properly
what subsets of such spaces belong to the category C.

Fact 2.6. (i) Let M , N be complex manifolds and assume that f : M → N is a
continuous function whose graph is in C(M ×N). Then the set of points in M at
which f is holomorphic is in C(M).
(ii) Let M be a complex manifold and X ⊆M in C(M). Then the set RegCX is in
C(M) as well.
(iii) If A ⊆M is a locally C-analytic subset of a complex manifold M and if A is in
C(M), then for every x ∈M there is an open neighborhood U of x such that A∩U
is either empty or has finitely many irreducible components (as a C-analytic set).

Proof (i) For z ∈ M , we may replace M and N by definable open sets U ⊆ Cn

containing z and V ⊆ Cm containing f(z) such that f : U → V is definable. We
now use the fact that a complex function is holomorphic, as a function of several
variables, if and only if it is continuous, and holomorphic in each variable separately.
Holomorphicity in one variable and continuity are defined using an ε-δ definition,
therefore the set of points where f is holomorphic is in C(M) (by arguments similar
to B.8 in [4]).

(ii) Here we just point out that a set X ⊆ Cn is a d-dimensional complex sub-
manifold of Cn near a point z ∈ X if and only if after a permutation of coordinates,
the set X near z, is the graph of a holomorphic function from Cd into Cn−d Working
in charts and using (i), this set itself is in C(M)

(iii) Given x ∈ M , we may find a relatively compact open U ⊆ M and assume
that U is a definable subset of Cn and U ∩ A is definable. Since RegC(A ∩ U)
has finitely many connected components and every irreducible component of A is
the closure of such a connected component, A has only finitely many irreducible
components. �

2.5. Good C-Direction. The following theorem is a complex version of the Good
Direction Lemma for definable sets of Rn and R-linear subspaces (see Theorem
7.4.2 in [3]).
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Theorem 2.7. Let A be a definable subset of Cn+1 of real-dimension at most
2n + 1. Then there is a 1-dimensional complex subspace ` ⊆ Cn such that for any

p ∈ Cn the intersection of A with the affine C-line
[

0
p

]
+ z

[
1
`

]
, z ∈ C, has

real-dimension at most 1. Moreover, the set of all such `’s is definable and dense
in Pn−1(C).

Proof We will follow the idea of the proof of the Good Direction Lemma from [3].
Assume that the theorem fails. Then for every ` in an open set W ⊆ Pn−1(C)

there is p(`) ∈ Cn such that the set B(`) = {z ∈ Cn+1 :
[

0
p(`)

]
+z

[
1
`

]
∈ A} has

real-dimension 2. By dimension considerations, there is a fixed open ball B ⊆ C
and an open set V ⊆ Cn such that for every u ∈ V there is p(u) ∈ Cn with[

0
p(u)

]
+ z

[
1
u

]
∈ A for all z ∈ B. Using definable choice, we can assume that

the function u 7→ p(u) is definable.
Consider the function F (u, z) from V ×B into Cn defined as

F : (u, z) 7→
[

0
p(u)

]
+ z

[
1
u

]
To obtain a contradiction we will show that the image of V × B under F has

real-dimension 2n+ 2.
Considering V as an open subset of R2n and p(u) as a function into R2n, we

obtain that there is a nonempty open definable set V0 ⊆ V such that p is C1 on V0,
and hence F is C1 on V0 ×B.

The following claim, combining with the Inverse Function Theorem, finishes the
proof.

Claim 2.8. For any w ∈ V0 the set

Λw = {λ ∈ B : the R-differential of F at (w, λ) is not invertible }

has real-dimension at most 1.

Proof Let w ∈ V0 and λ ∈ B. The R-differential of F at (w, λ) is the R-linear map
from Cn+1 into Cn+1 given by

(u, z) 7→
[

0
L(u)

]
+ λ

[
0
u

]
+ z

[
1
w

]
where L is the R-differential of p at w ( It is an R-linear map from Cn into Cn.)

This R-linear map is not invertible if and only if L(u)+λu = 0 for some nonzero
u ∈ Cn. Thus the claim reduces to the following statement:
If L : Cn → Cn is an R-linear map then the set

Λ = {λ ∈ C : L(u) + λu = 0 for some nonzero u ∈ Cn}

has real-dimension at most 1.
Considering the determinant of the R-linear map L + λId, we obtain that Λ =

{a + ib ∈ C : Q(a, b) = 0} for some Q ∈ R[x, y]. Thus if the real-dimension of Λ
is greater than 1 then Q ≡ 0 and Λ = C. However, if |λ| > ‖L‖ then |λu| > |L(u)|
for any nonzero u, and λ can not be in Λ. �
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Remarks 1. We could not claim, in the above theorem, that the intersection of

A with the affine C-line
[

0
p

]
+ z

[
1
`

]
, z ∈ C, is finite even if we assumed that

A has real-dimension at most 2n. An example is the set A ⊆ C2 consisting of all
(u, v) such that |u| = 1 and v = z̄+uz for some z ∈ C. We have dimR A = 2 but for

every ` there is p (the complex conjugate of `) such that
([

0
p

]
+ z

[
1
`

])
∩M

has real dimension 1.
2. Notice that a corresponding theorem on good C-direction, for A in C(Cn),

follows from the above. Indeed, by viewing A as a countable union of definable sets,
we may find a set of complex lines, all intersecting A in a set of real-dimension one,
whose complement in projective space is a countable union of definable nowhere
dense sets.

Corollary 2.9. Assume that A is a definable, locally C-analytic subset of Cn+1

of complex-dimension d, d 6 n and take m 6 (n + 1) − d. Then for any generic
C-linear subspace Π of Cn+1 of dimension m and for any p ∈ Cn+1, the intersection
of A with p + Π is finite. (By a “generic subspace” we mean a subspace outside a
definable nowhere dense subset of the suitable Grassmannian)

Proof By induction on m.
If m = 1 then, by the above theorem, the intersection has real-dimension at most

1. However, the intersection of a complex line with a locally C-analytic subset is
again locally C-analytic and hence, by o-minimality, must be finite.

Let m = m′ + 1 and Π be a generic subspace of complex-dimension m. Assume
that for some p ∈ Cn+1 the intersection of A with p + Π is infinite. Since A is
locally C-analytic set this intersection has real-dimension at least 2. We can write
Π as Π′ + l, where Π′ is a generic plane of complex-dimension m′ and ` is a C-line
generic over Π′. Since the complex-dimension of A+ Π′ is at most n, by the above
theorem, the intersection of A+ Π′ with p+ ` has complex-dimension at most one.
It is not hard to see that then there is a ∈ ` such that the intersection of A and
p+ a+ Π′ is infinite. �

We say that every generic projection π of Cn onto a d-dimensional C-linear
subspace has a certain property P if there is a definable nowhere dense subset
D of the appropriate Grassmannian, such for every d-dimensional linear subspace
L ⊆ Cn outside of D, the orthogonal projection onto L has property P .

In contrast to the failure of the corresponding global statement (as shown in the
above remark), its local version turns out to be true:

Lemma 2.10. Assume that X ⊆ Cn is a a definable real C1-submanifold, dimR X 6
2d < 2n, z0 ∈ X. Then for every generic projection π of Cn onto a complex lin-
ear subspace L of complex-dimension d, there is a neighborhood U of z0 such that
π|(U ∩X) is a C1-embedding into L.

Proof We consider the real tangent space T of X at z0 (of real dimension 6 2d)
and use the fact that every generic C-linear subspace L ⊆ Cn of complex dimension
n−d (i.e. of real-dimension 2n−2d) intersects T exactly at 0. If we now project
X orthogonally onto L⊥ then we obtain locally, near z0, an embedding of X into
L⊥. �
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3. Boundary behavior

The following is a generalization of Theorem 2.13(1) from [12].

Theorem 3.1. Let M be a connected complex submanifold of Cn and let f : M → C
be a definable holomorphic function. Assume that Z is the set of all z0 ∈ ClCn(M)
such that the limit of f(z) exists and equals 0 as z approaches z0 in M . Then Z is
definable and if dimR Z > dimR M − 1 then f is the constant zero function on M .

Proof The existence of a limit to f at a point z ∈ M is described via an ε − δ
statement and therefore Z is definable. Let dimC M = d and assume that dimR Z >
2d−1. Since dimR fr(M) 6 2d−1, by o-minimality, we may assume that dimR(Z) =
2d − 1. By o-minimality, we may further shrink M and assume that Z is a real
submanifold of Cn of dimension 2d− 1.

Fix z0 ∈ Z and let π be a generic projection of Cn onto a d-dimensional C-linear
subspace L ⊆ Cn. By Lemma 10 we may shrink M further and assume that π|Z is
an embedding of Z into L, considered as a real manifold. Finally, we may assume
that π is the projection onto the first d coordinates. Notice that π|M is a local
biholomorphism outside a a C-analytic set of complex dimension at most d− 1.

By o-minimality, there are finitely many pairwise disjoint, definable connected
open sets U1, . . . , Ur ⊆ Cn with the following properties:
(i) dimR(M \ (

⋃
i Ui)) 6 2d− 1.

(ii) For every i = 1, . . . , r, π|Ui is a biholomorphism, call it φi, between Ui∩M and
an open definable Vi ⊆ Cd.

(Clearly, we cannot do any better in (i), as is seen by the example of M =
{(z, w) ∈ (C∗)2 : w = z2} and the projection onto w).

Since the union of the Ui’s is necessarily dense in M , there is an i0 ∈ {1, . . . , r}
such that dimR(Cl(Ui0 ∩M)∩Z) = 2d− 1. It follows that dimR(Cl(Vi0)∩π(Z)) =
2d− 1.

Consider the map Ψ : Vi0 → C defined by Ψ(z) = f(φ−1
i0

(z)). This is a holomor-
phic map, which tends to 0 whenever z tends to an element of π(Z) in Vi0 .

It follows that the set

{z0 ∈ Cl(Vi0) : lim
z→z0

Ψ(z) exists and equals 0}

has real-dimension not less than 2d− 1.
We now use Theorem 2.13 (1) from [12] and conclude that Ψ is identically zero

on Vi0 . It follows that F is identically zero on Ui0 and therefore on all of M . �
We can now deduce an important technical tool:

Theorem 3.2. Let A1 ∈ C(M) be an irreducible, locally C-analytic subset of a
complex manifold M and assume that dimC A1 = d. Assume that A2 is a locally
C-analytic subset of N . Then either A1 ⊆ A2 or dimR(Cl(A1) ∩A2) 6 2d− 2.

Proof Assume that dimR(Cl(A1) ∩ A2) > 2d − 1. We may replace A1 by the set
of C-regular points of A1, RegC(A1) (since RegCA1 is in C(M) and dense in A1),
so we may assume that A1 is a connected complex submanifold of M . Consider
z0 ∈ Cl(A1) ∩ A2 such that dimR(Cl(A1)) ∩ A2 = 2d − 1 at z0. Since z0 ∈ A2

there exist an open neighborhood U of z0, which we may assume to be a definable
subset of Cn, and holomorphic definable f1, . . . , ft : U → C holomorphic such that
A2 ∩U = Z(f1, . . . , ft). We may also assume that A1 ∩U is definable. If A1 ∩U is
not connected, we may replace it with one of its connected components.
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Now consider the restriction of each fi to A1 and notice that the set of points in
Cl(A1) at which the limit of fi exists and equals zero has dimension not less than
2d− 1 (all the points in Cl(A1)∩A2). By Theorem 1, (A1 ∩U) ⊆ A2 and therefore
A1 ∩A2. �

Notice that we do not claim, in the above theorem, that dimR(Cl(A1)∩Cl(A2)) 6
2d− 2. This is of course false because A1 and A2 could be for example open boxes
in C with dimR(Cl(A1 ∩ Cl(A2)) = 1.

4. Variations on the Remmert-Stein theorem

Theorem 4.1. Let M be a complex manifold and assume that A is a locally C-
analytic subset of M , which is also in C(M).

Assume that for every open U ⊆M , dimR frU (A∩U) 6 dimR(A∩U)−2. Then
Cl(A) is a C-analytic subset of M .

Notice that since the frontier of A inM is piecewise a C1-manifold, the theorem is
an immediate corollary of Shiffman’s theorem in the case that A has pure dimension
in M . However, it is false as stated without the assumption on that A is in C:
Take M = C3 and A = {(x, e1/x, 1) : x 6= 0} ∪ {(0, y, z) : z 6= 1, y ∈ C}.
Proof By working in a neighborhood of a particular point of Cl(A), we may assume
that M is a definable open set U ⊆ Cn and that A is a definable subset of U . We
take the closure and frontier relative to U . Assume that M1, . . . ,Mr are the con-
nected components of RegCA, ordered by dimC M1 6 dimC M2 6 · · · 6 dimC Mr.
Since RegCA is dense in A, we have Cl(A) =

⋃
i Cl(Mi).

ClaimFor every i = 1, . . . , r we have

dimR fr(Mi) 6 dimR Mi − 2.

We prove the claim by induction on r, with the case r = 1 just the assumption
of the theorem. Since each Mi is relatively open in A and the Mi’s are pairwise
disjoint, for every i 6= j, we have Cl(Mi) ∩ Mj = ∅. In particular, Cl(Mr) ⊆
Cl(M) \ (M1 ∪ · · · ∪ Mr−1). It follows that fr(Mr) ⊆ fr(A) ∪ SingC(A), and
therefore, by our assumption, dimR fr(Mr) 6 dimR A − 2 = dimR Mr − 2. Now,
by Shiffman’s theorem, Cl(Mr) is a C-analytic subset of M and we may repeat the
same argument for all components of maximal dimension, Mt+1, . . . ,Mr. Let B
the union of the closures of all these components, thus B is a C-analytic subset of
M as well.

Consider A′ = ∪t
i=1Mi the union of all components of RegCA of dimension

smaller than dimA. In order to use the induction we show now that the assump-
tion of the theorem holds for A′. Namely, for all open sets V ⊆ M , we have
dimR frV (A′ ∩ V ) 6 dimR(A′ ∩ V )− 2.

Indeed, without loss of generality, V = M and

fr(A′) = (fr(A′) ∩B) ∪ (fr(A′) \B) ⊆ (Cl(A′) ∩B) ∪ (fr(A′) \B).

By Theorem 2, the real dimension of Cl(A′) ∩B is at most dimR A
′ − 2. Consider

the open set W = M \B and notice that fr(A′)\B ⊆ frW (A∩W )∪SingC(A∩W ).
By our assumption on A, we have

dimR frW (A ∩W ) 6 dimR(A ∩W )− 2 = dimR A
′ − 2,
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and
dimR Sing(A ∩W ) 6 dimR(A ∩W )− 2 = dimR A

′ − 2.
We therefore showed that A′ indeed satisfies the assumption of the theorem. The
number of connected components of RegC(A′) is t < r and therefore, by induction,
for every i = 1, . . . , t we have dimR fr(Mi) 6 dimR Mi − 2.

Now, by the minimality of r, for every i 6 t, we have dimR frMi 6 dimMi − 2.
But now for i = 1, . . . , r, we have dimR frMi 6 dimR Mi−2 thus proving the claim.

Using the claim, we may now apply Shiffman’s theorem to each Mi and conclude
that Cl(A) =

⋃
i Cl(Ai) is a C-analytic subset of M . �

Corollary 4.2. Assume that M is complex manifold and A is a closed subset of
M . Then A is a C-analytic subset of M if and only if A is in C(M) and for every
open U ⊆M , we have

dimR SingC(U ∩A) 6 dimR(U ∩A)− 2.

Proof The only-if direction follows from the fact that every complex analytic subset
of M is subanalytic in M . For the converse, we apply Theorem 1 to RegCA instead
of A. �

Compare the following result to Piekozs ([15]), where a similar type of theorems
are proved in the real analytic setting.

Corollary 4.3. (1) Let D ⊆ Rn be a definable set, W ⊆ Cm a definable open set
and let X be a definable subset of D ×W . Then, the set of all a ∈ D such that
Xa = {y ∈W : (a, y) ∈ X} is a (locally) complex analytic subset of W , is definable.
(2) Let A be a subset of a complex manifold M that is in C(M). Then the set of
all points z ∈M such that the germ of A at z is a C-analytic in M is in C(M) as
well.

Proof By Corollary 2, for every a ∈ D, Xa is locally C-analytic in W if and only
if:

For every x ∈W and for every rectangular open x ∈W1 ⊆W , dimR RegC(W1 ∩
Xa) 6 dimR(W1 ∩Xa)− 2.

Because dimension is uniformly definable in parameters, and because the set
RegCXa is definable in parameters (see the proof of Fact 6), the set of points a ∈ D
such that Xa is locally C-analytic is definable. Xa is C-analytic in W if in addition
it is closed in W .

(2) is done similarly. �

The theorem below is an immediate corollary of the Remmert-Stein Theorem
when A is assumed to be of pure dimension and dimE < dimA. However, it is
easy to see that the theorem fails in general if we omit the assumption that A is in
C(M).

Theorem 4.4. Let M be a complex manifold and E ⊆ M a C-analytic subset of
M (of arbitrary dimension). If A is a C-analytic subset of M \ E which is also in
C(M) then Cl(A) is a C-analytic subset of M .

Proof By Theorem 1, it is enough to see that for every open U ⊆ M we have
dimR frU (U ∩A) 6 dimR(U ∩A)− 2. By working locally we may assume that A is
definable.

Let M1, . . . ,Mr be the connected components of RegC(A ∩ U). By Theorem 2
(applied with Mi and A for A1 and A2, respectively), for every i we have Mi ⊆ E
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or dimR(ClU (Mi ∩ E)) 6 dimR Mi − 2. Since A ∩ E = ∅ the latter must hold and
therefore dimR fr(A ∩ U) 6 dimR(A ∩ U)− 2. �

One corollary of the above theorem is:

Corollary 4.5. Let X be a definable C-analytic subset of Cn. Then X is an
algebraic subset of Cn.

Proof Since Cn is obtained from Pn(C) by removing a C-analytic set, it follows
from the above theorem that the closure of X in Pn(C) is a C-analytic subset of
Pn(C). Now apply Chow’s Theorem. �

Theorem 4.6. Let M be a complex manifold and {An : n ∈ N} a family of locally
complex analytic subsets of M . If A =

⋃
n∈N An is a closed subset of M which is

also in C(M) then A is a complex analytic subset of M .

Proof We use the following corollary of the Baire Category Theorem: If X is in
C(M) with dimR X = k, and X ⊆

⋃
n∈N Xn a countable union of either sets in C(M)

or sets which are locally complex analytic in M , then max{dimR Xn : n ∈ N} > k.
We also use the fact that every complex manifold can, by definition, be written as
a countable and increasing union of open sets whose closure in M is compact.

First notice that since A is in C(M) the set of R-regular points of A is dense in
A. Now, by the above observation, the set of R-regular points of A must contain
a complex submanifold of M of the same real-dimension (namely, the C-regular
points of one of the An’s). The same is true for some open subset of M , and
therefore the set of C-regular points of A is dense in the set of its R-regular points.
It easily follows that these sets are equal. We now need the following technical
lemma:

Lemma 4.7. Assume that X is a closed subset of a complex manifold M , X ∈
C(M), and that RegCX is dense in X. Assume that Y is a subset of X that is
locally C-analytic in M . Then dimR(SingC(X) ∩ Y ) 6 dimR X − 2.

Proof It is enough to prove the result in every open relatively compact subset of
M , thus we may assume, by shrinking M if needed, that X is definable and M
an open definable subset of Cn. Let X1, . . . , Xr be the connected components of
RegCX. First observe that by the density assumption, for each z ∈ Y , either the
germs at z of X and Y are equal, or there is an i such that z ∈ Cl(Xi) and the
germ of Xi at z is not contained in Y .

By working locally, at points of Y , we may further assume Y is a definable
complex analytic subset of M . In particular, if the germ of Xi at some z ∈ M is
contained in Y then Xi ⊆ Y .

We may assume then that for some s 6 r, X1, . . . , Xs are those components of
RegCX that are not contained in Y . We now claim that

SingC(X) ∩ Y ⊆ SingC(Y ) ∪
s⋃

i=1

(Cl(Xi) ∩ Y ).

Indeed, consider z ∈ SingC(X) ∩ Y . If z /∈ Cl(Xi) ∩ Y for every i = 1, . . . , s
then, by our previous observation, the germs of X and Y agree near z and therefore
SingCX = SingCY near z.

By Theorem 2, the dimension of each Cl(Xi) ∩ Y is at most dimR Xi − 2, and
clearly, dimR SingCY 6 dimR Y − 2 6 dimR X − 2, ending the proof of the lemma.

�
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We now return to the proof of Theorem 6.
Since A is closed and in C(M) it is sufficient, by Corollary 2, to prove that

dimR SingC(A) 6 dimR A− 2 and that the same is true inside every open subset of
M .

By the lemma we just proved, for each n, dimR(SingK(A) ∩An) 6 dimR A− 2.
But SingC(A) is a countable union of sets of this form and hence we must have
dimR(SingC(A)) 6 dimR A− 2.

This remains true, via the same reasoning, when restricted to any open subset
of M , thus by Corollary 2, A is C-analytic in M . �

Note that the last theorem fails without the assumption that A ∈ C(M), even
for a union of two locally C-analytic sets: Take A1 to be the graph of the function
e1/z in C∗ × C and A2 = {0} × C.

5. Frontiers of locally analytic sets

Our goal here is to discuss the possible behavior of the frontier of a locally C-
analytic A ⊆ M such that A ∈ C(M). We do it up to a definable nowhere dense
subset of fr(A).

Assume that M is a complex manifold, A ∈ C(M) is a subset of M whose real
dimension is k. Then properties of the analytic-geometric category imply that the
frontier of A has real dimension at most k − 1. As we show in this section, if A is
also a locally C-analytic subset of M then outside a definable subset of fr(A) of
dimension k − 2, the closure of A is well-behaved.

Theorem 5.1. Let M be a complex manifold, A ∈ C(M) a locally C-analytic subset
of M . Then there is a closed set D in C(M), D ⊆ fr(A) with dimR D 6 dimR A−2,
such that for every z0 ∈ fr(A)rD one of the following two possibilities must occur:

(i) A is locally connected at z0, in which case Cl(A) near z0 is an C-submanifold
whose boundary is C1.

(ii) A has locally two connected components at z0, in which case Cl(A) is a
C-analytic submanifold of M in some neighborhood of z0.

Notice that the analogous theorem is false in the category of real analytic sets.
Consider for example, the two-dimensional real manifold

A = {(x, y, z) ∈ R3 : x = 0 or y = 0} \ {(0, 0, z) : z ∈ R}.
The frontier of A in R3 has dimension 1 = dimR A − 1, but the germ of A at

every point in fr(A) has four components.
Proof We need first the following technical lemma:

Lemma 5.2. Assume that A is a definable, locally complex analytic subset of an
open set U ⊆ Cn, such that A is of pure complex dimension d. Let B be the set
of all z ∈ U ∩ frU (A) with the following property: For every generic projection π
of Cn onto a d-dimensional C-linear subspace L, there in an open U containing z
such that π is a biholomorphism of U ∩ A with some open subset of L. Then B is
definable and dimR(frU (A) rB) 6 2d− 2.

(Note that the analogous statement is false if A is a real analytic subset of Rn, as
the last example shows).
Proof of Lemma By removing from A its C-singular points we may assume that
A is a C-submanifold of M . We assume that the lemma fails and proceed by a
sequence of reductions until we reach a contradiction.
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We may assume, after possibly shrinking A and U , that for every z0 ∈ frU (A)
and for every d-dimensional subspace L in some open subset W of the suitable
Grassmannian, the orthogonal projection πL of Cn onto L, when restricted to A,
is not a local biholomorphism near z0 (notice that z0 is a point outside of A).
By the “good C-direction Lemma”, we may also assume that π|A is everywhere
finite-to-one, for every π ∈W .

We may assume, after further shrinking U , that frU (A) is a C1-submanifold
of Cn and that for all L ∈ W , the restriction of π to frU (A) is an embedding of
frU (A) into L (see Lemma 10). Furthermore, using standard arguments, we may
also assume that for every such π there is a neighborhood U1 ⊆ U intersecting
fr(A) non-trivially, such that πL : U1 ∩ Cl(A) → π(U1) is a proper map. We fix
one such L, set π = πL and replace U by the corresponding U1 and call it U again.

By removing the set of points where the Jacobian of π|A has small rank, we may
also assume, shrinking U if needed, that π|A is a local biholomorphism at every
point of A.

Thus the only reason that π|A might not be a local biholomorphism near z ∈
frU (A) is that it is not injective in any neighborhood of z. As we now show, this
leads to a contradiction.

Since π|A is a local biholomorphism, the set π(A) is an open subset of π(U) ⊆ L.
After shrinking again A and U we may also assume that the boundary of π(A) in
π(U) is the C1-manifold π(frU (A)).

For every v ∈ π(A) let m(v) be the number of pre-images of v in A under π.
Since we assume that π|A is not a locally injective near any point of frU (A), there
is a number m > 1 and an open set U1 ⊆ U intersecting non-trivially frU (A), such
that m(v) = m for all v ∈ π(U1 ∩A). We denote π(U1 ∩A) by V .

To simplify notation, we will assume from now on that L = Cd, identified with
the first d coordinates of Cn, and for z ∈ Cn write z = (z1, z2) ∈ Cd × Cn−d.

Let φ1, . . . , φm : V → Cn−d be definable functions which give the branches
of U1 ∩ A over V (we use definable choice here). By o-minimality, the φi’s are
continuous outside a set D ⊆ V whose real-dimension is at most 2d − 1. Since
the intersection of Cl(D) with fr(V ) is not dense in fr(V ), we may assume, after
possibly shrinking U , A and V , that the φi’s are continuous on all of V . But
since π|A was a local biholomorphism, it is easy to verify that each φi is actually a
holomorphic map on V (see for example Theorem 2.14 in [12]).

For each i 6= j ∈ {1, . . . ,m}, let Ψi,j = φi − φj (the subtraction is done
coordinate-wise). Each Ψi,j is a holomorphic map from V into Cn−d.

Let z0 = (z1, z2) be in frU (A). Since z1 ∈ frπ(U)(V ) and π : Cl(A) → π(U) is a
proper map and π|frU (A) is injective, for each i = 1, . . . ,m, the map φi(z) tends
to z2, as z tends to z1 in V . Therefore, the limit of each Ψi,j(z′) is zero as z′ tends
to z1 in V .

But then, the set
{z′1 ∈ fr(V ) : lim

z′→z1
Ψi,j(z′) = 0}

has dimension at least 2d− 1.
By Theorem 1, this implies that each Ψi,j is identically zero on V . This in turn

implies that φi = φj in some neighborhood of z0 and therefore m = 1, contradicting
out assumption, and thus ending the proof of the lemma. �

We now return to the proof of the Theorem 1. Since the statement is local, we
may assume, without loss of generality, M = Cn and A a definable subset of Cn.
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Let d = dimC A. We fix D = fr(A) \B, for B as in the last lemma. We will show
that this D indeed works for the theorem.

Take z0 ∈ fr(A) \D and choose a projection π : Cn → L onto a d-dimensional
subspace L such that π|(U ∩A) is a C-biholomorphism in some neighborhood U of
z0. We may assume that M equals U . Moreover, as we saw in the above proof, we
may choose π so that dimR π(frU (A)) = 2d− 1 and π|frU (A) is an embedding of
a real submanifold into L. By restricting ourselves to a smaller neighborhood U1

of z0, we may assume that the complement of this submanifold in π(U1) is a union
of two disjoint, connected open sets V1 and V2.

As before, we assume that L = Cd, and write z0 = (z1, z2).
As we pointed out at the end of Section 2.3, we may partition frU (A) into finitely

many sets on each of which the number of local components of the germ of A at
every point is constant. We only need to analyze what happens on these sets when
their dimension equals to 2d−1, so we assume that the number of local components
at every point is constant on frU (A).

Case 1 A is locally connected at points in frU (A).
Fix z0 ∈ frU (A). In this case π(A), in some neighborhood of z0, is contained

in one of the two components V1 and V2. If π(A) ⊆ V1 then π(z0) belongs to the
boundary of V1. In this case the inverse map from V1 into A extends continuously to
the boundary of V1 near π(z0) and thus A is, near z0, a manifold with a boundary.

Case 2 A is not locally connected at frU (A).
The image of every local component, under π, is either contained in V1 or in V2

and π(frU (A)) is the joint boundary of all of these images. Since π|A is injective,
there must be exactly two such local components of A at z ∈ frU (A), one projecting
homeomorphically onto V1 and the other onto V2 (in some neighborhood of every
point in frU (A)).

Let z0 = (z1, z2) be a point in frU (A) and consider the holomorphic map φ :
V1∪V2 → Cn−d, whose graph isA. As we already saw before, φ extends continuously
to z1 (i.e, φ(z1) = z2). But then, φ extends continuously to some neighborhood
of z1 in frπ(U)(V1 ∪ V2), and we call this extension φ̃. Since φ̃ is continuous,
and holomorphic outside a set of dimension 2d − 1, it is holomorphic in some
neighborhood of z0, and its graph is Cl(A) there (see Theorem 2.14 in [12]). We
therefore showed that Cl(A) is a C-submanifold in a neighborhood of z0. �

Theorem 5.3. Assume that X is a closed subset of a complex manifold M , X ∈
C(M), such that RegC(X) is dense in X. Assume also that at no point z0 in X, the
germ of X at z0 is a real manifold with a boundary. Then X is a complex analytic
subset of M .

Proof Assume that dimR X = 2d (the dimension is even by the density ofRegC(X)).
By Corollary 2, we need to show that dimR SingC(X) 6 2d − 2. (If we show it

for an arbitrary X with the above property then the same is true inside any open
subset of M .)

Assume toward contradiction that dimR(X \RegC(X)) = 2d− 1. We now apply
Theorem 1 to A = RegC(X). Notice that since RegC(X) is dense in X, fr(A) =
X \ A. By Theorem 1, there is a point z0 in X \ A such that X is an R-manifold
with a boundary near z0 (since z0 /∈ RegC(X) only (i) of the theorem can hold
for z0), contradicting our assumption. It follows that X is a C-analytic subset of
M . �

We have been told that the following corollary is due to P. Milman.
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Corollary 5.4. Let M be a complex analytic manifold and assume that X ⊆ M
is a real-analytic subset of M . Assume also that every R-regular point of X is also
C-regular. Then X is a complex analytic subset of Cn.

Proof To apply the last theorem we just need to point out that a real-analytic set
is not a real manifold with a boundary at any of its points. �

6. Holomorphic and meromorphic maps

6.1. A variant on Remmert’s proper mapping Theorem. We now prove a
strong version of Remmert’s classical theorem on proper holomorphic maps.

Theorem 6.1. Let f : M → N be a holomorphic map between complex analytic
manifolds, A ⊆M a complex analytic subset of M . If f(A) is a closed subset of N
and belongs to C(N) then f(A) is a complex analytic subset of N .

Remarks
1. Notice that Remmert’s Proper Mapping Theorem follows from the theorem since,
if f : M → N is assumed to be proper then f(A) is necessarily a subanalytic closed
subset of N . However, the theorem still applies to cases where f is not proper and
yet f(A) is a complex analytic subset of N .
2. The theorem is false without the assumption that f(A) is in C(M). For example,
the projection of {(n, 1/n) ∈ C × C : n > 1} ∪ {(0, 0)} onto the first coordinate is
a closed subset of C which is clearly not C-analytic in C. (We could not find such
an example with A being irreducible).

Proof We first claim that it is enough to prove that dimR SingCf(A) 6 dimR f(A)−
2. Indeed, if we can show it in general then, by replacing N with an open set
U ∈ C(N) and M by f−1(U) we can derive the same dimension inequality locally
as well and use Corollary 2.

Let Ai, i ∈ I, be the (possibly countably many) irreducible components of A.
For each i ∈ I let fi be the restriction of f to the submanifold RegCAi and let ki be
the generic rank of Dz(fi). Since dimR f(A) 6 dimR N , the ki’s attain a maximum,
call it k.

Claim 1
(i) dimR f(A) = 2k.
(ii) RegCf(A) is dense in f(A),
Proof of Claim: For each Ai let

Xi = {z ∈ RegCAi : Rank(Dzf) = ki}.
Xi is a submanifold of M and every z ∈ Xi has a neighborhood in Xi whose image
under f is a complex submanifold of N of dimension ki.

Since Ai is a complex analytic subset of M it can be written as a countable union
of definable sets Ai,j , j ∈ N, each of which is a definable complex analytic subset of
a definable open set Ui,j , such that f |Ui,j is definable. If Xi,j = Xi ∩Ui,j then the
definable set f(Xi,j) is a countable union of C-submanifolds of N of dimension ki.
In particular, its real-dimension is 2ki. Since Xi,j is dense in Ai,j , it follows that
dimR f(Ai,j) = 2ki and therefore, by our earlier observation, dimR f(A) = 2k.

(ii) If Y ⊆ f(A) is a definable set that is open in f(A) then it is a countable union
of definable sets of the form f(Ai,j). In particular, dimR Y = 2ki for some i and
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at least one of these f(Ai,j)′s equals Y in some open set. By the same dimension
argument, there is a definable subset X of Xi,j such that f(X) ⊆ Y is a complex
submanifold of N of dimension ki and hence f(X) equals to Y on some open set.
In particular, RegCf(A) is dense in Y . End of Claim 1.
Claim 2

(i) f(A) \
⋃

i f(Xi) is contained in a countable union of sets in C(N), each of
real-dimension not greater than 2k − 2.

(ii) For each i ∈ I, SingC(f(A)) ∩
⋃

i f(Xi) is contained in a countable union of
sets in C(N), each of real-dimension not greater than 2k − 2.

Taken together, (i) and (ii) imply that SingCf(A) is contained in a countable
union of sets in C(N), each of dimension not greater than 2k − 2. Hence we must
have dimR SingCf(A) 6 2k − 2, and therefore f(A) is C-analytic in N . It is thus
sufficient to prove Claim 2.
Proof of Claim 2: For the purpose of (i) it is sufficient to prove that for every i, j
we have

dimR(f(Ai,j) \ f(Xi,j)) 6 2ki − 2.

This is exactly the content of the following lemma:

Lemma 6.2. Let U ⊆ Cn be an open definable set, A ⊆ U a definable complex
analytic subset which is irreducible and of complex dimension d. Let f : U → Cm

be a definable holomorphic map. Assume that the generic rank of f on RegCA is
k . Let X = {x ∈ RegCA : rank(f |RegCA)x = k}. Then, dimR(f(A) \ f(X)) 6
dimR f(A)− 2 = 2k − 2.

Proof First note that dimR(A \X) 6 2d− 2. Now, for every x ∈ X, the complex
dimension of (f−1f(x))x is d− k. Since the function x 7→ dim(f−1f(x))x is upper
semi-continuous (see 1.3.8 in [2]), for every x ∈ A we have dimf−1(f(x))x > d− k.

Let X ′ = {x ∈ A : f(x) /∈ f(X)}. We have f(X ′) = f(A) \ f(X), and for every
x ∈ X ′, f−1(f(x)) ⊆ X ′. Moreover, X ′ is a subset of A\X, hence dimR X

′ 6 2d−2.
The restriction of f to X ′ gives a surjection on f(A) \ f(X) whose fibres have real-
dimension not less than 2d − 2k. It follows that dimR f(A) \ f(X) 6 2k − 2. End
of Lemma �

To prove (ii) it is sufficient to prove, in the above notation, that for every i, j,
dimR(Singf(A)∩ f(Xi,j)) 6 2ki − 2. Since the rank of f at each z ∈ Xi,j is ki, we
may replace each Ui,j by countably many smaller ones, if needed, and assume that
f(Xi,j) is a complex submanifold of N whose complex dimension is ki. We may
now apply Lemma 7 to f(A) and f(Xi,j) (in place of X and Y ) and conclude that
dimR(Singf(A) ∩ f(Xi,j)) 6 2ki − 2. We thus proved Claim 2 and therefore the
theorem. �

Corollary 6.3. Let f : M → N be a holomorphic map between complex manifolds,
A an irreducible C-analytic subset of M , and assume that f(A) is in C(M) (but not
necessarily closed).

Then there is a closed set E ∈ C(N), with dimR E 6 dimR f(A) − 2 and
dimR(f−1(E) ∩ A) 6 dimR A − 2, such that f(A) \ E is locally C-analytic in N
.

Proof Let E be the set of all points in f(A) such that f(A) is not locally closed
at z. Notice that E = fr(fr(f(A))) and therefore E is in C(N) and dimR E 6
dimR f(A) − 2. Let f1 = f |RegC(A) and let k be the generic rank of Dz(f1). As
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we already saw in the proof of the last theorem, dimR f(A) = 2k and therefore
dimR E 6 2k − 2.

The set D = f−1(E) ∩ A is in C(M). We claim that dimR D 6 dimR A − 2.
Indeed, assume that dimK(A) = n and dimR D > 2n − 1. Then we may find a
set X ⊆ (D ∩ RegC(A)) in C(M) such that dimR X > 2n − 1 and the rank of
Dz(f1) equals to k for every z ∈ X (because the set of points where this rank is
not k has co-dimension 2 in RegC(A)). It follows that for every z ∈ X, we have
dimR f

−1
1 (f1(x))x = 2n − 2k and therefore dimR f(X) > 2k − 1, contradicting the

fact that f(X) ⊆ D.
It is left to see that B = f(A) \ E is locally analytic in N . Since it is locally

closed and in C(N) there is an open set N1 ⊆ N containing B such that B is closed
in N1. Let M1 = f−1(N1) and A1 = f−1(B). The set A1 is C-analytic in M1 and
f(A1) = B is in C(N1) and closed in N1. By Theorem 1, f(A1) is C-analytic in
N1. �

6.2. Meromorphic maps. Our goal in this section is to prove the following theo-
rem (which again fails without the assumption that the graph of f is in C(N×M).).

Theorem 6.4. Let M,N be complex manifolds, S an irreducible C-analytic subset
of M and assume that L ∈ C(M) a closed subset of S which contains SingC(S).
Assume that f : S r L→ N is a holomorphic map whose graph is in C(M ×N).

If dimR L 6 dimR A− 2 then the closure of the graph of f in M ×N , call it Y ,
is a C-analytic subset of M ×N .

If in addition the projection π : Y → S is a proper map then Y is a meromorphic
map (namely, in addition to the above there is a C-analytic proper subset D of S
such that restriction of Y to (S \D)×N is a holomorphic map).

We first use a result of Kurdyka and Parusinski to prove a technical statement
about definable real functions.

Proposition 6.5. Let U ⊆ Rm be a definable open set, F : U → R a definable
function which is differentiable on U , and a in the closure of U . Assume that U is
locally connected at a and ‖∇F‖ is bounded on U . Then the limit

lim
x→a,x∈U

F (x)

exists in R.

Proof We will assume a = 0 ∈ Cl(U) and that for all u ∈ U , ‖∇F (u)‖ 6 M on U .
For r ∈ R+, we denote by Br the open ball in Rm of radius r centered at ~0, and

by Ur the set U ∩Br. Proposition 5 follows from the following claim.

Claim 6.6. Under the above assumptions there is C ∈ R such that for every
sufficiently small positive r and all x, y ∈ Ur

|F (x)− F (y)| < Cr

Proof Since U is locally connected at 0 there is ε > 0 such that every Ur is
connected for r < ε. By [7, Corollary 1.3], there is a constant c > 0 such that for
every r < ε and x, y ∈ Ur there is a definable continuous curve ξ joining x and y such
that length(ξ) < cr. Since ‖∇F (u)‖ 6 M on U , we obtain |F (x)−F (y)| < Mcr. �

By considering the real and imaginary parts of a complex valued function, we
obtain a corresponding result to Proposition 5 for holomorphic functions into C
(where ∇(F ) is the gradient of F with respect to its complex variables).



COMPLEX GEOMETRY AND ANALYTIC-GEOMETRIC CATEGORIES 19

For f : U → C and z ∈ Cl(U), we let Limzf be the set of all possible limit
points of f(z′) as z′ tends to z in U . We denote by |Limzf | the number of elements
in this set (possibly ∞). If U is locally connected at z ∈ Cl(U) then Limzf is a
connected subset of C. Moreover, in this case the set |Limzf | = 1 if and only if f
can be extended continuously to z.

Lemma 6.7. (i) Let U ⊆ Cn be a definable open set and let f : U → Cm be a
holomorphic map whose graph is in C(U × Cn). Let

B = {(z, w) ∈ ∂U × Cm : w ∈ Limzf&|Limzf | = ∞}.

Then dimR B 6 dimR U − 2 = 2n− 2.
(ii) Let M1, N be complex manifolds and M ⊆M1 a complex submanifold of M1

which is in C(M1). Let f : M → N be a holomorphic map into N whose graph is
in C(M1 ×N) and let

B = {(z, w) ∈ frM1(M)×N : w ∈ Limzf&|Limzf | = ∞}.

Then dimR B 6 dimR M − 2.

Notice that the analogous theorem is false for real-analytic functions: Consider
for example the function x/y on U = R2 \ {(0, 0)}. Since the frontier of its graph
is infinite above (0, 0), this set has dimension 1 = dimR U − 1 and not dimR U − 2.
Proof (i) Assume toward contradiction that dimR B = 2n− 1.

By standard o-minimal methods, there is a definable open set V ⊆ U ×Cm such
that the graph of f , restricted to V , is definable, dimR(V ∩ B) = 2n − 1 and for
every (z0, w0) ∈ B ∩ V the set ({z0} × Cm) ∩ (V ∩B) is infinite.

Take U1 = {z ∈ U : (z, f(z)) ∈ V }. Notice that for (z, w) ∈ V we have

(z, w) ∈ B ∩ V ⇔ w ∈ Limzf |U1 & |Limzf |U1| = ∞.

Therefore, we may replace U by U1, replace f by f |U1, and assume that f is
definable on U .

Write f(z) = (f1(z), . . . , fm(z)). Since the set {z ∈ U : Limzfi is infinite } is
definable, we may assume, after possibly partitioning B and re-ordering the f ′is,
that for all (z, w) ∈ B, the set Limzf1 is infinite.

By the complex analogue of Proposition 5, at least one of the first partial deriva-
tives of f1 is unbounded at z, for every (z, w) ∈ B. Without loss of generality,
we may therefore also assume that ∂f1/∂z1 is unbounded near z for all (z, w) ∈ B
(where z1 is the first variable of z). For simplicity, let us denote this partial deriv-
ative by h(z).

Since h is holomorphic on U , and unbounded near points of B, its zero set has
dimension at most 2n − 2. Therefore, by shrinking U if needed, we may assume
that h never vanishes on U .

Let M ⊆ U × Cm be the graph of the function f . Notice that M is a complex
submanifold of Cn+m of complex-dimension n and that (z, w) ∈ Cl(M) if and only
if w ∈ Limzf . In particular, B ⊆ fr(M).

Consider the function g on M given by: g(z, w) = 1/h(z). Since h was definable,
holomorphic and non-vanishing on U the function g is definable and holomorphic
on M . Since h is unbounded at every z such that (z, w) ∈ B, zero is a limit point
of g at every (z, w) ∈ B.

However, since dimR M = 2n, we may assume, after removing from fr(M) a set
of dimension smaller than 2n−1, that for every (z, w) ∈ fr(M), the function g has
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at most finitely many limits at (z, w). (This number is no larger than the number
of the connected components of the germ of M at (z, w)).

We may now replace U by an open subset U ′ and fix M ′ ⊆ M of dimension
2n such that M ′ is locally connected at every (z, w) ∈ B ∩ U ′ and 0 is still in
Limz(f |M ′). It follows that for every such (z, w), the set Lim(z,w)f |M ′ contains a
single element 0.

If we now let

Z = {z ∈ Cl(M ′) : lim
z′→z

g(z) = 0}

then dimR(Z) = 2n− 1. By Theorem 1, g is constantly zero on M ′, contradicting
our assumptions on h.

(ii) We first consider the case whereN = Cm. In this case, the proof of (ii) follows
from (i) just like Theorem 1 follows from the corresponding “affine” statement in
Theorem 2.13(i) [12].

Consider now the general case, where M is a d-dimensional C-submanifold of an
n-dimensional M1 and that N is a C-manifold of dimension m. Assume, toward
contradiction, that dimR B = 2d − 1. Since B is a subset of M1 × N , there is
a relatively compact open chart V ⊆ N such that B ∩ (M1 × V ) has dimension
2d − 1 and for every (z, w) ∈ M1 × V , we have (z, w) ∈ B ∩ (M1 × V ) if and only
z ∈ fr(M1), w ∈ Limzf |f−1(V ) and |Limzf |f−1(V )| = ∞.

If we now replace M by M ′ = f−1(V ) then we may assume that the restriction
of f to M ′ is a holomorphic map from M ′ into V ⊆ Cm. We now reduced the
problem to the case we already handled, ending the proof of Lemma 7. �

We can now prove Theorem 4.
Let M0 = RegC(S) \ L and let Gf be the graph of f : M0 → N . Assume that

dimR M0 = 2n. By Theorem 1 it is enough to see that dimR frM×N (Gf ) 6 2n− 2
(since Gf is a set of pure dimension 2n there is no need to check every open
set). Assume toward contradiction that dimR(frM×N (Gf )) = 2n − 1. For every
(z, w) ∈ frM×N (Gf ), we must have z ∈ L. But since dimR L = 2n− 2, the set

{(z, w) ∈ fr(Gf ) : w ∈ Limzf&|Limzf | = ∞}

must have dimension 2n− 1, contradicting Lemma 7 (applied to M0 and M for M
and M1, respectively).

We therefore showed that the closure of Gf in M × N is complex analytic in
M ×N . Denote this closure by Y .

Assume now that the projection map π : Y → S is a proper map. Let

D1 = {z ∈ S : dimC(π−1(z) ∩ Y ) > 0}.

Since π is proper, D1 is a Zariski closed subset of M (see Theorem 7.9F in [19], to-
gether with Remmert’s Theorem). The continuity of f implies that D1 is contained
in L and hence dimC(D1) < dimC(S). We let D = SingC(S) ∪D1. We claim that
Y ∩ ((S \D) ×N) is the graph of a holomorphic map from S \D into N . Notice
that we only need to check points in L ∩ (S \D) (there might be such points).

Indeed, let z ∈ S \D. Since dimR(L) 6 2n− 2, the set S \L is locally connected
at z and therefore π−1(z)∩ Y is connected. By the properness of π it must also be
nonempty and hence (since its dimension is zero) contains a single point. Therefore
Y is indeed the graph of a function over the submanifold set S \D. To see that it
is holomorphic at z it is enough to check continuity at points in L ∩ (S \D) (since
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f is holomorphic outside L). This follows from the properness of π and the fact
that Y is closed. �

7. Complex S-manifolds and higher order tangent bundles

We now fix S = S(C) the o-minimal structure associated to the analytic-
geometric category C. A definable set in S is called an S-set and a definable
map in S is called an S-map.

7.1. Complex S-manifolds and S-families of sets. The following definition is
taken from [4] (see p. 507 there). Let M be a real analytic manifold. An S-atlas
on M is an atlas (gi)i∈I with a finite set I such that each chart gi : Vi → Ui is a
real analytic isomorphism from an open Vi ⊆M onto an open S-set Ui ⊆ Rm such
that all transition maps gi,j = gj ◦ g−1

i are S-maps as well. An S-manifold is a
manifold M equipped with an S-atlas. For M = Rn we just take the trivial atlas
U = Rn. Notice that every relatively compact manifold of a real analytic manifold
can be equipped with an S-atlas (see the discussion in Section 2.2.

Let M be a complex manifold. A holomorphic S-atlas on M is an S-atlas as
above, with the Ui’s open subsets of Cn and the gi’s biholomorphisms between Vi

and Ui. A complex S-manifold is a complex manifold equipped with a holomorphic
S-atlas.

Obviously if M,N are complex S-manifolds with S-atlas (gi) and (hj) respec-
tively then M ×N is a complex S-manifold given by S-atlas (gi × hj).

If M is an S-manifold with an S-atlas (gi)i∈I and A ⊆ M then we say that A
is an S-set in M if gi(A ∩ Vi) ∈ S for all i ∈ I. If M,N are S-manifolds and A is
an S-subset of M , then a map f : A→ N is an S-map if its graph is S-subset of
M ×N . When M = Rn then the S-subsets are just the definable ones.

Let M be an S-manifold. A family A of subsets of M is called an S-family if
there exist another S-manifold N , an S-set Y ⊆ M and an S-set X ⊆ Y ×M ,
such that A = {Xb : b ∈ Y } (where Xb = {z ∈ M : (b, z) ∈ X}). We say in this
case that the family is parameterized by Y . Let M,M ′ be S-manifolds. A family
F of partial maps from M into M ′ is called an S-family of maps if the family of
graphs of the functions is an S-family. This implies in particular that the family
of domains of the functions in F is an S-family.

Notice that in above definition, if M is a complex S-manifold, we still allow the
parameter set Y to be a subset of a real manifold N .

7.2. Uniformity results.

Theorem 7.1. Let F be an S-family of local holomorphic maps from a S-complex
manifold M into Ck, parameterized by Y . Then there is a natural number r such
that for every b ∈ Y and every z ∈ dom(fb), if all partial derivatives of fb of order
less than r vanish at z then fb vanishes on a neighborhood of z.

Proof This can be done in several ways. One way is to use model theory as follows:
Since F is an S-family we may assume that it is definable in S and so isM . Assume
toward contradiction that for every r ∈ N there is a function fb in F and a point
z ∈ M such that all partial derivatives of fb vanish at z and yet the germ of fb at
z is nonzero. Then in an elementary extension we will be able to find a K-analytic
nonzero function fb′ all of whose partial derivatives vanish at some z′ ∈ M . This
contradicts Theorem 2.26 (2) in [12].
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Chris Miller has pointed out to us that the following stronger statement is actu-
ally true: Assume that F is a uniformly definable family of real-analytic functions
from open sets in R into R (definable in an o-minimal structure). Then there is an
r such that for all f ∈ F and all z ∈ dom(f), if all the derivatives of f up to order
r vanish at z then f is locally zero. Indeed, in the polynomially bounded case this
follows from [8], while if the structure is not polynomially bounded one can use the
definability of the exponential function (see [9]) to define the set of n’s such that
some f ∈ F has zero of order n in R. O-minimality now prohibits arbitrarily large
order of vanishing to appear in F . The corresponding result for complex variables
now follows. �

As the following theorem shows, if A is a C-analytic S-subset of a complex S-
manifold M then its defining holomorphic functions, in a neighborhood of every
point in A, can be given uniformly, as an S-family. Moreover, if we are given an S-
family of such C-analytic sets then their locally defining functions can be obtained
as an S-family as well.

Theorem 7.2. Let M be a S-manifold and let A = {Xb : b ∈ Y } be an S-family
of locally analytic subsets of M (with X ⊆ Y ×M as above).

Then there is natural number k and an S-family of local maps, parameterized by
X, such that the following holds:

(1) For every (b, z) ∈ X, the function fb,z is a holomorphic map from an open
neighborhood Vb,z of z into Ck, and Z(fb,z) = Vb,z ∩Xb (where Z(fb,z) is
the zero set of fb,z in Ub,z).

(2) When z is a regular point of Xb then fb,z is a submersion. In this case there
is a biholomorphism gb,z from an open neighborhood of zero in Cd (where
d = dim(Xb ∩ Vb,z)) onto Vb,z ∩Xb, such that g(0) = z and such that the
family {gb,z : b ∈ Y, z ∈ RegC(Xb)} is also an S-family.

Proof The proof is done through a sequence of reductions:
Step 1 We may assume that A is a definable family of subsets of Cn.

Since A is an S-family, we may assume, by working by working in charts of an
S-atlas, that M = V is an open definable of Cn, Y a definable subset of Rk, for
some k, and X is a definable subset of Y × V .
Step 2 We may assume that for each b ∈ Y and each z ∈ Xb, the germ of Xb at z
is irreducible and all Xb’s have the same dimension.

We first consider the family {RegC(Xb) : b ∈ Y }. Since regularity is definable
in a uniform way, this family is also definable. By o-minimality, there is a number
m such that the germ of RegC(Xb), at every point of its closure, has at most m
connected components. Furthermore, there is a uniformly definable family of open
subsets of Cn, {Wb,z : (b, z) ∈ X}, such that for each (b, z) ∈ X, Xb ∩ Wb,z is
analytic in Wb,z and the connected components of Wb,z ∩ RegC(Xb) correspond
to the local connected components of the germ of Reg(Xb) at z (see Section 2.3).
Again, by o-minimality, one can uniformly partition each Wb,z ∩RegC(Xb) into its
connected components. Namely, there are m uniformly definable families of sets
{R′i,b,z : (b, z) ∈ X}, i = 1, . . . ,m, such that for each (b, z) ∈ X, R′1,b,z, . . . , Rm,b,z

are the connected components of Wb,z ∩ Reg(Xb) (where R′i,b,z might be empty if
Xb has less than m components at z). Finally, we let X ′

i,b,z = Cl(Ri,b,z ∩Wb,z)
and thus obtain a uniformly definable family of irreducible locally analytic subsets
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of Cn with the property that for each (b, z) ∈ X, the germ of Xb at z equals the
union of the germs of X ′

i,b,z at z, for i = 1, . . . ,m.
It is enough to prove the theorem for each of the X ′

i,b,z (since the functions
defining the germ of Xb at z can be obtained using products of the functions
defining each X ′

i,b,z at z). We may therefore assume, after possibly enlarging the
parameter set, that each Xb is locally irreducible at every point of Xb. Finally, we
may partition Y into finitely many sets on each of which all Xb’s have the same
dimension.

We assume now that for each b ∈ Y , we have dimC(Xb) = d.
Step 3 There exist a uniformly definable family of open sets {Vb,z : (b, z) ∈ X}
and a uniformly definable family of d-dimensional linear subspaces Lb,z ⊆ Cn such
that: For each (b, a) ∈ X, vb,z is an open neighborhood of z, and if πb,z : Cn → Lb,z

is the orthogonal projection then its restriction to Vb,z ∩Xb is a proper finite-to-one
map.

This follows from the fact that the family of d-dimensional linear subspaces is
uniformly definable and that, in this setting, a function is proper if and only if
the pre-image of a closed and bounded set is again closed and bounded. This is
clearly a definable property. It follows from properness (together with the fact that
compact analytic subsets of Cn are finite) that the projections are finite-to-one.

We can now read off the defining functions for each of the analytic sets from the
set itself and the proper projection, using Whitney coordinates:

Consider a d-dimensional irreducible analytic subset A of an open subset W ∈
Cn, such that the projection map π from A onto the first d coordinates is proper.
By properness, there is a number m and an analytic subset B of L such that the
projection is m-to-one on A\π−1(B). Using definable choice, there are m definable
maps φ1, . . . , πm from π(A) \ B into Cn−d, which for every x, give the last n − d
coordinates of the pre-images of x in A. Let V = π(A) \B. There are now finitely
many complex polynomials F1, . . . , Fr in the variables y1, . . . , ym, x

′, (length(x′) =
length(yi) = n− d for i = 1, . . . ,m), such that ψi(x, x′) = Fi(φ1(x), . . . , φm(x), x′)
is analytic on V ×Cn−d. These functions can continued analytically to π(A)×Cn−d

and the intersection of their zero sets in Vb,z is exactly A ∩ Vb,z (see for example,
[20] for details). Since the ψi’s are definable, their analytic continuations (which are
unique) are definable as well and hence we have the defining functions for A ∩W .

Assume now that z is a C-regular point of Xb. Then, by shrinking Vb,z further,
we may assume that the projection map π is injective on Xb∩Vb,z. In this case the
(unique) map g(x) = (x, φ(x)) is a holomorphic immersion of an open subset of Cd

into Vb,z ∩Xb. The defining map for Xb in W is just x′ − φ(x) and it is necessarily
a submersion. Finally, using translation, we may assume that g(0) = z.

We can now do all of that uniformly: By o-minimality, there is number m such
that all projections πb,z are at most m-to-one on each Vb,z ∩ Xb. Since defin-
able choice can be carried out uniformly, the above construction of the Whitney
coordinates can be done uniformly, thus obtaining the desired holomorphic maps
fb,z : Vb,z → Cr (where r = (n − d)m). When z ∈ RegCXb we obtain the desired
immersions uniformly as well. �
Remark

Although we do not need it here, we can actually improve the last theorem in
several different ways:
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Under the assumptions of the theorem the following hold: There are natural
numbers k and r and there exist a uniformly definable family {Vb,i : b ∈ Y, i =
1, . . . , r} of open subsets of M , and a uniformly definable family of holomorphic
maps {fb,i : a ∈ Y, i = 1, . . . , r}, fb,i : Vb,i → Ck, such that each Xb is contained in
∪r

i=1Vi,b and Z(fb,i) = Vb,i ∩Xb (namely, each Xb is defined by finitely many open
sets and finitely many functions).

Even stronger, by following the standard proof of the Coherence Theorem for the
ideal sheaf of an analytic set, one can choose k, r, the Vb,i’s and the fb,i so that for
each b ∈ Y and each i = 1, . . . , r, the coordinate functions of fb,i generate the ideal
sheaf of Vb,i ∩Xb. Namely, for every z ∈ Vb,i ∩Xb the ideal I(Xb)z of holomorphic
germs at z which vanish on Xb is generated, over the ring of holomorphic germs
Oz(M), by the coordinate functions of fb,i.

Clearly, finite covers as above may be found for each Xb separately if we assumed
that M is a compact manifold and Xb is closed. However, no such assumptions is
needed here and compactness is replaced by definability in an o-minimal structure.
The proof will appear elsewhere.

8. Higher order Tangent Bundles and Differentials

We review here the definition and basic properties of higher order tangent bun-
dles of a complex manifold. Since the literature contains different approaches to
these notions, we go through it in some details, with an emphasis on definability
issues. As a reference we used here [11], [10] and [1].

Let M be a complex S-manifold with S-atlas gi : Vi → Ui, i ∈ I, and ρ : X →M
a holomorphic fiber bundle over M with the typical fiber F and the structure
group G ↪→ Aut(F ). We will consider only bundles where G is an algebraic linear
group acting algebraically on a smooth algebraic variety F over C. Thus G can
be identified with a subset of k × k-matrices and under this identification G is an
S-subset of Ck×k, with its action G× F → F as an S-map.

We say that X is a holomorphic S-bundle over M if there are holomorphic
trivializations ϕi : ρ−1(Vi) → Ui × F such that all corresponding transition bundle
maps λij : Ui ∩ Uj → G are holomorphic S-maps. Such a bundle is called a
holomorphic vector S-bundle if F = Cd for some d and G = GL(d,C).

An example of a holomorphic S-vector bundle is the tangent bundle T (M) →M
of a complex S-manifold M .

The following is easy to verify: Let V → M be a holomorphic vector S-bundle
map over a complex S-manifold M . Then the Grassmannian bundle Gr(d, V ) of
d-planes in V , the projectivization P(V ) of V , and the exterior powers

∧k
V are

holomorphic S-bundles.

8.1. The affine case. We fix n ∈ N+ and will denote by x̄ = (x1, . . . , xn) the
standard coordinate functions on Cn. We also fix r ∈ N+. For α = (α1, . . . , αn) ∈
N+n, we let |α| = Σiαi.

8.1.1. A formal definition. Let D
(r)
x̄ be the vector space of all differential operators

of the form ∑
0<|α|6r

cα
∂|α|

∂x̄α
, cα ∈ C
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with obvious vector addition and scalar multiplications. Obviously, D
(r)
x̄ is finite

dimensional.
Let U ⊆ Cn be open. For a ∈ U , an r-th tangent vector to U at a is a pair (a,D)

with D ∈ D
(r)
x̄ , that will be also denoted by Da. We define the r-the tangent space

to U at a to be the set of all tangent vectors at a, and denote it by T (r)
a (U). Thus

T (r)
a (U) = {(a,D) : D ∈ D

(r)
x̄ }.

We will always consider T (r)
a (U) as a C-vector space with vector addition and scalar

multiplication induced from D
(r)
x̄ .

If Da =
(
a,

∑
cα

∂|α|

∂x̄α

)
∈ T

(r)
a (U) then Da defines a linear function from Oa(U)

into C given by

Da : f 7→
∑

cα
∂|α|f

∂x̄α
|x̄=a

We will denote by Da.f the result of applying Da to f , thus Da.f ∈ C.

Remark 8.1. Obviously Da.f depends only on the partial derivatives of f at a
of order at most r. Thus for D1,D2 ∈ D

(r)
x̄ we have D1

0 = D2
0 if and only if

D1
0.f = D0.f for all monomials f ∈ {x̄α : 0 < |α| 6 r}.

We define the r-th tangent bundle of U to be U ×D
(r)
x̄ (i.e., the disjoint union

of T (r)
a (U) as a varies in U) and denote it by T (r)(U)).

We will denote by ρU : T (r)(U) → U the natural projection.
If V ⊆ U are open subsets of Cn, then, according to the definition, T (r)(V ) ⊆

T (r)(U) and the following diagram is commutative

T (r)(V ) T (r)(U)

V U
u

ρV

y w

u
ρU

y w
8.1.2. Holomorphic structure. We use {∂|α|

∂x̄α : 0 < |α| 6 r} as a standard basis for
D

(r)
x̄ with the lexicographical ordering of {0 < |α| 6 r}. With respect to this

standard basis, D
(r)
x̄ is identified with Cd, d = |D(r)

x̄ |, and, for an open U ⊆ Cn, the
r-th tangent bundle of U is identified with U ×Cd ⊆ Cn ×Cd. Thus every T (r)(U)
is a holomorphic vector bundle over U . Obviously, if U is an open S-subset of Cn,
then T (r)(U) is an open S-subset of Cn×Cd and ρu : T (r)(U) → U is a holomorphic
vector S-bundle over U .

8.1.3. Higher order differentials. Let U ⊆ Cn be an open subset. We also fix
m ∈ N+ and denote by ȳ the standard coordinate functions (y1, . . . , ym) on Cm.

Let f : U → Cm be a holomorphic function, a ∈ U and b = f(a). The r-th
differential of f at a, denoted by D(r)

a f , is a linear map from T
(r)
a (U) into T (r)

b (Cm)
defined as follows:
For Da ∈ T

(r)
a (U), D(r)

a f (Da) is an element D1
b ∈ T

(r)
b (Cm) such that D1

b .h =
Da.(h ◦ f) for every h ∈ Ob(Cm). It is not hard to see that such D1

b is unique.
Hence D(r)

a f is well defined, and also D(r)
a f is a linear map.

If f is a function from an open subset of a ∈ Cn into Cm, and we have f(a) = b,
we write f : (Cn, a) → (Cm, b).
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The next two facts follow from the definition of D(r)
a f .

Claim 8.2. Let f : U → Cm be a holomorphic map and a ∈ U . The following
conditions are equivalent.

(1) The r-th differential of f at a is the zero map.
(2) All partial derivatives, up to order r, of all component functions of f com-

puted at a, are zeroes.

Claim 8.3. (1) Let (Cn, a)
f−→ (Cm, b)

g−→ (Ck, c) be a sequence of holomorphic
maps. Then D

(r)
a (g ◦ f) = (D(r)

b g) ◦ (D(r)
a f).

(2) The r-th differential of the identity map at any point is the identity map.
(3) If f : (Cn, a) → (Cn, b) is a local biholomorphism then the r-th differential

of f at a is an isomorphisms.

Example. 8.1. Let f : C → C be holomorphic, a ∈ C and b = f(a). Let h ∈ Ob.
Applying the Chain Rule we obtain:

∂(h ◦ f)
∂x

|x=a = f ′(a)h′(b), and

∂2h ◦ f
∂x2

|x=a = f ′′(a)h′(b) +
(
f ′(a)

)2
h′′(b)

Thus
D(2)

a f
(

∂
∂x |x=a

)
= f ′(a) ∂

∂y and

D(2)
a

(
∂2

∂x2

)
= f ′′(a) ∂

∂y +
(
f ′(a)

)2 ∂2

∂y2 .

Let d = dim
(
D

(r)
x̄

)
and d1 = dim

(
D

(r)
ȳ

)
. With respect to the standard bases for

T
(r)
a (U) and T (r)

b (C), the linear map D(r)
a F has the corresponding d1×d matrix that

we will denote by J (r)
a (f) and call it the r-th Jacobian matrix of f at a.

Example. 8.2. In the example 8.2, the 2-nd Jacobian matrix of f at a is(
f ′(a) 0
f ′′(a) f ′(a)2

)
In general, it is easy to see, by applying the Chain Rule, that all the entries of

the matrix J (r)
a (f) are polynomial functions of

{
∂|α|fi

∂x̄α |a : i 6 m, 0 < α 6 r
}
, where

fi are the component functions of f . Moreover, these polynomials depend only on
r, n and m and do not depend on f and a. Thus we obtain the following claim.

Claim 8.4. (1) If U ⊆ Cn is open and f : U → Cm holomorphic then the map
a 7→ J

(r)
a (f) is a holomorphic map from U into Cd1×d. Moreover if f is an

S-map then this map is also an S-map.
(2) If {fb : b ∈ Y }, is an S-family of holomorphic maps, each from an open

S-set Ub ⊆ Cn into Cm, then the family {hb(a) = J
(r)
a (fb) : b ∈ Y }, is an

S-family of holomorphic maps from Us into Cd1×d

We will need the following claim.

Claim 8.5. Assume n 6 m. Let f : Cn → Cm be the embedding x̄ 7→ (x̄, 0), and
g : Cm → Cm−n be the projection onto the last m − n coordinates. Then the map
D

(r)
0 f : T (r)

0 (Cn) → T
(r)
0 (Cm) is injective and the image of D(r)

0 f coincides with the
kernel of D(r)

0 (g).



COMPLEX GEOMETRY AND ANALYTIC-GEOMETRIC CATEGORIES 27

Proof Using definition of the r-th differential and Remark 1, it is not hard to see
that for a multi-index α with |α| 6 r, D(r)

0 f acts as

D
(r)
0 f :

∂|α|

∂x̄α
7→ ∂|β|

∂ȳβ
, where βi =

{
αi i 6 n

0 i > 0.

In particular, D(r)
0 f maps invectively the standard basis of T (r)

0 (Cn) into the stan-
dard basis of T (r)

0 (Cm). Hence D(r)
0 f is injective.

The fact that the image of D(r)
0 f coincides with the kernel of D(r)

0 f , also follows
from definition of the r-th differential and Remark 1, by direct computations. �

For an open U ⊆ Cn and a holomorphic function f : Cn → Cm we define the
r-th differential of f to be the map D(r)f : T (r)(U) → T (r)(Cm) given by D(r)f �

T
(r)
a (U) = D

(r)
a f . With respect to the standard coordinates D(r)f has form (a, u) 7→

(f(a), J (r)
a (f)u).

Claim 8.6. (1) If U ⊆ Cn is open and f : U → Cm is holomorphic then the
map D(r)f is a holomorphic morphism of vector bundles. Moreover if f is
an S-map then D(r)f is also an S-map.

(2) If {fb : b ∈ Y } is an S-family of holomorphic maps, each from an open
S-set Ub ⊆ Cn into Cm, then {D(r)fb : b ∈ Y }, is also an S-family.

Proof Follows from Claim 4

8.2. Manifolds. For a complex manifold M and r ∈ N+ we construct T (r)(M),
the r-th tangent bundle of M , in a similar way to the usual tangent bundle. Let
{gi : Vi → Ui, i ∈ I} be a holomorphic atlas on M . Then the r-th tangent bundle
of M is obtained by gluing T (r)(Ui) with the transition maps D(r)(gj ◦ g−1

i ). Thus,
T (r)(M) is a holomorphic vector bundle over M , with fiber atlas gi, i ∈ I, and
x 7→ J

(r)
x̄ (gj ◦ g−1

i ) as the transition maps of the bundle.

Claim 8.7. If M is a complex S-manifold and r ∈ N+, then T (r)(M) is a holo-
morphic vector S-bundle.

Let M,N be complex S-manifolds and {fb : b ∈ Y } an S-family of holomorphic
maps, each from an open S-set Ub ⊆ M into N . Then {D(r)fb : b ∈ Y }, is an
S-family of holomorphic maps.

Proof By working in charts, the claim follows from Claim 6. �

8.3. Submanifolds.

Claim 8.8. Let M,N be complex manifolds and f : (M,a) → (N, b) a holomorphic
map. If f is an immersion at a then for any r ∈ N+ the map D(r)

a (f) is injective.

Proof Since f is an immersion at a there are local biholomorphisms g1 : (M,a) →
(Cn, 0) and g2 : (N, b) → (Cm, 0) such that the following diagram is commutative

(M,a) (N, b)

(Cn, 0) (Cm, 0)
u

g1

wf

u
g2

wF
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where F : Cn → Cm is the embedding x̄ 7→ (x̄, 0). The claim now follows form
Claim 3 and Claim 5. �

If M is a complex manifold and S is a submanifold of M , then, for any r ∈ N+,
the r-th differential of the inclusion map ı : S ↪→M is injective on T (r)(S). We use
D(r)ı to identify T (r)(S) with the image of T (r)(S) under D(r)ı, and we will always
consider T (r)(S) as a subset of T (r)(M). It is not hard to see that in fact T (r)(S) is
a submanifold of T (r)(M).

Claim 8.9. Let M be a complex manifold of dimension n, S a submanifold of M
, a ∈ S and f : M → Cn−k a holomorphic map such that f is a submersion at a
and S is the zero locus of f . Then, for all r ∈ N+, the kernel of D(r)

a F is exactly
T

(r)
a (S).

Proof Since f is submersion, by the same arguments as in Claim 8, we only need
to consider the case when M = Cn, a = 0, and f is the projection onto the last
n− k coordinates. This case is covered by Claim 5. �

Claim 8.10. Let M be a complex S-manifold and Ns, s ∈ S, an S family of
submanifolds of M . Then, for any r ∈ N+, T (r)(S) is an S-family of submanifolds
of T (r)(M).

Proof Follows from Theorem 2 and Claim 7. �

Theorem 8.11. Let M be a complex S-manifold and {Sb : b ∈ B} an S-family of
S-submanifolds of M all of the same dimension n. Then there is r ∈ N+ such that
for all b1, b2 ∈ B and a ∈ Sb1 ∩ Sb2 the following conditions are equivalent.

(1) T (r)
a (Sb1) = T

(r)
a (Sb2), as subspaces of T (r)

a (M).
(2) Sb1 = Sb2 near a.

Proof Obviously (2) always implies (1) for all r.
Let m be the dimension of M . By Theorem 2, there is an S-family {gb,a : (b, a) ∈

B×A}, of holomorphic functions from open neighborhoods Ub,a of 0 in Cn into M
such that gb,a(0) = a, gb,a is an immersion at 0 and the image of Ub,a under gb,a

coincides with Sb near a. In particular, we have T (r)
a (Sb) = D

(r)
0 gb,a(T (r)

0 (Cn)).
Also, by Theorem 2, there is an S-family {fb,a : (b, a) ∈ B ×A} of holomorphic

functions from open neighborhoods Vb,a of a in M into Cm−n such that fb,a(a) = 0,
fb,a is an submersion at a and the zero locus of fb,a coincides with Sb near a.

Let Hb1,b2,a = fb2,a ◦ gb1,a. Obviously Hb1,b2,a, (b1, b2, a) ∈ B × B ×M is an
S-family of holomorphic maps from open subsets of Cn into Cm−n, and for a ∈
Sb1 ∩Sb2 , Sb1 ⊆ Sb2 near a if and only if Hb1,b2,a vanishes on an open neighborhood
of 0.

By Theorem 1 and Claim 2, there is r ∈ N+ such that, uniformly in parameters,,
Hb1,b2,a vanishes on an open neighborhood of 0 if and only if the r-th differential
of Hb1,b2,a vanishes on T (r)

0 (Cn). This is the r we choose for the theorem.
Assume now that T (r)

a (Sb1) = T
(r)
a (Sb1). By Claim 9, T (r)

a (Sb2) is the kernel of
D

(r)
a fa,b2 , and by the equality of higher tangent bundles, it is also the image under

D
(r)
a ga,b1 of T (r)

0 (Cn). It thus follows, by Claim 3 (1), that the r-th differential of
Hb1,b2,a vanishes on T

(r)
0 (Cm). By our choice of r, it follows that Hb1,b2,a vanishes

on an open neighborhood of 0, which implies that Sb1 ⊆ Sb2 in some neighborhood
of a. The opposite inclusion is derived similarly by considering Hb2,b1,a. �



COMPLEX GEOMETRY AND ANALYTIC-GEOMETRIC CATEGORIES 29

9. Embeddings into the Grassmannian bundle

We are now ready to prove an analogous to the theorem of Campana and Fujiki.
On the local level, our proof uses the same geometric idea of the original papers.
The novelty is that global compactness is replaced by definability in an o-minimal
structure (an S-set), and hence we may use freely Euclidean neighborhoods as
long as we remain in the category of S-sets. Also, the theorems on removal of
singularities from the first part of the paper are now used instead of Hironaka’s
resolution of singularities.

9.1. The nonsingular case.

Theorem 9.1. Let N,M be complex S-manifolds, S ⊆ N ×M a connected S-
submanifold such that the projection πN : S → N has constant rank on S.
Then there is a holomorphic vector S-bundle π : V →M and a holomorphic S-map
µ : S → P(V ) such that the following diagram is commutative

S P(V )

M

wµ

[[[]
πM

�
��� π

and µ(b, a) = µ(b′, a) if and only if Sb = Sb′ near a. (Sb, as usual, denotes the set
{a ∈M ; (b, a) ∈ S}.)

Proof The idea of the proof is very geometric. For every (b, a) ∈ S, one associates,
in the Grassmannian, the tangent space of the submanifold Sb at a. However, since
two distinct Sb’s through a might have the same tangent space at a, this might not
be enough in order to distinguish between the two. This is the reason one needs to
consider tangent spaces of higher order.

Let r be as in Theorem 11, and d be the dimension of the vector space T (r)
a (Sb)

for any a ∈ Sb.
Let W = T (r)(M) and Gr(d,W ) be the Grassmannian bundle of d-dimensional

planes inW . Since T (r)(M) is a holomorphic vector S-bundle overM , Gr(d, T (r)(M))
is also a holomorphic S-bundle over M .

Consider the function ν : S → Gr(d,W ) that assigns to (b, a) the element of
Gr(d,W ) corresponding to T (r)

a (Sb). Clearly ν is a holomorphic map. By Claim 10,
T (r)(Sb) is an S-family, hence µ is also an S-map.

By the choice of r we have that ν(b, a) = ν(b′, a) if and only if Sb = Sb′ near a.
The required µ is obtained by composing ν with the standard embedding of

Gr(d,W ) into the projectivization of the vector bundle V =
∧d

W . �

9.2. The case of analytic sets.

Theorem 9.2. Let N,M be complex S- manifolds, and S an irreducible analytic
S-subset of N ×M . Then there is a holomorphic vector S-bundle π : V → M , a
meromorphic S-map λ : S → P(V ), and a Zariski open subset S0 of S such that
σ(b, a) = σ(b′, a) if and only if Sb = Sb′ near a, for all (b, a), (b′, a) ∈ S0, and the
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following diagram is commutative

S0 P(V )

M

wσ

[[[]
πM

�
��� π

Proof Let πN denote the projection map from S into N and let k be the generic
rank of Dz(πN |RegC(S)). We define S0 to be the set of all points z in RegC(S)
where this rank is atttained. Its complement in RegC(S), which we call D′, is a
C-analytic S-subset of RegC(S) and therefore also of (N × M) \ SingC(S). By
Theorem 4, the closure of D′ in N ×M , which we call D, is also C-analytic subset
of N ×M .

We may now apply Theorem 1 to S0, N , and M and obtain a complex vector
S-bundle V over M and a holomorphic S-map σ : S0 → P(V ) satisying the above
requirements.

By Theorem 4, the closure of the graph of σ in S × P(V ) is an analytic subset
of S × V . Moreover, the projection of this closure onto S is a proper map (by the
compactness of projective space). Thus σ is a meromorphic S-map from S into
P(V ). �
Remarks (1) If we take, in the last theorem, M and N to be arbitrary compact
complex manifolds then they can be equipped with an S-atlas. Moreover, every
C-analytic subset of them is an S-set. We thus obtain in this case the original
theorem of Campana and Fujiki (for complex analytic sets rather than complex
analytic spaces).

(2) Take a ∈ M . If Sb 6= Sb′ at a for all b 6= b′ such that (a, b), (a, b′) ∈ S then
then map that sends Sa = {b ∈ N : (a, b) ∈ S} into the projective space π−1(a)
is injective. If in addition N is compact this image is an algebraic projective set.
However, if N is not compact the map may not be proper and therefore the image
of Sa might not be an algebraic. We are still not certain about the implications
the theorem in this case.
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