
Chapter 2

Complex Hyperbolic Geometry

In complex hyperbolic geometry we consider an open set biholomorphic to an
open ball in Cn, and we equip it with a particular metric that makes it have
constant negative holomorphic curvature. This is analogous to but different from
the real hyperbolic space. In the complex case, the sectional curvature is constant
on complex lines, but it changes when we consider real 2-planes which are not
complex lines.

Complex hyperbolic geometry contains in it the real version: while every
complex Ck-plane in Hn

C
is biholomorphically isometric to Hk

C
, every totally real k-

plane in Hn
C
is isometric to the real hyperbolic space Hk

R
. Moreover, every complex

line in Hn
C
is biholomorphically isometric to H2

R
.

There are three classical models for complex hyperbolic space Hn
C
: the unit

ball model in Cn, the projective ball model in Pn
C
and the Siegel domain model.

In this monograph we normally use the projective ball model, and the symbol
Hn

C
will be reserved for that. These models for complex hyperbolic n-space are

briefly discussed in Sections 2 and 3, where we also explain and define some basic
notions which are used in the sequel, such as chains, bisectors and spinal spheres,
horospherical coordinates and the Heisenberg geometry at infinity. We refer to
[67], [71], [168], [200], [169] for rich accounts on complex hyperbolic geometry.

In Section 4 we discuss the geometry, dynamics and algebraic properties of
the elements in the projective Lorentz group PU(n, 1), which is the group of holo-
morphic isometries of Hn

C
. We give in detail Goldman’s proof of the classification

according to trace, since this paves the ground for the discussion in Chapter 4.
In Section 5 we discuss methods and sources for constructing complex hy-

perbolic Kleinian groups, i.e., discrete subgroups of PU(n, 1). For further reading
on this we refer to the excellent survey articles [105], [168] and the bibliography
in them. As explained in [168], the methods for constructing complex hyperbolic
lattices can be roughly classified into four types: i) Arithmetic constructions; ii)
reflection groups and construction of appropriate fundamental domains; iii) al-
gebraic constructions, via the Yau-Miyaoka uniformisation theorem; and iv) as
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monodromy groups of certain hypergeometric functions. In fact, a fundamental
problem in complex hyperbolic geometry is whether or not there are nonarith-
metic lattices in dimensions ≥ 3 (see for instance [50]).

Finally, Section 6 is based on [45]. Here we discuss the definition of limit set
for complex hyperbolic Kleinian groups and give some of its properties. This is
analogous to the corresponding definition in real hyperbolic geometry. The simi-
larities in both settings spring from the fact that in both situations one has the
convergence property (see [105, §3.2]): every sequence of isometries either contains
a convergent subsequence or contains a subsequence which converges to a constant
map away from a point on the sphere at infinity. This property is not satisfied by
discrete subgroups of PSL(n + 1,C) in general, and this is why even the concept
of limit set becomes intriguing in that general setting. This will be explored in the
following chapters.

2.1 Some basic facts on Projective geometry

We recall that the complex projective space Pn
C
is defined as

Pn
C = (Cn+1 − {0})/ ∼ ,

where “∼” denotes the equivalence relation given by x ∼ y if and only if x =
λy for some nonzero complex scalar λ. This is a compact connected complex n-
dimensional manifold, diffeomorphic to the orbit space S2n+1/U(1), where U(1)
is acting coordinate-wise on the unit sphere in Cn+1.

We notice that the usual Riemannian metric on S2n+1 is invariant under the
action of U(1) and therefore descends to a Riemannian metric on Pn

C
, which is

known as the Fubini-Study metric.
If [ ]n : Cn+1 − {0} → Pn

C
represents the quotient map, then a nonempty set

H ⊂ Pn
C
is said to be a projective subspace of dimension k if there is a C-linear

subspace H̃ ⊂ Cn+1 of dimension k+1 such that [H̃]n = H. If no confusion arises,
we will denote the map [ ]n just by [ ]. Given a subset P in Pn

C
, we define

〈P 〉 =
⋂
{l ⊂ Pn

C | l is a projective subspace and P ⊂ l}.

Then 〈P 〉 is a projective subspace of Pn
C
, see for instance [125]. In particular, given

p, q ∈ Pn
C
distinct points, 〈{p, q}〉 is the unique proper complex projective subspace

passing through p and q. Such a subspace will be called a complex (projective)
line and denoted by ←→p, q; this is the image under [ ]n of a two-dimensional linear
subspace of Cn+1. Observe that if �1, �2 are different complex lines in P2

C
, then

�1 ∩ �2 consists of exactly one point.
If e1, . . . , en+1 denotes the elements of the standard basis in Cn+1, we will

use the same symbols to denote their images under [ ]n.

It is clear that every linear automorphism of Cn+1 defines a holomorphic
automorphism of Pn

C
, and it is well known (see for instance [37]) that every auto-

morphism of Pn
C
arises in this way. Thus one has
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Theorem 2.1.1. The group of projective automorphisms is:

PSL(n+ 1,C) := GL (n+ 1,C)/(C∗)n+1 ∼= SL(n+ 1,C)/Zn+1 ,

where (C∗)n+1 is being regarded as the subgroup of diagonal matrices with a single
nonzero eigenvalue, and we consider the action of Zn+1 (viewed as the roots of the
unity) on SL(n+ 1,C) given by the usual scalar multiplication.

This result is in fact a special case of a more general, well-known theorem,
stating that every holomorphic endomorphism f : Pn

C
→ Pn

C
is induced by a poly-

nomial self-map F = (F0, . . . , Fn) of Cn+1 such that F−1(0) = {0} and the com-
ponents Fi are all homogeneous polynomials of the same degree. The case we
envisage here is when these polynomials are actually linear.

We denote by [[ ]]n+1 : SL(n+1,C)→ PSL(n+1,C) the quotient map. Given
γ ∈ PSL(n+ 1,C) we say that γ̃ ∈ GL (n+ 1,C) is a lift of γ if there is an scalar
r ∈ C∗ such that rγ̃ ∈ SL(n,C) and [[rγ̃]]n+1 = γ.

Notice that PSL(n + 1,C) acts transitively, effectively and by biholomor-
phisms on Pn

C
, taking projective subspaces into projective subspaces.

There are two classical ways of decomposing the projective space that will
play a significant role in the sequel; each provides a rich source of discrete sub-
groups of PSL(n + 1,C). The first is by thinking of Pn

C
as being the union of Cn

and the “hyperplane at infinity”:

Pn
C = Cn ∪ Pn−1

C
.

A way for doing so is by writing

Cn+1 = Cn × C = {(Z, zn+1) |Z = (z1, . . . , zn) ∈ Cn and zn+1 ∈ C} .

Then every point in the hyperplane {(Z, 1)} determines a unique line through
the origin in Cn+1, i.e., a point in Pn

C
; and every point in Pn

C
is obtained in this

way except for those corresponding to lines (or “directions”) in the hyperplane
{(Z, 0)}, which form the “hyperplane at infinity” Pn−1

C
.

It is clear that every affine map of Cn+1 leaves invariant the hyperplane at
infinity Pn−1

C
. Furthermore, every such map carries lines in Cn+1 into lines in Cn+1,

so the map naturally extends to the hyperplane at infinity. This gives a natural
inclusion of the affine group

Aff (Cn) ∼= GL (n,C)�Cn ,

in the projective group PSL(n+ 1,C). Hence every discrete subgroup of Aff (Cn)
is a discrete subgroup of PSL(n+ 1,C).

The second classical way of decomposing the projective space that plays a
significant role in this monograph leads to complex hyperbolic geometry, which
we study in the following section. For this we think of Cn+1 as being a union
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V− ∪ V0 ∪ V+, where each of these sets consists of the points (Z, zn+1) ∈ Cn+1

satisfying that ‖Z‖2 is respectively smaller, equal to or larger than |zn+1|.
We will see in the following section that the projectivisation of V− is an

open (2n)-ball B in Pn
C
, bounded by [V0], which is a sphere. This ball B serves as

model for complex hyperbolic geometry. Its full group of holomorphic isometries is
PU(n, 1), the subgroup of PSL(n+1,C) of projective automorphisms that preserve
B. This gives a second natural source of discrete subgroups of PSL(n+1,C), those
coming from complex hyperbolic geometry.

We finish this section with some results about subgroups of PSL(n + 1,C)
that will be used later in the text.

Proposition 2.1.2. Let Γ ⊂ PSL(n + 1,C) be a discrete group. Then Γ is finite if
and only if every element in Γ has finite order.

This proposition follows from the theorem below (see [182, Theorem 8.29])
and its corollary; see [160], [41] for details.

Theorem 2.1.3 (Jordan). For any n ∈ N there is an integer S(n) with the following
property: If G ⊂ GL(n,C) is a finite subgroup, then G admits an abelian normal
subgroup N such that card(G) ≤ S(n)card(N).

Corollary 2.1.4. Let G be a countable subgroup of GL(3,C), then there is an infinite
commutative subgroup N of G.

Proof of Proposition 2.1.2. If every element in G has finite order, then by Selberg’s
lemma (see for instance [186]) it follows that G has an infinite set of generators,
say {γm}m∈N. Define

Am = 〈γ1, . . . , γm〉,

then by Selberg’s lemma Am is finite and by Theorem 2.1.3 there is a normal
commutative subgroup N(Am) of Am such that

card(Am) ≤ S(3)card(N(Am)).

Assume, without loss of generality, that card(Am) = k0card(N(Am)) for some k0
and every m. Set

nm = max{o(g) : g ∈ N(Am)},

where o(g) represents the order of g, and consider the following cases:

Case 1. The sequence (nm)m∈N is unbounded.

In this case we can assume that

k0nj < nj+1 for all j.

Now for each m, consider γm ∈ N(Am) such that o(γm) = nm. Thus γk0
m ∈⋂

m≤j N(Aj) and γk0
m �= γk0

j . Hence 〈γk0
m : m ∈ N〉 is an infinite commutative

subgroup of G.
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Case 2. The sequence (nm)m∈N is bounded.

We may assume that nm = c0 for every index m. Let us construct the following
sequence:

Step 1. Assume that card(N(A1)) > k0c
3
o. For each m > 1, consider the map

φ1,m : N(A1) −→ Am/N(Am)

given by l �→ N(Am)l. Since card(N(A1)) > card(Am/N(Am)) = k0, we deduce
that φ1,m is not injective. Then there is an element w1 �= id and a subsequence
(Bn)n∈N ⊂ (An)n∈N such that card(N(B1)) > k0c

4
o and w1 ∈

⋂
m∈N

N(Bm).

Step 2. For everym∈N consider the map φ2,m : N(B1)/〈w1〉 −→ Bm/N(Bm)
given by 〈w1〉l �→ N(Bm)l. As in step 1 we can deduce that there is an element
w2 and a subsequence (Cn)n∈N ⊂ (Bn)n∈N such that card(N(C1)) > k0c

5
o and

w2 ∈
⋂

m∈N
N(Cm)− 〈w1〉.

Step 3. For m ∈ N consider the map φ3,m : N(C1)/〈w1, w2〉 −→ Cm/N(Cm)
given by 〈w1, w2〉l �→ N(Cm)l. As in step 2 we deduce that there is an element
w3 and a subsequence (Dn)n∈N ⊂ (Cn)n∈N such that card(N(A1)) > k0c

6
o and

w3 ∈
⋂

m∈N
N(Dm)− 〈w1, w2〉.

Continuing this process ad infinitum we deduce that 〈wm : m ∈ N〉 is an
infinite commutative subgroup. �

2.2 Complex hyperbolic geometry. The ball model

There are three classical models for complex hyperbolic n-space, namely:

(i) the unit ball model in Cn;

(ii) the projective ball model in Pn
C
; and

(iii) the Siegel domain model in Cn.

Let us discuss first the ball models for complex hyperbolic space. For this, let
Cn,1 denote the vector space Cn+1 equipped with the Hermitian form 〈 , 〉 given
by

〈u, v〉 = u1v1 + · · ·+ unvn − un+1vn+1 ,

where u = (u1, u2, . . . , un+1) and v = (v1, v2, . . . , vn+1). This form corresponds to
the Hermitian matrix

H =

⎛⎝ 1 0 0
0 1 0
0 0 −1

⎞⎠ .

One obviously has 〈u, v〉 = uHv∗, where v∗ is the Hermitian adjoint of v, i.e., it
is the column vector with entries v̄1, i = 1, . . . , n + 1. Notice H has n positive
eigenvalues and a negative one, so it has signature (n, 1).
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As before, we think of Cn+1 ≈ Cn,1 as being the union V− ∪ V0 ∪ V+ of
negative, null and positive vectors z, depending respectively (in the obvious way)
on the sign of 〈z, z〉 = |z1|2+ · · ·+ |zn|2− |zn+1|2. It is clear that each of the three
sets V− ∪ V0 ∪ V+ is a union of complex lines; that is, if a vector v is in V−, then
every complex multiple of v is a negative vector, and similarly for V0 and V+. The
set V0 is often called the cone of light, or the space of null vectors for the quadratic
form Q(z) = 〈z, z〉.

We now look at the intersection of V0 and V− with the hyperplane in Cn,1

defined by zn+1 = 1. For V0 we get the (2n− 1)-sphere

S := {(z1, . . . , zn+1) ∈ Cn+1
∣∣ |z1|2 + · · ·+ |zn|2 = 1 } .

For V− we get the ball B bounded by S:

B := {(z1, . . . , zn+1) ∈ Cn+1
∣∣ |z1|2 + · · ·+ |zn|2 < 1 } .

This ball, equipped with the complex hyperbolic metric serves as a model for
complex hyperbolic geometry, this is the unit ball model of complex hyperbolic
space. We refer to [169] for details on this model and for beautiful explanations
about the way in which it relates to the Siegel domain model that we explain in
the following section.

To get the complex hyperbolic space we must endow B with the appropriate
metric. We do so in a similar way to how we did it in Chapter 1 for the real
hyperbolic space. Consider the group U(n, 1) of elements in GL (n + 1,C) that
preserve the above Hermitian form. That is, we consider matrices A satisfying
A∗HA = H, where A∗ is the Hermitian transpose of A (that is, each column
vector v with entries v0, v1, . . . , vn, is replaced by its transpose v∗, the row vector
(v̄0, v̄1, . . . , v̄n)). It is easy to see that U(n, 1) acts transitively on B with isotropy

U(n) (see [67, Lemma 3.1.3]). In fact U(n, 1) acts transitively on the space of
negative lines in Cn,1.

Let 0 = (0, . . . , 0, 1) denote the centre of the ball B, consider the space
T0B ∼= Cn tangent to B at 0, and put on it the usual Hermitian metric on Cn. Now
we use the action of U(n, 1) to spread the metric to all tangent spaces TxHn

C
, using

that the action is transitive and the isotropy is U(n), which preserves the usual
metric on Cn. We thus get a Hermitian metric on B, which is clearly homogeneous.
This is the complex hyperbolic metric, and the ball B, equipped with this metric,
serves as a model for complex hyperbolic n-space Hn

C
. This is the unit ball model

for complex hyperbolic space. The boundary ∂Hn
C
is called the sphere at infinity (it

is called the absolute in [67]).

Notice that this way of constructing a model for the complex hyperbolic
space Hn

C
is entirely analogous to the method used in Chapter 1 to construct

the real hyperbolic space Hn
R
. Yet, there is one significant difference. In the real

case the action of Iso(Hn
R
) on the unit ball has isotropy O(n) and this group acts

transitively on the spaces of lines and 2-planes through a given point. Thence Hn
R

has constant sectional curvature. In the complex case, the corresponding isotropy
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group is U(n), which acts transitively on the space of complex lines through a
given point, but it does not act transitively on the space of real 2-planes: a totally
real plane cannot be taken into a complex line by an element in U(n). Therefore
the sectional curvature of Hn

C
is not constant, though it has constant holomorphic

curvature.
Observe that for n = 1 one gets the complex hyperbolic line H1

C
. This corre-

sponds to the unit ball

{(z1, z2) ∈ C2
∣∣ |z1| < 1 and z2 = 1 } .

Notice that U(1) is isomorphic to SO(2), hence H1
C
is biholomorphically isometric

to the open ball model of the real hyperbolic space H2
R
. Moreover, since U(n, 1)

acts transitively on the space of negative lines in Cn,1, every such line can be
taken into the line spanned by the vector {(0, . . . , 0, 1)} ⊂ Cn,1 and the above
considerations essentially show that the induced metric on the unit ball in this
complex line corresponds to the usual real hyperbolic metric on the ball model for
H2

R
. That is: every complex line that meets Hn

C
determines an embedded copy of

H1
C
∼= H2

R
(see [67, §1.4] or [169, §5.2] for clear accounts on H1

C
).

It is now easy to construct the projective ball model for complex hyperbolic
space, which is the model we actually use in the sequel. For this we notice that if a
complex line through the origin 0 ∈ Cn+1 is null, then it meets the above sphere S
at exactly one point. Hence the projectivisation (V0\{0})/C∗ of V0 is diffeomorphic
to the (2n−1)-sphere S. Similar considerations apply for the negative lines, so the
projectivisation [V−] is the open 2n-ball [B] bounded by the sphere [S] = [V−].

The ball [B] in Pn
C
can be equipped with the metric coming from the complex

hyperbolic metric in B, and we get the projective ball model for complex hyperbolic
space. From now on, unless it is stated otherwise, the symbol Hn

C
will denote this

model for complex hyperbolic space. The corresponding Hermitian metric is the
Bergmann metric, up to multiplication by a constant. It is clear from the above
construction that the projective Lorentz group PU(n, 1) acts on Hn

C
as its the

group of holomorphic isometries.
In [67, 3.1.7] there is an algebraic expression for the distance function in

complex hyperbolic space which is useful, among other things, for making com-
putations. For this, recall first that in Euclidean space the distance function is
determined by the usual inner product, and this is closely related with the angle
between vectors x, y:

cos(∠(x, y)) =
|x · y|
‖x‖‖y‖ =

√
δ̂(x, y) ,

where δ̂(x, y) = (x·y)(y·x)
(x·x)(y·y) . Similarly, the Bergmann metric can be expressed (up to

multiplication by a constant) as follows: given points [x], [y] ∈ Hn
C
, their complex

hyperbolic distance ρ is:

ρ([x], [y]) = 2 cosh−1(
√
δ(x, y));
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δ(x, y) =
〈x, y〉〈y, x〉
〈x, x〉〈y, y〉 ,

where 〈 , 〉 is now the Hermitian product given by the quadratic form Q used to
construct Hn

C
.

2.2.1 Totally geodesic subspaces

Given a point z ∈ Hn
C

one wishes to know what the geodesics through z, and
more generally the totally geodesic subspaces of Hn

C
, look like. Here is a first

answer. Consider a complex projective line L in Pn
C
passing by z. Then L∩Hn

C
is a

holomorphic submanifold of Hn
C
and we already know (see the previous section or

[67, Theorem 3.1.10]) that L ∩ Hn
C
is isometric to H1

C
; the latter can be regarded

as H2
R
equipped with Poincare’s ball model for real hyperbolic geometry. This “2-

plane” L ∩Hn
C
is totally geodesic, i.e., every geodesic in Hn

C
joining two points in

L ∩ Hn
C
is actually contained in L ∩ Hn

C
∼= H1

C
. This type of surfaces in Hn

C
are

called complex geodesics (they are also called complex slices). They have constant
negative curvature for the Bergman metric, and we assume this metric has been
scaled so that these slices have constant sectional curvature −1 (see [67]). The
intersection of the projective line L with the boundary ∂Hn

C
is a circle S1. This

kind of circles in the sphere at infinity, which bound a complex slice, are called
chains.

Notice that two distinct points z1, z2 in Hn
C
determine a unique line in Pn

C
, so

there is a unique complex geodesic L passing through them. There is also a unique
real geodesic in L ∼= H2

R
passing through these points. Of course this statement

can be easily adapted to include the case when either one, or both, of these points
is in the boundary ∂Hn

C
.

Each real geodesic in Hn
C
is determined by its end points in the sphere ∂Hn

C
.

For each point q ∈ ∂Hn
C
, the real geodesics in Hn

C
which end at q are parametrised

by the points in R2n−1 ≈ ∂Hn
C
\q and they form a parabolic pencil (see [67, Sections

7.27, 7.28]). Each of these real geodesics σ is contained in a complex geodesic Σ
asymptotic to q, and the set of all complex geodesics end at q has the natural
structure of an (n− 1)-dimensional complex affine plane.

In fact, since each complex geodesic Σ corresponds to the intersection of the
ball Hn

C
with a complex projective line L, one has that Σ is asymptotic to all

points in L ∩ ∂Hn
C
, which form a circle S1. If the complex geodesic Σ ends at

q ∈ ∂Hn
C
, it follows that the real geodesics in Σ asymptotic to q are parametrised

by R ≈ (L ∩ ∂Hn
C
) \ {q}.

More generally, if P is a complex projective subspace of Pn
C

of dimension
k that passes through the point z ∈ Hn

C
, then P ∩ Hn

C
is obviously a complex

holomorphic submanifold of Hn
C
. Then Theorem 3.1.10 in [67] tells us that P ∩Hn

C

is actually a totally geodesic subspace of Hn
C
which is biholomorphically isometric

to Hk
C
. Such a holomorphic submanifold of Hn

C
is called a Ck-plane; so a Ck-plane

is a complex geodesic. The boundary of a Ck-plane is a sphere of real dimension
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2k−1 called a Ck-chain. This is the set of points where the corresponding projective
plane meets the sphere at infinity ∂Hn

C
. A C1-chain is simply a chain.

Goldman shows in his book that behind Ck-planes, there is only another type
of totally geodesic subspaces in Hn

C
: The totally real projective subspaces:

Definition 2.2.1. Let R̃k+1 be a linear real subspace of Cn,1 of real dimension k+1
which contains negative vectors. We say that R̃k+1 is totally real with respect to the
Hermitian form Q if J(R̃k+1) is Q-orthogonal to R̃k+1, where J denotes complex
multiplication by i. A totally real subspace of Hn

C
means the intersection with Hn

C

of the projectivisation Rk := [R̃k+1] of a totally real projective subspace R̃k+1 of
Cn,1. Such a plane in Hn

C
is called an Rk-plane. (Of course this can only happen if

k ≤ n.) An R2-plane is called a real slice.

It is easy to see that PU(n, 1) acts transitively on the set of all Rk-planes in
Hn

C
, for every k. One has (see [67, Section 3.1]):

Theorem 2.2.2. Every totally geodesic submanifold of Hn
C
is either a Ck-plane or an

Rk-plane. In particular Hn
C
has no totally geodesic real submanifolds of codimension

1 (for n > 1). Furthermore:

(i) Every Ck-plane, with its induced metric, is biholomorphically isometric to
Hk

C
. Every complex line in Hn

C
is biholomorphically isometric to Poincaré’s

ball model of H2
R
.

(ii) Ever Rk-plane, with its induced metric, is isometric to the real hyperbolic
space Hk

R
equipped with the Beltrami-Klein model for hyperbolic geometry.

(iii) In particular, Hn
C
has two types of real 2-planes which are both totally geodesic:

complex slices, and real slices. Furthermore, it is at these two types of 2-planes
where Hn

C
attains its bounds regarding sectional curvature: the sectional cur-

vature in Hn
C
varies in the interval [−1,− 1

4 ] with the upper bound correspond-
ing to the curvature of real slices and the lower one being attained at complex
slices.

2.2.2 Bisectors and spines

Recall that in real hyperbolic geometry the group of isometries is generated by
inversions on spheres of codimension 1 that meet orthogonally the sphere at in-
finity. This type of spheres are totally geodesic. These spheres also determine the
sides of the Dirichlet fundamental domains. In complex hyperbolic space, there
are no totally real submanifolds of codimension 1, and a reasonable substitute
are the bisectors (or equidistant hypersurfaces), that we now define. These were
introduced by Giraud (see [67]) and also used by Moser, who called them spinal
surfaces, to construct the first examples of nonarithmetic lattices in PU(n, 1).

Given points z1, z2 in Hn
C
, we denote by ρ(z1, z2) their complex hyperbolic

distance.
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Definition 2.2.3. Let z1, z2 be two distinct points in Hn
C
.

(i) The bisector of z1 and z2 is the set

E{z1, z2} = {z ∈ Hn
C

∣∣ ρ(z, z1) = ρ(z, z2) } .

(ii) The boundary of a bisector is called a spinal sphere in ∂Hn
C
.

(iii) The complex geodesic Σ = Σ(z1, z2) in Hn
C
spanned by z1, z2 is called the

complex spine (or simply the C-spine) of the bisector E{z1, z2} with respect
to z1 and z2.

(iv) The spine σ = σ(z1, z2) of E{z1, z2} with respect to z1 and z2 is the inter-
section of the bisector with the complex spine of z1 and z2:

σ := E{z1, z2} ∩ Σ = {z ∈ Σ
∣∣ ρ(z, z1) = ρ(z, z2) } .

Notice that by the above discussion, the complex spine Σ is the intersection
with Hn

C
of projectivisation of a complex linear 2-space in Cn,1. Thence one has

a (holomorphic) orthogonal projection πΣ : Hn
C
→ Σ induced by the orthogonal

projection in Cn,1 (with respect to the corresponding quadratic form). Then one
has the following theorem, which is essentially the Slice Decomposition Theorem
of Giraud and Mostow (see Theorem 5.1, its corollary 5.1.3 and lemma 5.1.4 in
[67]). Recall that a bisector is a real hypersurface in the complex manifold Hn

C
and

therefore comes equipped with a natural CR-structure and a Levi-form.

Theorem 2.2.4. The bisector E is a real analytic hypersurface in Hn
C
diffeomor-

phic to R2n−1, which fibres analytically over the spine σ with projection being the
restriction to E of the orthogonal projection πΣ : Hn

C
→ Σ:

E = π−1
Σ (σ) =

⋃
s∈σ

π−1
Σ ((s) .

Furthermore, each bisector E is Levi-flat and the slices π−1
Σ ((s) ⊂ E are its maximal

holomorphic submanifolds. Hence E, the spine, the complex spine and the slices
are independent of the choice of points z1, z2 used to define them.

Of course, spinal spheres are diffeomorphic to S2n−2. We remark too [67,
Theorem 5.1.6] that the above association E � σ defines a bijective correspondence
between bisectors and geodesics in Hn

C
: every real geodesic σ is contained in a

unique complex geodesic Σ; then one has an orthogonal projection πΣ : Hn
C
→ Σ

and the bisector is E = π−1
Σ (σ).

Another nice property of bisectors is that just as they decompose natu-
rally into complex hyperplanes, as described by the Slice Decomposition Theo-
rem above, they also decompose naturally into totally real geodesic subspaces and
one has the corresponding Meridianal Decomposition Theorem (see [67, Theorem
5.1.10]).
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2.3 The Siegel domain model

There is another classical model for complex hyperbolic geometry, the Siegel do-
main (or paraboloid) model. While the ball models describe complex projective
space regarded from within, the Siegel domain model describes this space as re-
garded from a point at infinity. Thence it is in some sense analogous to the upper-
half plane model for real hyperbolic geometry. The basic references for this section
are [67], [71] and [169].

Consider Cn as Cn−1×C with coordinates (w′, wn), w
′ ∈ Cn−1, and let 〈〈 , 〉〉

be the usual Hermitian product in Cn−1. So 〈〈w′, w′〉〉 = w′
1w̄

′
1 + · · ·+w′

n−1w̄
′
n−1.

The Siegel domain Sn consists of the points in Cn satisfying

2Re(wn) > 〈〈w′, w′〉〉 .

Its boundary is a paraboloid in Cn.
Now consider the embedding of Sn in Pn

C
given by

(w′, wn)
B�→ [w′,

1

2
− wn,

1

2
+ wn] .

We claim that the image B(Sn) is the ball B of negative points that serves as
a model for complex hyperbolic Hn

C
. To see this, notice that given points w =

(w′, wn), z = (z′, zn) ∈ Cn, the Hermitian product of their image in Pn
C
(induced

by the product 〈 , 〉 in Cn,1) takes the form

〈B(w), B(z)〉 = 〈〈w′, z′〉〉 − wn − zn .

In particular 〈B(w), B(w)〉 = 〈〈w′, w′〉〉 − Rewn . Hence B(w) is a negative point
in Pn

C
if and only if w is in Sn.
Now consider the null vector p̃∞ := (0′,−1, 1) ∈ Cn,1 and its image p∞ in

Pn
C
. Let H∞ be the unique complex projective hyperplane in Pn

C
which is tangent

to Hn
C
at p∞. This hyperplane consists of all points [z] ∈ Pn

C
whose homogeneous

coordinates [z1 : . . . : zn+1] satisfy zn = zn+1. Therefore the image of B does not
meet H∞ and B provides an affine coordinate chart for Pn

C
\ H∞, carrying the

Siegel domain Sn into the ball Hn
C
.

Notice that the boundary of Sn is the paraboloid {2Re(wn) = 〈〈w′, w′〉〉},
and its image under B is the sphere ∂Hn

C
minus the null point p∞ := [0′,−1, 1] ∈

Pn
C
, where 0′ := (0, . . . , 0) ∈ Cn−1. That is:

∂Sn ∼= ∂Hn
C \ {q∞} .

One thus has an induced complex hyperbolic metric on Sn, induced by the
Bergman metric on Hn

C
(see [71, p. 520] for the explicit formula).

Definition 2.3.1. For each positive real number u, the horosphere in Sn (centred
at q∞) of level u is the set

Hu := {w = (w′, wn) ∈ Sn
∣∣Rewn − 〈〈w′, w′〉〉 = u } .

We also set H0 := ∂Sn.
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Hence, horospheres in Sn are paraboloids, the translates of the boundary.
When regarded in Hn

C
they become spheres, tangent to ∂Hn

C
at q∞ = [0′,−1, 1.

This definition can be easily adapted horospheres in Hn
C
centred at every point in

∂Hn
C
.

2.3.1 Heisenberg geometry and horospherical coordinates

Recall that the classical Heisenberg group is the group of 3×3 triangular matrices
of the form

H =

⎛⎝ 1 a t
0 1 b
0 0 1

⎞⎠
where the coefficients are real numbers. This is a 3-dimensional nilpotent Lie
group diffeomorphic to R3. Its group structure, coming from the multiplication of
matrices, is a semi-direct product C � R where C and R are being regarded as
additive groups:(

(a, b), t
)
·
(
(a′, b′), t′

)
�→

(
(a+ a′, b+ b′), t+ t′ + a · b′

)
,(

v, t
)
·
(
v′, t′

)
�→

(
v + v′, t+ t′ + a · b′

)
,

where v = (a, b) and v′ = (a′, b′).
More generally, let V be a finite-dimensional real vector space, equipped

with a symplectic form ω. This means that ω is a nondegenerate skew symmetric
bilinear form on V . One has a Heisenberg group H = H(V, ω) associated with the
pair (V, ω). This group is a semi-direct product V �R, where the group structure
is given by the following law:

(v1, t1) · (v2, t2) = (v1 + v2, t1 + t2 + 2ω(v1, v2)) ;

the factor 2 is included for conventional reasons. This group is a central extension
of the additive group V and there is an exact sequence

0 −→ R −→ H(V, ω) −→ V −→ 0 .

A Heisenberg space is a principal H(V, ω)-homogeneous space N , say a
smooth manifold, for some Heisenberg group as above. In other words, H acts (say
by the left) transitively on N with trivial isotropy. So N is actually parametrised
by H and it can be equipped with a Lie group structure coming from that in H.

Consider now the isotropy subgroup G∞ of the null point p∞ := [0′,−1, 1] ∈
∂Hn

C
under the action of PU(n, 1). Let N be the set of unipotent elements in G∞.

It is proved in [67, §4.2] (see also [71]) that N is isomorphic to a Heisenberg group
as above. This group is a semidirect product Cn−1 � R and consists of the so-
called Heisenberg translations {Tζ,t}. These are more easily defined in Sn. For
each ζ ∈ Cn−1, t ∈ R and (w′, wn) ∈ Sn ⊂ Cn one has:

(w′, wn)
Tζ,u−→

(
w′ + ζ , wn + 〈〈w′, ζ〉〉 + 1

2
〈〈ζ, ζ〉〉 − 1

2
it
)
.
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Notice that each orbit in Sn is a horosphere Hu, and N acts simply transitively
on H0 := ∂Sn.

One also has the one-parameter group D = {Du} of real Heisenberg dilata-
tions: For each u > 0 define

(w′, w) Dt−→
(√

uw′ , uwn

)
.

Each dilatation carries horospheres into horospheres.
These two groups of transformations were used in [71] to equip the complex

hyperbolic space with horospherical coordinates, obtained by identifying Sn with
the orbit of a “marked point” under the action of the group N ·D generated by
Heisenberg translations and Heisenberg dilatations. The choice of “marked point”
is the obvious one: (0′, 1

2 ) ∈ Sn, the inverse image under the map B of the centre
0 = [0′, 0, 1] ∈ Hn

C
.

We thus get an identification (Cn−1 × R× R+)
∼=−→ Hn

C
given by

(ζ, t, u) �→
(
ζ ,

1

2

(
1− 〈〈ζ, ζ〉〉 − u+ it

)
,

1

2

(
1− 〈〈ζ, ζ〉〉 − u+ it

))
.

Following [71] we call (ζ, t, u) ∈ Cn−1 × R × R+ the horospherical coordinates of
the corresponding point in Hn

C
.

From the previous discussion we also get a specific identification of ∂Hn
C
\

q∞ ∼= N. Thence the sphere at infinity can be thought of as being “the horosphere”
of level 0, and if we remove from it the point q∞, then it carries the structure of
a Heisenberg space Cn−1 × R where the group operation is

(ζ, t) · (ζ ′, t′) =
(
ζ + ζ ′ , t+ t′ + 2�(〈〈ζ, ζ ′〉〉

)
.

We now consider a point q ∈ ∂Hn
C
, the family {Hu(q)} of horospheres cen-

tred at q, and the pencil of all real geodesics in Hn
C
ending at q. Just as in real

hyperbolic geometry, one has (see [67, §4.2] or [71, §1.3]) that every such geodesic
is orthogonal to every horosphere Hu(q). Thence, for every u, u′ ≥ 0, the geodesic
from q to a point x ∈ Hu(q) meets the horosphere Hu′(q) at exactly one point. This
gives a canonical identification Π : Hu(q)→ Hu′(q) called the geodesic perspective
map. In particular we get an identification between ∂Hn

C
= H0(q) and every other

horosphere.

2.3.2 The geometry at infinity

Just as there is a deep relation between real hyperbolic geometry and the conformal
geometry on the sphere at infinity (as described in Chapter 1), so too there is a
deep relation between the geometry of complex hyperbolic space and a geometry
on its sphere at infinity. In this case the relevant geometry is the spherical CR (or
Heisenberg) geometry. In both cases (real and complex hyperbolic geometry) this
relation can be explained by means of the geodesic perspective introduced above.
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In real hyperbolic geometry, geodesic perspective from a point q in the sphere
at infinity identifies the various horospheres centred at q, and the corresponding
maps between these spheres are conformal. This yields to the fact (explained
in Chapter 1) that real hyperbolic geometry in the open ball degenerates into
conformal geometry in the sphere at infinity. There is an analogous phenomenon
in complex hyperbolic space, which we now briefly explain.

Recall that a CR-structure on a manifold means a codimension 1 sub-bundle
of its tangent bundle which is complex and satisfies certain integrability conditions.
In general, CR-manifolds arise as boundaries of complex manifolds, as for instance
real hypersurfaces in complex manifolds, which carry a natural CR-structure.

In our setting, every horosphere, including ∂Hn
C
= H0, is a real hypersurface in

Pn
C
and therefore carries a natural CR-structure. This is determined at each point

by the unique complex (n−1)-dimensional subspace subspace of the bundle tangent
to the corresponding horosphere. In fact, since real geodesics are orthogonal to all
horospheres, the CR-structure can be regarded as corresponding to the Hermitian
orthogonal complement of the line field tangent to the geodesics emanating from
q, the centre of the horosphere in question. Therefore, it is clear that the geodesic
perspective maps preserve the CR-structures on horospheres.

We are in fact interested in a refinement of this notion: spherical CR-struc-
tures:

Definition 2.3.2. A manifold M of dimension 2n− 1 has a spherical CR-structure
if it has an atlas which is locally modeled on the sphere S2n−1 with coordinate
changes lying in the group PU(n, 1).

Amongst CR-manifolds, the spherical CR-manifolds are characterised as be-
ing those for which the Cartan connection on the CR-bundle has vanishing curva-
ture.

Now consider the sphere S2n−1 ∼= ∂Hn
C
. Then one has that PU(n, 1) acts on

it by automorphisms that preserve the spherical CR-structure, and one actually
has that every CR-automorphism of the sphere is an element in PU(n, 1). Thus
one has that every CR-automorphism of the sphere at infinity corresponds to a
holomorphic isometry of Hn

C
.

In particular, the Heissenberg group N acts by left multiplication on the
sphere at infinity, and by holomorphic isometries on complex hyperbolic space.

2.4 Isometries of the complex hyperbolic space

This section is based on [67]. We consider the ball model for Hn
C
⊂ Pn

C
, equipped

with the Bergman metric, and we recall that PU(n, 1) is the group of holomorphic
isometries of the complex hyperbolic n-space Hn

C
. When n = 1 the space H1

C

coincides with H2
R
, the group PU(n, 1) is PSL(2,R), and we know that its elements

are classified into three types: elliptic, parabolic and hyperbolic. This classification
is determined by their dynamics (the number and location of their fixed points),
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and also according to their trace. We will see that a similar classification holds for
isometries of H2

C
, and to some extent also for those of Hn

C
.

2.4.1 Complex reflections

Recall that in Euclidean geometry reflections play a fundamental role. Given a
hyperplane H ⊂ Rn, a way for defining the reflection on H is to look at its
orthogonal complement H⊥, and consider the orthogonal projections,

πH : Rn → H and πH⊥ : Rn → H⊥ .

Then the reflection on H is the map

x �→ πH(x)− πH⊥(x) .

This notion extends naturally to complex geometry in the obvious way. Yet,
in complex geometry this definition is too rigid and it is convenient to make it
more flexible. For instance a hyperplane in C is just a point, say the origin 0, and
the reflection above yields to the antipodal map, while we would like to get the
full group U(1). Thus, more generally, given a complex hyperplane H ⊂ Cn, to
define a reflection on H we consider the orthogonal projections

πH : Rn → H and πH⊥ : Rn → H⊥ ,

as before, but now with respect to the usual Hermitian product in Cn. Then a
reflection on H is any map of the form

x �→ πH(x) + ζ · πH⊥(x) ,

where ζ is a unit complex number. In this way we get, for instance, that the group
of such reflections in C2 is U(2) ∼= SU(2)×U(1) ∼= S3 × S1 .

Sometimes the name “complex reflection” requires also that the complex
number ζ be a root of unity, so that the corresponding automorphism has finite
order. And it is also usual to extend this concept so that complex reflection means
an automorphism of Cn that leaves a hyperplane fix-point invariant. This includes
for instance, automorphisms constructed as above but considering different Her-
mitian products, and this brings us closer to the subject we envisage here.

Denote by 〈 , 〉 the Hermitian product on Cn,1 corresponding to the quadratic
formQ of signature (n, 1). Let F be a complex linear subspace of Cn,1 such that the
restriction of the product 〈 , 〉 to F is nondegenerate. Then there is an orthogonal
direct-sum decomposition

Cn,1 = F ⊕ F⊥ ,

where F⊥ is the Q-orthogonal complement of F :

F⊥ := {z ∈ Cn,1
∣∣ 〈z, f〉 = 0 ∀ f ∈ F } .

Let πF , πF⊥ be the corresponding orthogonal projections of Cn,1 into F and F⊥

respectively, so one has πF⊥(z) = z − πF (z). Then following [67, p. 68] we have:
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Definition 2.4.1. For each unit complex number ζ, define the complex reflection in
F with reflection factor ζ to be the element in U(n, 1) defined by

�ζF (z) = πF (x) + ζ πF⊥(z) .

When ζ = −1 the complex reflection is said to be an inversion.

For instance, if F is 1-dimensional and V is a nonzero vector in this linear
space, then

πF (z) =
〈z, V 〉
〈V, V 〉 V ,

and therefore the complex reflection in F with reflection factor ζ is

�ζF (z) = ζz + (1− ζ)
〈z, V 〉
〈V, V 〉 V .

In particular, every complex reflection is conjugate to an inversion and in this case
the formula is

IF (z) = −z + 2
〈z, V 〉
〈V, V 〉 V . (2.4.1)

Notice that classically reflections are taken with respect to a hyperplane,
which is not required here: We now have reflections with respect to points, lines,
etc., which is in fact a concept coming from classical geometry, where one speaks
of symmetries with respect to points, lines, planes, etc.

Of course our interest is in looking at the projectivisations of these maps,
that we call complex reflections as well.

Example 2.4.2. Consider in C2,1 the vector v = (−1, 1, 0), which is positive for the
Hermitian product

〈z, w〉 = z1w̄1 + z2w̄2 − z3w̄3 .

The inversion on the line F spanned by v is the map

Iv(z1, z2, z3) = (−z2,−z1,−z3).

Notice that H2
C

is contained in the coordinate patch of P2
C

with homogeneous
coordinates
[u1 : u2 : 1]. In these coordinates the automorphism of H2

C
determined by Iv is

the map [u1 : u2 : 1] �→ [u2 : u1 : 1]. Notice also that in this example the points
in H2

C
with homogeneous coordinates [u : u : 1] are obviously fixed points of the

inversion Iv. Indeed these points form a complex geodesic in H2
C
, which is the

projectivisation of the orthogonal complement of F :

F⊥ = {(w1, w2, w3) ∈ C2,1 |w1 = −w2} .

Now consider in C2 the inversion with respect to the negative vector w = (0, 0, 1).
The inversion is: Iw(z) = (−1 + 2z3) z . Its fixed point set in P2

C
consists of the
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point [0 : 0 : 1], which is the centre of the ball H2
C
, together with the complex line

in P2
C
consisting of points with homogeneous coordinates [u1 : u2 : 0]. These points

are the projectivisation of the orthogonal complement of the line spanned by w;
they are all positive vectors (or the origin).

Thence in the first case, the complex reflection has a complex geodesic of fixed
points in H2

C
and the corresponding projective map has a circle of fixed points in

S3 = ∂H2
C
, plus another fixed point far from H2

C
. In the second example the reflec-

tion has a single fixed point in H2
C
and the remaining fixed points form a complex

projective line in P2
C
\ (H2

C). This illustrates the two types of complex reflections
one has in H2

C
. Of course similar considerations apply in higher dimensions, but

in that case there is a larger set of possibilities.

2.4.2 Dynamical classification of the elements in PU(2, 1)

Every automorphism γ of Hn
C
lifts to a unitary transformation γ̃ ∈ SU(n, 1). Just

as for classical Möbius transformations in PSL(2,C) their geometry and dynamics
is studied by looking at their liftings to SL(2,C), here too we study the geometry
and dynamics of γ by looking at their liftings γ̃ ∈ U(n, 1). The fixed points of
γ correspond to eigenvectors of γ̃. By the Brouwer fixed point theorem, every
automorphism of the compact ball H

n

C := Hn
C
∪ ∂Hn

C
has a fixed point.

The following definition generalises to complex hyperbolic spaces the corre-
sponding notions from the classical theory of Möbius transformations.

Definition 2.4.3. An element g ∈ PU(n, 1) is called elliptic if it has a fixed point
in Hn

C
; it is parabolic if it has a unique fixed point in ∂Hn

C
, and loxodromic (or

hyperbolic) if it fixes a unique pair of points in ∂Hn
C
.

In fact this classification can be refined as follows. Recall that a square matrix
is unipotent if all its eigenvalues are 1.

Definition 2.4.4. An elliptic transformation in PU(n, 1) is: regular if it can be
represented by an element in SU(n, 1) whose eigenvalues are pairwise different,
or a complex reflection otherwise (and this can be either with respect to a point
or to a complex geodesic). There are two classes of parabolic transformations in
PU(n, 1): unipotent if it can be represented as a unipotent element of PU(n, 1),
and ellipto-parabolic otherwise. A loxodromic element is strictly hyperbolic if it
has a lifting whose eigenvalues are all real.

One has (see [67, p. 201]) that if γ is ellipto-parabolic, then there exists a
unique invariant complex geodesic in Hn

C
on which γ acts as a parabolic element

of PSL(2,R) ∼= IsoH1
C
∼= IsoH2

R
. Furthermore, around this geodesic, γ acts as a

nontrivial unitary automorphism of its normal bundle.
From now on in this section, we restrict to the case n = 2 and we think of

H2
C
as being the ball in P2

C
consisting of points whose homogeneous coordinates

satisfy |z1|2 + |z2|2 < |z3|2.



58 Chapter 2. Complex Hyperbolic Geometry

Let g ∈ PU(2, 1) be an elliptic element. Since PU(2, 1) acts transitively on
H2

C
, we can assume that [0 : 0 : 1] is fixed by g. If g̃ denotes a lift to SU(2, 1) of g

then (0, 0, 1) is an eigenvector of g̃, so it is of the form

g̃ =

(
A 0
0 λ

)
,

where A ∈ U(2) and λ ∈ S1. Then every eigenvector of g̃ has module 1 and g
generates a cyclic group with compact closure.

Conversely, if g̃ is as above (an element in U(2)× S1), or a conjugate of such
an element, then the transformation g induced by g̃ is elliptic.

When g is regular elliptic, then it has precisely three fixed points in P2
C
, which

correspond to (0, 0, 1) and two other distinct eigenvectors, both being positive
vectors with respect to the Hermitian product 〈·, ·〉. If g is elliptic but not regular,
then there exist two cases: if g is a reflection with respect to a point x in H2

C
,

then the set of fixed points of g is the polar to x which does not meet H2
C
∪ ∂H2

C
.

If g is a reflection with respect to a complex geodesic, then g has a whole circle
of fixed points contained in ∂H2

C
. Therefore the definitions of elliptic, loxodromic

and parabolic elements are disjoint.

Now we assume g ∈ PU(2, 1) is a loxodromic element. Let g̃ ∈ SU(2, 1) be a
lift of g, we denote by x and y the fixed points of g and by x̃ and ỹ some respective
lifts to C2,1. Let Σ be the complex geodesic determined by x and y, and let σ be
the geodesic determined by x and y. We can assume that Σ = H1

C
× 0; in other

words, we can assume x = [−1 : 0 : 1], y = [1 : 0 : 1]. To see this, notice that if
z ∈ σ, then there exists h ∈ PU(2, 1) such that h(z) = (0, 0), so h(L) contains the
origin of B2 = H2

C
. The stabiliser of the origin is U(2) and it acts transitively on

the set of complex lines through the origin, so there exists h1 ∈ PU(2, 1) such that
h1(Σ) = H1

C
× 0 and h1(σ) contains the origin. Composing with a rotation in H1

C
,

we prove the statement.

We see that any vector c polar to Σ is an eigenvector of g̃. In fact, if v ∈ C2,1

and PC(v) ∈ Σ, then 〈g̃(c), g̃(v)〉 = 〈c, v〉 = 0, then g̃(c) is polar to g(Σ) = Σ, but
we know that the complex dimension of the orthogonal complement (respect to
〈·, ·〉) of the vector subspace inducing Σ is 1.

Now, c = (0, 1, 0) is a vector polar to Σ, then we can assume [0 : 1 : 0] is a
fixed point of g. Thus g̃ has the form⎛⎝ a 0 b

0 e−2iθ 0
b 0 a

⎞⎠ ,

and the transformation of PSL(2,C) induced by the matrix

e−iθ

(
a b
b a

)
,
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is a hyperbolic transformation preserving the unitary disc of C and with fixed
points 1, −1. With this information it is not hard to see that we can take g̃ of the
form ⎛⎝ eiθ coshu 0 eiθ sinhu

0 e−2iθ 0
eiθ sinhu 0 eiθ coshu

⎞⎠ .

We notice that g̃ has an eigenvalue in the open unitary disc, one in S1 and
another outside the closed unitary disc. Since they are parabolic, all of these have
a unique fixed point in ∂H2

C
, but they have a different behaviour in P2

C
\H2

C
.

Example 2.4.5. a) The transformation induced by the matrix

g̃ =

⎛⎝ 1 + i/2 0 1/2
0 1 0
1/2 0 1− i/2

⎞⎠
is a unipotent transformation with a whole line of fixed points in P2

C
, tangent

to ∂H2
C
.

b) The transformation in SU(2, 1) given by the matrix

g̃ =

⎛⎜⎝ 1
3

2
√
2

3 0

− 4
√
2

3
2
3

√
3

− 2
√
6

3

√
3
3 2

⎞⎟⎠
induces a unipotent automorphism of H2

C
with one single fixed point in P2

C
.

c) The transformation in SU(2, 1) given by⎛⎝ 2+εi
2 eiθ 0 εi

2 e
iθ

0 e−2iθ 0
− εi

2 e
iθ 0 2−εi

2 eiθ

⎞⎠ ,

where ε �= 0, induces an ellipto-parabolic automorphism of H2
C
, with fixed

points [−1 : 0 : 1] ∈ ∂H2
C
and [0 : 1 : 0].

Remark 2.4.6. We recall that complex hyperbolic space has (nonconstant) nega-
tive sectional curvature. As such, the classification given above of its isometries,
into elliptic, parabolic and loxodromic (or hyperbolic), actually fits into a similar
classification given in the general setting of the isometries of spaces of nonpositive
curvature, and even more generally, for CAT(0)-spaces. We refer to [13], [32] for
thorough accounts of this subject. The concept of CAT(0)-spaces captures the
essence of nonpositive curvature and allows one to reflect many of the basic prop-
erties of such spaces, as for instance Hn

R
, and Hn

C
, in a much wider setting. The

origins of CAT(0)-spaces, and more generally CAT(κ)-spaces, are in the work of
A. D. Alexandrov, where he gives several equivalent definitions of what it means
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for a metric space to have curvature bounded above by a real number κ. The
terminology “CAT(κ)” was coined by M. Gromov in 1987 and the initials are in
honour of E. Cartan, A. Alexandrov and V. Toponogov, each of whom considered
similar conditions.

Yet, we notice that our main focus in this work concerns automorphisms of
Pn
C
, whose sectional curvature, when we equip it with the Fubini-Study metric,

is strictly positive, ranging from 1/4 to 1. Moreover, the action of PSL(n + 1,C)
is not by isometries with respect to this metric. Thence, these transformations
do not fit in the general framework of isometries of CAT(0)-spaces. Even so, we
will see in the following chapter that the elements of PSL(3,C) are also naturally
classified into elliptic, parabolic and hyperbolic, both in terms of their geometry
and dynamics, and also algebraically.

2.4.3 Traces and conjugacy classes in SU(2, 1)

We now describe Goldman’s classification of the elements in PU(2, 1) by means of
the trace of their liftings to SU(2, 1).

Let τ : SU(2, 1) → C be the function mapping an element in SU(2, 1) to
its trace. Notice that a holomorphic automorphism of H2

C
has a trace which is

well-defined up to multiplication by a cubic root of unity. The following result of
linear algebra is well known:

Lemma 2.4.7. Let E be a Hermitian vector space, and let A be a unitary automor-
phism of E. The set of eigenvalues of A is invariant under the inversion ı in the
unitary circle of C:

ı : C∗ → C∗

z �→ 1

z̄
.

Proof. We assume the Hermitian form on E is given by a Hermitian matrix M .
The automorphism A is unitary if and only if

ĀtMA = M.

In other words,

A = M−1(Āt)−1M.

Thus A has the same eigenvalues as (Āt)−1, which means that λ is an eigenvalue
of A if and only if (λ)−1 is an eigenvalue. �

Notice that when g̃ ∈ SU(2, 1), then g̃ has at least an eigenvalue of module
1. Moreover, the eigenvalues not lying in the unitary circle are given in an ı-
invariant pair. Particularly, if g̃ has two eigenvalues of the same module, then
every eigenvalue has module 1.
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Lemma 2.4.8. The monic polynomial χ(t) = t3 − xt2 + yt− 1 with complex coeffi-
cients has repeated roots if and only if

f̃(x, y) = −x2y2 + 4(x3 + y3)− 18xy + 27

=

∣∣∣∣∣∣∣∣∣∣
1 −x y −1 0
0 1 −x y −1
3 −2x y 0 0
0 3 −2x y 0
0 0 3 −2x y

∣∣∣∣∣∣∣∣∣∣
= 0.

Proof. We assume χ has repeated roots, then χ and its derivative χ′ have a com-
mon root. We suppose

χ(t) = (t− a1)(t− a2)(t− a3)

and
χ′(t) = 3(t− a1)(t− a4).

Then
3(t− a4)χ(t) = (t− a2)(t− a3)χ

′(t),

or which is the same,

3tχ(t)− 3a4χ(t)− t2χ′(t) + (a2 + a3)tχ
′(t)− a2a3χ

′(t) ≡ 0.

This means that the vectors obtained from the polynomials tχ(t), χ(t), t2χ′(t),
tχ′(t), χ′(t), taking the coefficients of the terms with degree ≤ 4, are linearly
independent. But such vectors are precisely those row vectors of the determinant
defining f̃(x, y). Thence f̃(x, y) = 0.

Conversely, if we assume that f̃(x, y) = 0, then there exist complex numbers
c1, . . . , c5, not all zero, such that

c1tχ(t) + c2χ(t) + c3t
2χ′(t) + c4tχ

′(t) + c5χ
′(t) ≡ 0 .

Then (c1t + c2)χ(t) = −(c3t2 + c4t + c5)χ
′(t), which implies that χ(t) and χ′(t)

have a common root because deg(χ) = 3. Therefore χ(t) has a repeated root. �
We denote by C3 = {ω, ω2, 1} ⊂ C the set of cubic roots of unity, and 3C3

denotes the set {3ω, 3ω2, 3}. We observe that there is a short exact sequence

1→ C3 → SU(2, 1)→ PU(2, 1)→ 1.

Let τ : SU(2, 1) → C be the function which assigns to an element of SU(2, 1) its
trace. Goldman’s classification theorem involves the real polynomial f : C → R
defined by f(z) = |z|4 − 8Re(z3) + 18|z|2 − 27. In other words f(z) = −f̃(z, z̄),
where

f̃(x, y) = −x2y2 + 4(x3 + y3)− 18xy + 27 ,

is the discriminant of the (characteristic) polynomial χ(t) = t3 − xt2 + yt− 1.
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Theorem 2.4.9. [67, Theorem 6.2.4] The map τ : SU(2, 1)→ C defined by the trace
is surjective, and if A1, A2 ∈ SU(2, 1) satisfy τ(A1) = τ(A2) ∈ C − f−1(0), then
they are conjugate. Furthermore, supposing A ∈ SU(2, 1) one has:

1) A is regular elliptic if and only if f(τ(A)) < 0.

2) A is loxodromic if and only if f(τ(A)) > 0.

3) A is ellipto-parabolic if and only if A is not elliptic and τ(A) ∈ f−1(0)−3C3.

4) A is a complex reflection if and only if A is elliptic and τ(A) ∈ f−1(0)−3C3.

5) τ(A) ∈ 3C3 if and only if A represents a unipotent parabolic element.

Proof. Let χA(t) be the characteristic polynomial of A:

χA(t) = t3 − xt2 + yt− 1.

The eigenvalues λ1, λ2, λ3 of A are the roots of χA(t). We have

x = τ(A) = λ1 + λ2 + λ3,

and
λ1λ2λ3 = det(A) = 1 . (2.4.10)

The coefficient y of χA is equal to

y = λ1λ2 + λ2λ3 + λ3λ1 = λ1 + λ2 + λ3 = τ(A).

Thus,
χA(t) = t3 − τ(A)t2 + τ(A) t− 1.

If A ∈ SU(2, 1), then its eigenvalues satisfy equation 2.4.10 and the set

λ̃ = {λ1, λ2, λ3},

of these eigenvalues satisfies:

λ ∈ λ̃ ⇒ ı(λ) = λ̄−1 ∈ λ̃ . (2.4.11)

Let Λ̃ (respectively Λ) be the set of unordered triples of complex numbers satisfying
(2.4.10) (respectively (2.4.11) ). Then ı induces an involution in Λ̃ (denoted by
the same) whose set of fixed points is Λ. The function

χ : Λ̃→ C2

λ̃ �→ (λ1 + λ2 + λ3, λ1λ2 + λ2λ3 + λ3λ1)

is bijective, with inverse function

C2 → Λ̃

(x, y) �→ {t ∈ C : t3 − xt+ yt− 1 = 0}.
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The involution j on C2 defined as

j(x, y) = (ȳ, x̄)

satisfies

χ ◦ ı = j ◦ χ

and χ restricted to the set of fixed points of ı is a bijection on the set of fixed
points of j in C2, which is the image of

e : C→ C2

z �→ (z, z̄).

One has e−1 ◦ χ|Λ = τ . Let Λ̃sing ⊂ Λ̃ be the set of unordered triples {λ1, λ2, λ3},
not all the λj being different. Lemma 2.4.8 implies that χ restricted to Λ̃sing is a
bijection on the set

{(x, y) ∈ C2 : f̃(x, y) = 0},

where

f̃(x, y) =

∣∣∣∣∣∣∣∣∣∣
1 −x y −1 0
0 1 −x y −1
3 −2x y 0 0
0 3 −2x y 0
0 0 3 −2x y

∣∣∣∣∣∣∣∣∣∣
= −x2y2 + 4(x3 + y3)− 18xy + 27.

We define Λ0 = Λ− Λ̃sing and notice that τ |Λ∩Λ̃sing
: Λ∩ Λ̃sing → f−1(0) and

τ |Λ0
: Λ0 → C − f−1(0) are bijections. In fact, in order to prove that τ |Λ∩Λ̃sing

is injective it is enough to see that τ = e−1 ◦ χ is the composition of injective
functions. Now, if z ∈ f−1(0), then 0 = f(z) = −f̃(z, z̄) = −f̃(e(z)), but there
exists λ ∈ Λ such that χ(λ) = e(z), then f̃(χ(λ)) = 0, which implies that λ ∈
Λ∩ Λ̃sing. Moreover τ(λ) = e−1 ◦χ(λ) = z. Therefore, τ |Λ∩Λ̃sing

is onto. The proof

of the fact that τ |Λ0
is bijective is straightforward.

We have proved that τ : SU(2, 1) → C is onto. However we have implic-
itly assumed that Λ is the image of a correspondence defined in SU(2, 1). Such
correspondence is defined by

L : SU(2, 1)→ Λ

A �→ {λ1, λ2, λ3},

where λ1, λ2, λ3 are the eigenvalues of A. We must check that L is onto. We define
λ = {λ1, λ2, λ3} ∈ Λ. Notice there are only two possibilities:
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(i) |λi| = 1 for i = 1, 2, 3; in this case

A =

⎛⎝ λ1

λ2

λ3

⎞⎠ ∈ SU(2, 1),

and L(A) = λ.

(ii) λ3 = reiθ, 0 < r < 1 and we can take λ2 = e−2iθ, λ1 = (1/r)eiθ. We take
r = e−u for some u ∈ R+, then

A =

⎛⎝ cosh(u)eiθ 0 sinh(u)eiθ

0 e−2iθ 0
sinh(u)eiθ 0 cosh(u)eiθ

⎞⎠ ∈ SU(2, 1),

and L(A) = λ.

If A1, A2 ∈ SU(2, 1) satisfy τ(A1) = τ(A2) ∈ C − f−1(0), then the charac-
teristic polynomials of A1 and A2 are equal, which implies they have the same
eigenvalues (they are different amongst them). Then A1 and A2 are conjugate of
the same diagonal matrix, so A1 and A2 are conjugate.

We define Λl
0 = {λ ∈ Λ : λ ∩ S1 has one single element }. We can suppose

that
|λ1| > 1, |λ2| < 1, |λ3| = 1 . (2.4.12)

In particular, Λl
0 ⊂ Λ0, and given that λ1 satisfies 2.4.12 , we obtain unique λ2, λ3

by means of the relations

λ2 = (λ1)
−1, λ3 =

λ1

λ1

which proves that Λl
0 is homeomorphic to the exterior of the unitary disc of C

and therefore it is connected. [The topology on Λ̃ is the topology induced by the
bijective function χ : Λ̃→ C2 and the topology on Λ is the subspace topology.]

We denote by Λe
0 = Λ0 − Λl

0. If λ ∈ R \ {0, 1,−1}, then

τ(λ, λ−1, 1) = λ+ λ−1 + 1

which shows that τ |�(Λl
0)

: �(Λl
0)→ R\ [−1, 3] is a bijection, where �(Λl

0) denotes

the set of triples in Λl
0: We note that τ |�(Λl

0)
is injective because it is the compo-

sition of injective functions and it is not hard to check that it is onto. Notice that
f is positive in R \ [−1, 3]. In fact, if x ∈ R, then

f(x) = x4 − 8x3 + 18x2 − 27 = (x+ 1)(x− 3)3.

We claim that τ |Λl
0
: Λl

0 → f−1(R+) is bijective. In fact, first notice that

τ(Λl
0) ⊂ f−1(R+), for otherwise, using that Λl

0 is connected, we can find a triplet
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λ ∈ Λl
0 such that f(τ(λ)) = 0, which means λ ∈ Λ0 ∩ Λ̃sing = ∅, a contradiction.

That τ is injective follows from the fact that it is a composition of the injective
functions e−1 and χ.

In order to prove τ(Λl
0) = f−1(R+), we take z ∈ f−1(R+), we know that

z = τ(λ), for some λ ∈ Λ. We assume that λ /∈ Λl
0, then every element in λ has

module 1, which implies that

|z| = |τ(λ)| ≤ 3,

and then
|�(z3)| ≤ |z3| ≤ 27,

therefore,
f(z) ≤ (3)4 − 8(−27) + 18(3)2 − 27 = 0,

which is a contradiction.
We now claim that the function τ |Λe

0
is a bijection on f−1(R−). We prove first

that τ(Λe
0) ⊂ f−1(R−). In fact, if λ ∈ Λe

0, then the elements in λ are different and
they have module 1. We know that τ |Λe

0
is injective, because it is the restriction of

the injective function τ |Λ0 . Finally, τ(Λ
e
0) = f−1(R−), because τ(Λl

0) = f−1(R+).
Hence f(τ(A)) < 0 if and only if the eigenvalues of A are distinct unitary

complex numbers, which happens if and only if A is regular elliptic. One has
f(τ(A)) > 0 if and only if A has exactly one eigenvalue in S1, if and only if A is
loxodromic.

Now we consider the case when f(τ(A)) = 0. Clearly A ∈ PU(2, 1) is unipo-
tent if and only if it has a lift to SU(2, 1) having equal eigenvalues, and therefore
1
3τ(A) ∈ C3. Conversely, if

1
3τ(A) = ω ∈ C3, then

χA(t) = t3 − 3ωt2 + 3ω2t− 1 = (t− ω)3,

thus A has three repeated eigenvalues and it is projectively equivalent to a unipo-
tent matrix.

Finally we consider the case when τ(A) ∈ f−1(0) − 3C3. Then A has an
eigenvalue ζ ∈ S1 of multiplicity 2 and the other eigenvalue is equal to ζ−2. Given
that τ(A) /∈ 3C3, we have ζ �= ζ−2. There are two cases depending on the Jordan
canonical form of A: if A is diagonalizable, then A is elliptic (a complex reflection).
This case splits in two cases, depending on whether the ζ-eigenspace Vζ is positive
or indefinite: if Vζ is indefinite, then A is a complex reflection with respect to
the complex geodesic corresponding to Vζ ; if Vζ is positive, then A is a complex
reflection with respect to the point corresponding to the ζ−2-eigenspace. If A is
not diagonalizable, then A has a repeated eigenvalue of module 1 and it has Jordan
canonical form ⎛⎝ λ 1 0

0 λ 0
0 0 λ−2

⎞⎠ .

In this case the eigenvector corresponding to λ is e1 and A is ellipto-parabolic. �
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Corollary 2.4.13. Let ı : C∗ → C∗ be the inversion on the unitary circle; i.e.,
ı(z) = 1/z̄. If the set of eigenvalues of A ∈ SL(3,C) is invariant under ı, then:

(i) The eigenvalues of A are unitary complex numbers, and pairwise different if
and only if f(τ(A)) < 0.

(ii) Precisely one eigenvalue is unitary if and only if f(τ(A)) > 0.

This corollary can be proved using the proof of Lemma 2.4.8. This is useful
for proving Theorem 4.3.3, which is an extension to the elements in PSL(3,C) of
the classification Theorem 2.4.9.

Remark 2.4.14. In [44] the authors look at the group of quaternionic Möbius trans-
formations that preserve the unit ball in the quaternionic space H, and they use
this to classify the isometries of the hyperbolic space H4

R into six types, in terms of
their fixed points and whether or not they are conjugate in U(1, 1;H) to an element
of U(1, 1;C). In [72] the author uses also quaternionic transformations to refine the
classification of the elements in Conf+(S4) using algebraic invariants, and in [73]
the authors characterize algebraically the isometries of quaternionic hyperbolic
spaces (see also [43]). In Chapter 10 we follow [202] and use Ahlfor’s characteriza-
tion of the group Conf+(S4) ∼= Iso+(H5

R) as quaternionic Möbius transformations
in order to describe the canonical embedding Conf+(S4) ↪→ PSL(4,C) that ap-
pears in twistor theory, and use this to construct discrete subgroups of PSL(4,C).

2.5 Complex hyperbolic Kleinian groups

As before, let U(n, 1) ⊂ GL (n+ 1,C) be the group of linear transformations that
preserve the quadratic form |z1|2 + · · · + |zn|2 − |zn+1|2 . We let V− be the set
of negative vectors in Cn,1 for this quadratic form. We know already that the
projectivization [V−] is a 2n-ball that serves as a model for complex hyperbolic
space HnC and PU(n, 1) is its group of holomorphic isometries (see Section 2.2).

Definition 2.5.1. A subgroup Γ ⊂ PSL(n+ 1,C) is a complex hyperbolic Kleinian
group if it is conjugate to a discrete subgroup of PU(n, 1).

A fundamental problem in complex hyperbolic geometry is the construction
and understanding of complex hyperbolic Kleinian groups.

This problem goes back to the work of Picard and Giraud (see the appendix
in [67]), and it has been subsequently addressed by many authors, as for instance
Mostow, Deligne, Hirzebruch and many others, as a means of generalising the
classical theory of automorphic forms and functions, and also as a means of con-
structing complex manifolds with a rich geometry. Complex hyperbolic Kleinian
groups can also be regarded as being discrete faithful representations of a group
Γ into PU(n, 1).

Two basic questions are the construction of lattices in PU(n, 1), and the
existence of lattices which are not commensurable with arithmetic lattices. Let us
explain briefly what this means.
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A discrete subgroup Γ of PU(n, 1) (and more generally of a locally compact
group G), equipped with a Haar measure, is said to be a lattice if the quotient
PU(n, 1)/Γ has finite volume. The lattice is said to be uniform (or cocompact) if
the quotient PU(n, 1)/Γ is actually compact.

A subgroup Γ of U(n, 1) is arithmetic if there is an embedding U(n, 1)
ι
↪→

GL (N,C), for some N , such that the image of Γ is commensurable with the inter-
section of ι(U(n, 1)) with GL (N,Z). That is, ι(Γ) ∩GL (N,Z) has finite index in
ι(Γ) and in GL (N,Z).

Complex hyperbolic space is, like real hyperbolic space, a noncompact sym-
metric space of rank 1, and an important problem in the study of noncompact
symmetric spaces is the relationship between arithmetic groups and lattices: while
all arithmetic groups are lattices (by [29]), the question of whether or not all
lattices are arithmetic is rather subtle. We know from Margulis’ work that for
symmetric spaces of rank ≥ 2, all irreducible lattices are arithmetic. The rank 1
symmetric spaces of noncompact type come in three infinite families, real, complex
and quaternionic hyperbolic spaces: Hn

R
,Hn

C
,Hn

H, and one has also the Cayley (or
octonionic) hyperbolic plane H2

O
. We know by [81] (and work by K. Corlette) that

all lattices on Hn
H and H2

O
are arithmetic, and we also know by [80] that there

are nonarithmetic lattices acting on real hyperbolic spaces of all dimensions. In
complex hyperbolic space Hn

C
, we know that there are nonarithmetic lattices for

n = 2, 3, by [50] respectively. The question of existence of nonarithmetic lattices
on Hn

C
is open for n ≥ 4 and this is one of the major open problems in complex

hyperbolic geometry (see [50]).
There is a huge wealth of knowledge in literature about complex hyperbolic

Kleinian groups published the last decades by various authors, as for instance P.
Deligne, G. Mostow, W. Goldman, J. Parker, R. Schwartz, N. Gusevskii, E. Falbel,
P. V. Koseleff, D. Toledo, M. Kapovich, E. Z. Xia, among others. Here we mention
just a few words that we hope will give a taste of the richness of this branch of
mathematics.

2.5.1 Constructions of complex hyperbolic lattices

We particularly encourage the reader to look at the beautiful articles [105] and
[168] for wider and deeper surveys related to the topic of complex hyperbolic
Kleinian groups. Kapovich’s article is full of ideas and provides a very deep under-
standing of real and complex hyperbolic Kleinian groups. Parker’s article explains
the known ways and sources for producing complex hyperbolic lattices (see also
[169]). Below we briefly mention some of Parker’s explanations for lattices, and in
the section below we give other interesting examples of constructions that produce
complex hyperbolic groups which are not lattices.

Parker classifies the methods for constructing complex hyperbolic lattices in
the following four main types, which of course overlap. All these are also present
in the monograph [50], whose main goal is to investigate commensurability among



68 Chapter 2. Complex Hyperbolic Geometry

lattices in PU(n, 1).

i) Arithmetic lattices: The natural inclusion of the integers in the real num-
bers is the prototype of an arithmetic group. This yields naturally to the cele-
brated modular group PSL(2,Z) in PSL(2,R). That construction was generalised
to higher-dimensional complex hyperbolic lattices by Picard in 1882, and then
studied by a number of authors. For instance, let d be a positive square-free in-
teger, let Q(i

√
d) be the corresponding quadratic number field and Od its ring of

integers, a discrete subgroup of C. Let H be a Hermitian matrix with signature
(2, 1) and entries in Od. Let SU(H) be the group of unitary matrices that preserve
H, and let SU(H;Od) be the subgroup of SU(H) consisting of matrices whose
entries are in Od. Then SU(H;Od) is a lattice in SU(H). These type of arithmetic
groups are known as Picard modular groups. We refer to Parker’s article for a wide
bibliography concerning these and other arithmetic constructions in the context
of complex hyperbolic geometry.

ii) The second major technique mentioned by Parker for producing lattices
in complex hyperbolic spaces is to consider objects that are parametrised by some
Hn

C
, with the property that the corresponding group of automorphisms is a complex

hyperbolic lattice. For instance we know that the modular group PSL(2,Z) can be
regarded as being the monodromy group of elliptic functions. Similar results were
known to Poincaré, Schwartz and others for real hyperbolic lattices. In complex
hyperbolic geometry, the first examples of this type of lattices were again given by
Picard in 1885. He considered the moduli space of certain hypergeometric functions
and showed that their monodromy groups were lattices in PU(2, 1), though his
proof of the discreteness of the groups was not complete. This was settled and
extended in [50], where the authors study the monodromy groups of a certain
type of integrals, generalising the classical work of Schwarz and Picard. Under a
certain integrality condition that they call (INT ), they prove that the monodromy
group Γ is a lattice in PU(n, 1); yet, for d > 5 this condition is never satisfied.
They also give criteria for Γ to be arithmetic. Further research along similar lines
was developed in [50], as well as by various other authors, as for instance Le
Vavasseur, Terada, Thurston, Parker and others. Alternative approaches along
this same general line of research have been followed by Allcock, Carlson, Toledo
and others. Thurston’s approach in [224] is particularly interesting and gives an
alternative way of interpreting the (INT )-condition. We refer to Section 3 in [168]
for an account on the construction of lattices arising as monodromy groups of
hypergeometric functions.

iii) A third way for constructing discrete groups is by looking at lattices
generated by complex reflections, or more generally by finding appropriate fun-
damental domains. This approach was introduced by Giraud (see Appendix A in
[67]). Typically, a fundamental domain is a locally finite polyhedron P with some
combinatorial structure that tells us how to identify its faces, called the sides, by
maps in PU(n, 1). Given this information, Poincare’s polyhedron theorem gives
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conditions under which the group generated by the sides pairing maps is discrete,
and it gives a presentation of the group. One way for doing so is to construct
the Dirichlet fundamental domain DΓ(z0) as in Chapter 1: Assume z0 ∈ Hn

C
is not

fixed by any nontrivial element in a given group Γ, then DΓ(z0) is the set of points
in Hn

C
that are closer to z0 than to any other point in its orbit. Its sides are con-

tained in bisectors. Mostow used this approach in [155] to give the first examples of
nonarithmetic lattices in PU(n, 1) (n ≤ 3). Alternative methods for constructing
lattices in this way have been given by Deraux, Falbel, Paupert, Parker, Goldman
and others. Again, we refer to [168] for more on this topic.

iv) A fourth way for constructing complex hyperbolic lattices is using alge-
braic geometry. In fact, the Yau-Miyaoka uniformization theorem ([151]) states
that if M is a compact complex 2-manifold whose Chern classes satisfy c21 = 3c2,
then M is either P2

C
or a complex hyperbolic manifold, i.e., the quotient of H2

C

by some cocompact lattice. Thence the fundamental groups of such surfaces with
c21 = 3c2 are uniform lattices in PU(2, 1). Yet, techniques for having a direct geo-
metric construction of such surfaces were not available until the Ph. D. Thesis of
R. A. Livné [Harvard, Cambridge, Mass., 1981]. A variant on Livné’s technique,
using abelian branched covers of surfaces, was subsequently used in [93] to con-
struct an infinite sequence of noncompact surfaces satisfying c21 = 3c2. See also
[94] and [195].

2.5.2 Other constructions of complex hyperbolic Kleinian groups

In the previous subsection we briefly explained methods for constructing complex
hyperbolic lattices. In the case of H1

C
∼= H2

R
these are the so-called Fuchsian groups

of the first kind, i.e., discrete subgroups of PSL(2,R) ∼= PU(1, 1) whose limit set
is the whole sphere at infinity. And we know that Fuchsian groups of the second
kind are indeed very interesting. It is thus natural to ask about discrete subgroups
of PU(n, 1) which are not lattices. This is in itself a whole area of research, that
we will not discuss here, and we refer for this to the bibliography, particularly to
[67], [105].

One of the classical ways of doing so is by taking discrete subgroups of
PSL(2,R), considering representations of these in PU(2, 1) and then looking at
their deformations. More generally (see [67, Section 4.3.7]) one may consider
Γ ⊂ U(n, 1) a discrete subgroup and consider the natural inclusion U(n, 1) ↪→
U(n+ 1, 1). The composition

Γ ↪→ U(n, 1) ↪→ U(n+ 1, 1) −→ PU(n+ 1, 1)

defines a representation of Γ as a group of isometries of Hn+1
C

. If Γ is a lattice,
then there are strong local rigidity theorems, due to Goldman, Goldman-Millson,
Toledo (for n=1) and Corlette (for n=2). If we now consider Γ to be discrete but
not a lattice, then there is a rich deformation theory, and there are remarkable
contributions by various authors.
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We now give two interesting examples along this line of research, with refer-
ences that can guide the interested reader into further reading.

Example 2.5.2 (Complex hyperbolic triangle groups). In Chapter 1 we discussed
the classical hyperbolic triangle groups. These are discrete subgroups of PSL(2,R)
generated by inversions on the sides (edges) of a triangle in the hyperbolic space
H2

R
, bounded by geodesics, with inner angles π/p, π/q and π/r for some integers

p, q, r > 1; in fact some of these integers can be ∞, corresponding to triangles
having one or more vertices on the visual sphere. When all vertices of the triangle
are at infinity, this is called an ideal triangle.

In their article [70], W. Goldman and J. Parker give a method of constructing
and studying complex hyperbolic ideal triangle groups. These are representations
in PU(2, 1) of hyperbolic ideal triangle groups, such that each standard generator
of the triangle group maps to a complex reflection, taking good care of the way in
which products of pairs of generators are mapped. The fixed point set of a complex
reflection is a complex slice (see Section 2.4.1).

Roughly speaking, the technique for constructing such groups begins with
the embedding of a Fuchsian subgroup Γ0 ↪→ PSL(2,R), and deforms the repre-
sentation inside Hom(Γ,PU(2, 1)). Thus Γ0 preserves the real hyperbolic plane H2,
but in general the deformed groups will not preserve any totally geodesic 2-plane
(which are either complex lines or totally real 2-planes, intersected with the ball).

More precisely, Goldman and Parker look at the space of representations for
a given triangle group, and for this they consider a triple of points (u1, u2, u3) in
∂B2, the boundary of the complex ball B2. Let C1, C2, C3 be the corresponding
complex geodesics they span. Let Σ be the free product of three groups of order
2, and let φ : Σ → PU(2, 1) be the homomorphism taking the generators of Σ
into the inversions (complex reflections) on C1, C2, C3. Conjugacy classes of such
homomorphisms correspond to PU(2, 1)-equivalence classes of triples (u1,u2,u3),
and such objects are parametrised by their Cartan angular invariant φ(C1, C2, C3),
−π

2 ≤ φ ≤ π
2 . The problem they address is: When is the subgroup Γ ⊂ PU(2, 1),

obtained in this way, discrete? They prove that if the embedding of Γ is discrete,
then |φ(x0, x1, x2)| ≤ tan−1

√
125/3, and they conjectured that the condition

|φ(x0, x1, x2)| ≤ tan−1
√
125/3 was also sufficient to have a discrete embedding.

This was referred to as the Goldman-Parker conjecture, and this was proved by
R. Schwartz in [197] (see also [199]).

In this same vein one has R. Schwartz’ article [198], where he discusses tri-
angle subgroups of PU(2, 1) obtained also by complex reflections. Recall there is
a simple formula (2.4.1) for the general complex reflection: Let V+ and V− be as
above and choose a vector c ∈ V+. For every nondegenerate vector u ∈ C2,1 the
inversion on u is

Ic(u) = −u+
2〈u, c〉
〈c, c〉 c , (2.5.3)

and every complex reflection is conjugate to a map of this type. One may also
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consider the Hermitian cross product (see [67, p. 45])

u� v = (u3v2 − u2v3 , u1v3 − u3v1 , u1v2 − u2v1) (2.5.4)

which satisfies: 〈u, u� v〉 = 〈v, u� v〉 = 0.

The two equations 2.5.3 and 2.5.4 enable us to generate discrete groups de-
fined by complex reflections as follows: Take three vectors V1, V2, V3 ∈ V− and set
cj = Vj−1 � Vj+1 (indices are taken modulo 3). For simplicity set Ij = Icj . Then
the complex reflection Ij leaves invariant the complex geodesic determined by the
points [Vj−1] and [Vj+1]. The group Γ := 〈I1, I2, I3〉 is a complex-reflection triangle
group determined by the triangle with vertices [V1], [V2], [V3], which is discrete if
the vertices are chosen appropriately, as mentioned above. These groups furnish
some of the simplest examples of complex hyperbolic Kleinian groups having a
rich deformation theory (see for instance [198], [197], [56]).

This construction gives rise to manifolds with infinite volume obtained as
quotient spaces M = H2

C
/Γ , which are the interior of a compact manifold-with-

boundary, whose boundary ∂M is a real hyperbolic 3-manifold, quotient of a do-
main Ω ⊂ ∂H2

C
∼= S3 by Γ (c.f. [198]).

Example 2.5.5 (Complex hyperbolic Kleinian groups with limit set a wild knot).
As mentioned above, a way of producing interesting complex hyperbolic Kleinian
groups is by taking a Fuchsian group Γ ⊂ PSL(2,R) and considering a representa-
tion of it in PU(2, 1) (or more generally in PU(n, 1)). A specially interesting case is
when Γ is the fundamental group of a hyperbolic surface, say of finite area. There
has been a lot of progress in the study and classification of complex hyperbolic
Kleinian groups which are isomorphic to such a surface group, but this is yet a
mysterious subject which is being explored by several authors. The most natural
way for this is by considering the Teichmüller space T (Γ) of discrete, faithful,
type-preserving representations of Γ in PU(2, 1); type-preserving means that ev-
ery element in Γ that can be represented by a loop enclosing a single puncture is
carried into a parabolic element in PU(2, 1), i.e., an element having exactly one
fixed point on the boundary sphere of the ball in P2

C
that serves as a model for

H2
C
.

In [53] the authors prove that if Γ is the fundamental group of a noncompact
surface of finite area, then the Teichmüller space T (Γ) is not connected. For this
they construct a geometrically finite quasi-Fuchsian group Γ acting on H2

C
whose

limit set is a wild knot, and they show that this group can be also embedded in
PU(2, 1) in such a way that the two embeddings are in different components of
T (Γ). They also prove that in both cases the two representations have the same
Toledo invariant, thence this invariant does not distinguish different connected
components of T (Γ) when the surface has punctures, unlike the case where the
surface is compact.

Let us sketch the construction of Dutenhefner-Gusevskii (see their article for
more details). Consider the 3-dimensional Heisenberg group N, which is diffeo-
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morphic to C× R. Notice that this group carries naturally the Heisenberg norm

‖(ζ, t)‖ =
∣∣‖ζ‖2 + it

∣∣ 1
2 .

The corresponding metric on N is the Cygan metric

ρ0
(
(ζ, t), (ζ ′, t′)

)
= ‖(ζ − ζ ′, t− t′ + 2�〈〈ζ − ζ ′〉〉)‖ .

We use horospherical coordinates {(ζ, t)} for H2
C
, which allow us to identify N

with the horospheres in H2
C
as explained in Subsection 2.3.1; these are the sets of

points in H2
C
of a constant “height”.

Now consider a knot K and a finite collection S = {Sk, S
′
k}, k = 1 . . . n, of

Heisenberg spheres (in the Cygan metric) placed along K, satisfying the following
condition: there is an enumeration T1; . . . ;T2n of the spheres of this family such
that each Tk lies outside all the others, except that Tk and Tk+1 are tangent, for
k = 1, . . . , 2n− 1, and T2n and T1 are tangent. Such a collection S of Heisenberg
spheres is called a Heisenberg string of beads, see Figure 2.1. Let gk be elements
from PU(2, 1) such that:

(i) gk(Sk) = S′
k,

(ii) gk(Ext(Sk)) ⊂ Int(S′
k),

(iii) gk maps the points of tangency of Sk to the points of tangency of S′
k.

Let Γ be the group generated by gk. Suppose now that Γ is Kleinian and the
region D lying outside all the spheres of the family S is a fundamental domain for
Γ. Then one can show that, under these conditions, the limit set of the group Γ is
a wild knot.

The main difficulties in that construction are in finding a suitable knot, and
appropriate spheres and pairing transformations gk, so that the region D one gets
is a special Ford fundamental domain, so that one can use Poincaré’s polyhedron
theorem (proved in [84]) for complex hyperbolic space, to ensure among other
things that the group is Kleinian.

In order to construct a knot and a family of spheres as above, having the
properties we need, they consider the granny knot K in H; this is the connected
sum of two right-handed trefoil knots (could also be left-handed). This has the
property that it can be placed in H so as to be symmetric with respect to the
reflection in the y-axis {v, (x + iy) ∈ H | x = v = 0}, and also with respect
to reflection in the vertical axis {x = y = 0}. These reflections are restrictions of
elements in PU(2, 1). Then they further choose K to be represented by a polygonal
knot L, with the same symmetry properties and so that the edges of L are either
segments of “horizontal” lines or segments of “vertical chains”. Using this knot,
they can show that there is a family of spheres and transformations with the
required properties.



2.6. The Chen-Greenberg limit set 73

Figure 2.1: A Heisenberg string of beads

2.6 The Chen-Greenberg limit set

Consider now a discrete subgroup G of PU(n, 1). As before, we take as a model
for complex hyperbolic n-space Hn

C
the ball B ∼= B2n in Pn

C
consisting of points

with homogeneous coordinates satisfying

|z1|2 + · · ·+ |zn|2 < |zn+1|2

whose boundary is a sphere S := ∂Hn
C
∼= S2n−1, and we equip B with the Bergman

metric ρ to get Hn
C
.

The following theorem can be found in [45]) and it is essentially a consequence
of Arzelà-Ascoli’s theorem, since G is acting on Hn

C
by isometries (see [185]).

Theorem 2.6.1. Let G be a subgroup of PU(n, 1). The following four conditions
are equivalent:

(i) The subgroup G ⊂ PU(n, 1) is discrete.
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(ii) G acts properly discontinuously on Hn
C
.

(iii) The region of discontinuity of G in Hn
C
is all of Hn

C
.

(iv) The region of discontinuity of G in Hn
C
is nonempty.

It follows that the orbit of every x ∈ Hn
C
must accumulate in ∂Hn

C
.

Definition 2.6.2. If G is a subgroup of PU(n, 1), the Chen-Greenberg limit set of
G, denoted by ΛCG(G), is the set of accumulation points of the G-orbit of any
point in Hn

C
.

The following lemma is a slight generalisation of lemma 4.3.1 in [45]. This is
essentially the convergence property for complex hyperbolic Kleinian groups (see
page 15), and it implies that ΛCG(G) does not depend on the choice of the point
in Hn

C
.

Lemma 2.6.3. Let p be a point in Hn
C
and let (gn) be a sequence of elements in

PU(n, 1) such that gn(p) m→∞ �� q ∈ ∂Hn
C
. Then for all p′ ∈ Hn

C
we have that

gn(p
′)

m→∞ �� q. Moreover, if K ⊂ Hn
C

is a compact set, then the sequence of

functions gn|K converges uniformly to the constant function with value q.

The expression Bρ(x,C) denotes the ball with centre at x ∈ Hn
C
and radius

C > 0 with respect to the Bergman metric in Hn
C
.

Proof. Assume the sequence (gn(p)) converges to a point q ∈ ∂Hn
C
, and we assume

there exists p′ ∈ Hn
C
such that the sequence (gn(p

′)) does not converge to q. Then
there is a subsequence of (gn(p

′)) converging to a point q′ ∈ Hn
C
, q′ �= q. So we

may suppose that gn(p) m→∞ �� q and gn(p
′)

m→∞ �� q′. Let us denote by [p, p′] and
[q, q′] the geodesic segments (with respect to the Bergman metric) joining p with
p′ and q with q′, respectively. The distance from p to p′ in the Bergman metric is
equal to the length of [p, p′], and to [gn(p), gn(p

′)], but this length goes to ∞ as
n→∞, a contradiction. Therefore gn(p

′)→ q as n→∞.
Now we prove the convergence is uniform. If K is a compact subset of Hn

C
,

then there exists C > 0 such that K ⊂ Bρ(0, C), where 0 denotes the origin in
the ball model for Hn

C
. The first part of this proof implies that gn(0) → q. Given

that gn is an isometry of Hn
C
, we have that gn(Bρ(0, C)) = Bρ(gn(0), C) for each

n, and the result follows from the lemma below. �

Lemma 2.6.4. If (xn) is a sequence of elements in Hn
C
such that xn → q ∈ ∂Hn

C
as

n→∞, and C > 0 is a fixed positive number, then the Euclidean diameter of the
ball Bρ(xn, C) goes to zero as n→∞.

Proof. We use the model of the ball Bn ⊂ Cn for Hn
C
. Let x ∈ Bn. Every complex

geodesic through x has the form

Σy = {x+ ζy | ζ ∈ C, |x+ ζy| < 1} , y ∈ Cn, |y| = 1.
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The Euclidean distance of Σy to the origin of Bn is equal to

r(y) := |x− 〈〈x, y〉〉y|,

where the symbol 〈〈x, y〉〉 means the classical Hermitian product of the vectors
x, y ∈ Cn. Also, Σy is a Euclidean disc of Euclidean radius

(1− r(y)2)1/2 = (1− |x|2 + |〈〈x, y〉〉|2)1/2 =: R(y).

Moreover, the Bergman metric in Σy has the form

4R(y)2dzdz̄

(R(y)2 − |z|2)2 .

The intersection Bρ(x,C) ∩ Σy is a hyperbolic disk of hyperbolic radius equal to
C in Σy, and its hyperbolic centre x ∈ Σy has Euclidean distance |〈〈x, y〉〉| from
the Euclidean centre of Σy, which is the point x− 〈〈x, y〉〉y. Then Bρ(x,C)∩Σy is
a Euclidean disc of Euclidean radius

Ce(y) = R(y) tanh(C/2)
R(y)2 − |〈〈x, y〉〉|2

R(y)2 − tanh2(C/2)|〈〈x, y〉〉|2
.

When x is fixed, the radius Ce(y) is a continuous function of y ∈ S2n−1. Let yM
be such that Ce(yM ) ≥ Ce(y) for all y ∈ S2n−1. Let X1, X2 ∈ Bρ(x,C), then there
exist y1, y2 ∈ S2n−1 such that Xk ∈ Σyk

∩ Bρ(x,C), k = 1, 2. If σk denotes the
Euclidean centre of the disc Σyk

∩Bρ(x,C), one has that

|X1 −X2| ≤ |X1 − σ1|+ |X2 − σ2| ≤ 2Ce(y1) + 2Ce(y2) ≤ 4Ce(yM ).

Finally we see that, for each y ∈ S2n−1, Ce(y)→ 0 as x→ ∂Hn
C
. �

It is clear from the definitions that the limit set ΛCG(G) is a closed, G-
invariant set, and it is empty if and only if G is finite (since every sequence in a
compact set contains convergent subsequences). Moreover the following proposi-
tion says that the action on ΛCG(G) is minimal (cf. [45]).

Proposition 2.6.5. Let G be a nonelementary subgroup of PU(n, 1). If X ⊂ ∂Hn
C

is a G-invariant closed set containing more than one point, then ΛCG(G) ⊂ X.
Thence every orbit in ΛCG(G) is dense in ΛCG(G).

Proof. Let q be a point in ΛCG(G). There exists a sequence (gn) of elements of
G such that gn(p) → q for all p ∈ Hn

C
. Let x, y ∈ X, x �= y. We assume, taking

subsequences if necessary, that gn(x)→ x̂ and gn(y)→ ŷ, where x̂ �= q, ŷ �= q. Let
p′ ∈ Hn

C
be a point in the geodesic determined by x and y. Then gn(p

′) is in the
geodesic determined by gn(x) and gn(y). Given that q �= x̂ and q �= ŷ, we have
thatq = limn→∞ gn(p

′) belongs to the geodesic determined by limn→∞ gn(x) = x̂
and limn→∞ gn(y) = ŷ, a contradiction. Thus, gn(x)→ q or gn(y)→ q, so q ∈ X.
Therefore ΛCG(G) ⊂ X. �
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Theorem 2.6.6. Let G be a discrete group such that ΛCG(G) has more than two
points, then it has infinitely many points.

Proof. Assume that ΛCG(G) is finite with at least three points. Then

G̃ =
⋂

x∈ΛCG(G)

Isot(x,G)

is a normal subgroup of G with finite index. Then for each γ ∈ G̃, it follows that
γ(x) = x, for each x ∈ ΛCG(Γ). Then, the classification of elements in PU(n, 1)

yields that each element in G̃ is elliptic. Hence G̃ is finite, which is a contradiction.
�

Definition 2.6.7. (cf. Definition 3.3.9) The group G is elementary if ΛCG(G) has
at most two points.

Notice that Proposition 2.6.5 implies that if G is nonelementary and ΛCG(G)
is not all of ∂Hn

C
, then ΛCG(G) is a nowhere dense perfect set. In other words,

ΛCG(G) has empty interior and every orbit in ΛCG(G) is dense in ΛCG(G).
The following corollary is an immediate consequence of Proposition 2.6.5:

Corollary 2.6.8. If G ⊂ PU(1, n) is a nonelementary discrete group, then Λ(G) is
the unique closed minimal G-invariant set, for the action of G in Hn.
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