
Complex Integration 

6.1 Complex Integrals 

In Chapter 3 we saw how the derivative of a complex function is defined. We now 
turn our attention to the problem of integrating complex functions. We will find that 
integrals of analytic functions are well behaved and that many properties from cal­
culus carry over to the complex case. To introduce the integral of a complex func­
tion, we start by defining what is meant by the integral of a complex-valued function 
of a real variable. Let 

/(f) = u(t) + iv(t) for a < t < b, 

where u(t) and v(t) are real-valued functions of the real variable t. If u and v are 
continuous functions on the interval, then from calculus we know that u and v are 
integrable functions of t. Therefore we make the following definition for the definite 
integral of/: 

(1) f(t)dt= u{i)dt+i\ v(t)dt 
Ja Ja Ja 

Integrals of this type can be evaluated by finding the antiderivatives of u and 
v and evaluating the definite integrals on the right side of equation (1). That is, if 
U'(t) = u{t) and V'(t) = v(t), then we write 

f 
J a 

(2) f(t) dt = U(b) - U(a) + i[V(b) - V{a)]. 
Jtl 

E X A M P L E 6.1 Let us show that 

P - 5 
(3) (t - 03 * = — . 

Jo 4 
Since the complex integral is defined in terms of real integrals, we write the inte­
grand in equation (3) in terms of its real and imaginary parts: f{t) = (t — /)3 = 
t3 - 3t + i( -3 t2 + 1). Here we see that u and v are given by u(t) = t3 - 3t and 
v(t) = — 3t2 + 1. The integrals of u and v are easy to compute, and we find that 

(t3 - 30 dt = — and (-3t2 + 1) dt = 0. 
Jo 4 Jo 
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Hence definition (1) can be used to conclude that 

(t - 03 dt = u(t) dt + i\ v(t) dt = — . 
Jo Jo Jo 4 

Our knowledge about the elementary functions can be used to find their 
integrals. 

E X A M P L E 6-2 Let us show that 

fn/2 1 i 
Jo exp(t + it) dt = - {ea - 0 + - ien/2 + 1). 

Using the method suggested by equations (1) and (2), we obtain 

pr/2 CK/2 frc/2 

exp(t + it) dt = \ e* cos t dt + i \ el sin t dt. 

The integrals can be evaluated via integration by parts, and we have 

f 
Jo 

/-71/2 

/=0 

= ~(eK/2 - 1 ) + l-(e«a + 1). 

Complex integrals have properties that are similar to those of real integrals. 
Let/(t) = u(t) + iv(t) and g(t) = p(t) + iq(t) be continuous on a < t < b. Then the 
integral of their sum is the sum of their integrals; so we can write 

(4) [ [f(t) + g(t)] dt = J f{t) dt + J git) dt. 
J a J a J a 

It is convenient to divide the interval a < t < b into a < t < c and c < t < b and 
integrate/(t) over these subintervals. Hence we obtain the formula 

(5) I" fit)dt= [' fit) dt+ [ fit)dt 
J a J a Jc 

Constant multiples are dealt with in the same manner as in calculus. If c + id denotes 
a complex constant, then 

(6) (c + id)fit) dt = (c + id) fit) dt. 
Jo Ja 

If the limits of integration are reversed, then 

(7) \[fit)dt= ~\bJit)dt. 
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Let us emphasize that we are dealing with complex integrals. We write the integral 
of the product as follows: 

(8) J f(t)g(t) dt = I [u(t)p(t) - v(t)q(t)] dt + 
Ja Jii 

i [u{t)q(t) + v(t)p(t)] dt. 
Ja 

E X A M P L E 6 - 3 Let us prove equation (6). We start by writing 

(c + id)f(t) = cu(t) - dv(t) + i[cv{t) + du(t)l 

Using definition (I) , the left side of equation (6) can be written as 

P P P P 
(9) c u{t) dt - d v{t) dt + ic v(t) dt 4- id u(t) dt, 

Ja Ja Ja Ja 

which is easily seen to be equivalent to the product 

(10) (c + id)\ u(t) dt + i \ v(t) dt 
J J a J a 

It is worthwhile to point out the similarity between equation (2) and its 
counterpart in calculus. Suppose that U and V are differentiable on a < t < b and 
F(t) = U(t) + iV(t)9 then F'(t) is denned to be 

F'(t) = U'(t) + iV'(t\ 

and equation (2) takes on the familiar form 

(11) ) f(t) dt = Fib) - Fia), where F'(t) = fit). 
J a 

This can be viewed as an extension of the fundamental theorem of calculus. In 
Section 6.5 we will see how the extension is made to the case of analytic functions 
of a complex variable. For now, note that we have the following important case of 
equation (11): 

(12) f f(t)dt=f(b)-f(a). 
J a 

E X A M P L E 6 . 4 Let us use equation (11) to show that / J exp (it) dt = 2L 

Solut ion If we let Fit) = —i exp (it) = sin t - i cos t and / ( t ) = exp(/f) 
= cos t -I- i sin t, then F'(t) = fit), and from equation (11) we obtain 

I expiit)dt = J f(t) dt = Fin) - F(0) = -/e<* + ie° = 11 
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EXERCISES FOR SECTION 6.1 
For Exercises 1-4, use equations (1) and (2) to find the following definite integrals. 

1. (3f - i)2 dt 2. (t + 2/)3 dt 3. cosh(if) dt 4. —— dt 
Jo Jo Jo Jo t + i 

fn/4 

5. Find t exp(/r) dt. 
6. Let m and n be integers. Show that 

(2n ,W ,,„ J fO when m ¥> n, 
eim!e-'nt dt = <L 

Jo [2TT when m ~ n. 

7. Show that J e~zt dt = 1/z provided that Re(z) > 0. 

P 
8. Let f{t) = w(t) + iv{t) where w and v are differentiable. Show that f(t)f'(t) dt = 

i[/0>)]2 - \U(a)Y. 
9. Establish identity (4). 10. Establish identity (5). 

11. Establish identity (7). 12. Establish identity (8). 

6.2 Contours and Contour Integrals 

In Section 6.1 we learned how to evaluate integrals of the form $b
af{t) dt, where/ 

was complex-valued and [a, b] was an interval on the real axis (so that t was real, 
with t e [a, b]). In this section we shall define and evaluate integrals of the form 
Icf(z) dzy where/ is complex-valued and C is a contour in the plane (so that z is 
complex, with z e C). Our main result is Theorem 6.1, which will show how to 
transform the latter type of integral into the kind we investigated in Section 6.1. 

We will use concepts first introduced in Section 1.6, where we defined the 
concept of a curve in the plane. Recall that to represent a curve C we used the 
parametric notation 

(1) C: z{t) = x(i) + iy(t) for a < t < b, 

where x(t) and v(t) are continuous functions. We now want to place a few more 
restrictions on the type of curve that we will be studying. The following discussion 
will lead to the concept of a contour, which is a type of curve that is adequate for 
the study of integration. 

Recall that C is said to be simple if it does not cross itself, which is expressed 
by requiring that z(t\) ¥^ z(t2) whenever t\ ¥" t2. A curve C with the property that 
z(b) = z(a) is said to be a closed curve. If z(b) = z(a) is the only point of intersection, 
then we say that C is a simple closed curve. As the parameter t increases from the 
value a to the value b, the point z(t) starts at the initial point z(a), moves along the 
curve C, and ends up at the terminal points z(b). If C is simple, then z(t) moves 
continuously from z(a) to z(b) as t increases, and the curve is given an orientation, 
which we indicate by drawing arrows along the curve. Figure 6.1 illustrates how 
the terms "simple" and "closed" can be used to describe a curve. 
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z(b) 

z(a) zit) 

(a) A curve that is simple. 

z(t) 

z{a) = zih) 

(b» A simple closed curve. 

lib) 

z{u) 

(c) A curve that is not simple 
and not closed. 

zit) 
zia) - zib) 

id) A closed curve that is not simple. 

FIGURE 6.1 The terms "simple" and "closed" used to describe curves. 

The complex-valued function z(t) in equation (1) is said to be differentiable 
if both x(t) and y(t) are differentiable for a < t < b. Here the one-sided derivatives* 
of x(t) and y(t) are required to exist at the endpoints of the interval. The derivative 
z'(t) with respect to t is defined by the equation 

(2) z'(t) = x'{t) + iy'(f) for a < t < b. 

The curve C defined by equation (1) is said to be smooth if zf(t), given by 
equation (2), is continuous and nonzero on the interval. If C is a smooth curve, then 
C has a nonzero tangent vector at each point z(t), which is given by the vector z'(t). 
If jc'(to) = 0, then the tangent vector z'(to) = 0>'(to) is vertical. If x'(t0) ^ 0, then 
the slope dyldx of the tangent line to C at the point z(to) is given by y'(t<))/x'(to). 
Hence the angle of inclination 0(t) of the tangent vector z'{t) is defined for all values 
of t and is the continuous function given by 

6(r) = arg[z'(f)] = arg[(x'(f) + i/(f)]. 

Therefore a smooth curve has a continuously turning tangent vector. A smooth curve 
has no corners or cusps. Figure 6.2 illustrates this concept. 

z(t) 
z'(t) 

z(b) 

2(a) 

(a) A smooth curve. 

z(b) 

z(a) 

(b) A curve that is not smooth. 

FIGURE 6.2 The term "smooth" used to describe curves. 

*The derivative on the right x'(ah) and on the left x'(b ) are defined by the following limits: 

x'(a+) = lim 
x(t) - x(a) 

and x'(b~) = lim 
x(t) - x(b) 
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If C is a smooth curve, then ds, the differential of arc length, is given by 

(3) ds = v V ( t ) P + [y'(t)p dt = \ z'(t) | dt 

Since x{t) and y'(t) are continuous functions, then so is the function 
-J[x'(t)]2 + [y'(t)]2, and the length L of the curve C is given by the definite integral 

(4) L = j " V[*'(t)]2 + [/(f)]2 * = Ja | z'(f) | dt. 

Now consider C to be a curve with parameterization 

C: zi(0 = x(t) + ry(t) for a < t < £. 

The opposite curve — C traces out the same set of points in the plane but in the 
reverse order, and it has the parameterization 

- C : z2(t) = x(-t) + iy(-t) for -b < t < -a . 

Since z2(0 = ^i(—t), it is easy to see that — C is merely C traversed in the opposite 
sense. This is illustrated in Figure 6.3. 

zx(t) 

{ c ^^ 
z j (a) 

FIGURE 6.3 

z2(t) 

-*<* f~C*^ «* 
z2{~a) 

The curve C and its opposite curve -C. 

A curve C that is constructed by joining finitely many smooth curves end to 
end is called a contour. Let C\, Cj, . . . , Cn denote n smooth curves such that the 
terminal point of C* coincides with the initial point of Ck t \ for k = 1 ,2 , . . . , 
n — 1. Then the contour C is expressed by the equation 

(5) C = Ci + C2 + • • • + Cn. 

A synonym for contour is path. 

EXAMPLE 6-5 Let us find a parameterization of the polygonal path C from 
— 1 + i to 3 — /, which is shown in Figure 6.4. 

3 - i 

FIGURE 6.4 The polygonal path C = C] + C2 + C3 from -1 + i to 3 - i. 
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Solution The contour is conveniently expressed as three smooth 
curves C — C\ + C2 + C3. A formula for the straight line segment joining two 
points was given by equation (2) in Section 1.6. If we set z0 = — 1 + i and 
Z\ — — 1, then the segment C\ joining z0 to z\ is given by 

C,: zi(t) = zo + t(zi - zo) = ( -1 + 0 + f [ - l - ( - 1 + /)1, 

which can be simplified to obtain 

Cx\ z\{t) = - 1 + / ( 1 - / ) forO < t < 1. 

In a similar fashion the segments C2 and C3 are given by 

C2: z2(0 = ( - 1 + 20 + it for 0 < t < 1 and 
C3: z3(0 = (1 + 2t) + /(1 - 2 0 for 0 < t < 1. 

We are now ready to define the integral of a complex function along a contour 
C in the plane with initial point A and terminal point B. Our approach is to mimic 
what is done in calculus. We create a partition Pn = {z0 = A, z\, Zi, . . . , zn = B] 
of points that proceed along C from A to B and form the differences Azk = Zk — Zk-\ 
for k — 1, 2, . . . , n. Between each pair of partition points Zk-\ and zA we select a 
point c* on C, where the function f(ck) is evaluated (see Figure 6.5). These values 
are used to make a Riemann sum for the partition: 

/; n 

(6) S(Pn) = 2 f(ck)(zk - ZA-I) = 2 /(Q)Ast. 
£ = 1 * = 1 

; =B 

FIGURE 6.5 Partition points {ik}, and function evaluation points {ck} for a 
Riemann sum along the contour C from z = A to z = B. 

Assume now that there exists a unique complex number L that is the limit of 
every sequence {S(Pn)} of Riemann sums given in equation (6), where the maximum 
of I Azk I tends toward 0, for the sequence of partitions. We define the number L as 
the value of the integral of f(z) taken along the contour C We thus have the 
following. 
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Definition 6.1 Let C be a contour, then f(z) dz = lim 2 f(Ck)&Zk, 

provided the limit exists in the sense previously discussed. 

You will notice that in this definition, the value of the integral depends on the 
contour. In Section 6.3 the Cauchy-Goursat Theorem will establish the remarkable 

property that iff(z) is analytic, then f(z) dz is independent of the contour. 

EXAMPLE 6-6 Use a Riemann sum to construct an approximation for the 
contour integral jc exp z dz, where C is the line segment joining the point A = 0 to 

Solution Set n = 8 in equation (6) and form the partition P8: Zk = ~ + 

nk 
i— for k = 0, 1, 2, . . . , 8. For this situation, we have a uniform increment Azk = 
32 

1 .n D . , . fr-i + ¾ 2fe- 1 t .TC(2*- 1) . 
- + i—. For convenience we select ck — = h i for 
4 32 2 8 64 
k = 1, 2, . . . , 8. The points {zk} and {c*} are shown in Figure 6.6. 

1 2 

FIGURE 6.6 Partition and evaluation points for the Riemann sum S(P^). 

One possible Riemann sum, then, is 
8 8 

S(P*) = 2 /(<*) ^¾ = 2 exp 
2X: - 1 71(2/: - 1) 

+ i— 
8 64 

1 . 7 T , 

4 + « 3 2 ; -

By rounding the terms in this Riemann sum to two decimal digits, we obtain an 
approximation for the integral: 

S(P8) « (0.28 + 0.13/) + (0.33 + 0.19/) + (0.41 + 0.29/) + (0.49 + 0.42/) 
+ (0.57 + 0.6/) + (0.65 + 0.84/) + (0.72 + 1.16/) + (0.78 + 1.57/), 

5(/>8) « 4.23 + 5.20/. 
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This compares favorably with the precise value of the integral, which you will soon 

see equals exp 2 + i 1 = 4- e2— + ie2~ 
2 2 

4.22485 4- 5.22485/. 

In general, obtaining an exact value for an integral given by Definition 6.1 is 
a daunting task. Fortunately, there is a beautiful theory that allows for an easy 
computation of many contour integrals. Suppose we have a parameterization of the 
contour C given by the function z(t) for a < t < b. That is, C is the range of the 
function z(t) over the interval [a, b], as Figure 6.7 shows. 

a t._, T r 

FIGURE 6.7 A parameterization of the contour C by z(t) for a < f < b. 

It follows that 

lim 2 f(ck)Azk = Hm 2 /(c*)fo - z*-i) 

= lim2/fe(T*))b(ft)-z(fc-i)]. 

where the T* and t* are those points contained in the interval [a, b] with the property 
that Cjt = z(Tjt) and zjt = £(**), as is also shown in Figure 6.7. If for all k we multiply 

4 — 4- 1 
the £th term in the last sum by , we get 

lim 2 f(z(Tk)) 
w-»oo k= 1 

4 ~ 4-1 

2(¾) ~ 2(4-1) 

tk ~ 4-
(4 - 4-i) = lim 2 / ( Z ( T * ) ) 

z(4) ~ z(4-i) 
4 ~ 4-i 

At*. 

The quotient inside the last summation looks suspiciously like a derivative, and the 
entire quantity looks like a Riemann sum. Assuming no difficulties, this last ex­
pression should equal 

r 
Jo 

f(z(t))z'{t) dtf as defined in Section 6.1. 
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It would be especially nice if we were to get the same limit regardless of how we 
parameterize the contour C. As the following theorem states, this is indeed the case. 

Theorem 6.1 Suppose f(z) is a continuous complex-valued function defined 
on a set containing the contour C. Let z(t) be any parameterization of C for 
a < t < b. Then 

(7) £ f(z) dz = \a f(z(t))zr(t) dt 

Proof We omit the proof of this theorem since it involves ideas (such as 
the theory of the Riemann-Stieltjes integral) that are beyond the scope of this book. 
A more rigorous development of the contour integral based on Riemann sums is 
found in advanced texts such as L. V. Ahlfors, Complex Analysis, 3rd ed. (New 
York: McGraw-Hill, 1979). 

There are two important facets of Theorem 6.1 that are worth mentioning. 
First, the theorem makes the problem of evaluating complex-valued functions along 
contours easy since it reduces our task to one that requires the evaluation complex-
valued functions over real intervals—a procedure we studied in Section 6.1. Second, 
according to the theorem this transformation yields the same answer regardless of 
the parameterization we choose for C, a truly remarkable fact. 

EXAMPLE 6 .7 Let us give an exact calculation of the integral in Example 
6.6. That is, we want j c exp z dz, where C is the line segment joining A = 0 to 

B = 2 + i— . According to equation (2) of Section 1.6, we can parameterize C by 

z(t) = (2 + /7 k for 0 < t < 1. Since z'(t) = ( 2 + /7 J, according to Theorem 

6.1 we have that 

2 + ,= 1, 2 + / - ) dt J c e X p z * = Jo C X P [ 
= (2 + / - ) 1 e2teiMdt 

= (2 + / ^ 1 ( e2/[cos(rct/4) + / sin(7it/4)] dt 

= (2 + / ^ ) 1 e2'cos(7tt/4) dt + i\ e2t sin(;ct/4) dt 
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Each integral in the last expression can be done using integration by parts. We leave 

as an exercise that the final answer simplifies to exp I 2 + / - J — 1, as claimed in 

Example 6.6. 

EXAMPLE 6 .8 Evaluate j c dz, where C is the upper semicircle with 
z - 2 

radius 1 centered at x = 2 oriented in a position (i.e., counterclockwise) direction. 

Solution The function z(t) = 2 4- e'\ for 0 < t < n is a parameterization 

for C. We apply Theorem 6.1 with f(z) = . (Note: f(z(t)) = , and 
z - 2 z(t) - 2 

z(t) = iei!.) Hence, 

dz = — : ie" dt = i dt = in. 
Jcz - 2 Jo (2 + e") - 2 Jo 

To help convince yourself that the value of the integral is independent of the param­
eterization chosen for the given contour, try working through this example with 
z(t) = 2 + eint, forO < t < 1. 

There is a convenient bookkeeping device that helps us remember how to 
apply Theorem 6.1. Since fc f(z) dz = j[] f(z(t)) z'{t) dt, we can symbolically equate 
z with z(t) and dz with z'(t) dt. This should be easy to remember because z is 

dz 
supposed to be a point on the contour C parameterized by z(t), and — = z(t) ac­
cording to the Leibniz notation for the derivative. 

If z(t) = x(t) + /v(t), then by the preceding paragraph we have 

(8) dz = z(t) dt = [jc'(t) + /v'(t)] dt = dx + / dy, 

where dx and dy are the differentials for x(t) and _v(t), respectively. (That is, dx is 
equated with x'(t) dt and dy with y'(t) dt.) The expression dz is often called the 
complex differential of z. Just as dx and dy are intuitively considered to be small 
segments along the x and y axes in real variables, we can think of dz as representing 
a very tiny piece of the contour C. Moreover, if we write 

(9) | * | = | [*'(*) + / /(01 dt\ =\ [x\t) + //(/)] | dt = V[*'(t)]2 + [/(012 du 

then we know from calculus that the length of the curve C, L(C), is given by 

(10) L(C) = I VU'(t)]2 + [/(t)]2 dt = j \dz\. 

so we can think of | dz | as representing the length of dz. 
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Suppose f(z) = u(z) + /v(z), and z{t) = x(t) + iy(t) is a parameterization for 
the contour C. Then 

(11) \c f(z)dz = }af(z(t))z'(t)dt 

= J [u{z(t)) + iv(z(t))][x'(t) + iy'(t)] dt 
J a 

= ja [u(z(t))x'{t) - v(z(t))y'(t)] dt 

+ i\ [v(z(t))x'(t) + u{z(t))y'(t)]dt 
J a 

= (ux' - vyf) dt + / (vx' + uy') dt, 
J a J a 

where we are equating u with u(z(t)), x' with x'(t), etc. 
If we use the differentials given in equation (8), then equation (11) can be 

written in terms of line integrals of the real-valued functions u and v, giving 

\cKz)dz = \cu (12) I f(z)dz ' J c y ' dx — v dy + i \ v dx + u dy, 

which is easy to remember if we recall that symbolically 

f(z) dz = {u + iv)(dx + i dy). 

We emphasize that equation (12) is merely a notational device for applying 
equation (7) in Theorem 6.1. We recommend you carefully apply the theorem as 
illustrated in Examples 6.7 and 6.8 before using any shortcuts suggested by equation 
(12). 

E X A M P L E 6 .9 Let us show that 

J"c,ZWe z dz = 4 + 2/, 

where C\ is the line segment from —1 — / to 3 + i and C2 is the portion of the 
parabolas = y2 + 2y joining —1 — i to 3 + /, as indicated in Figure 6.8. 

- 1 -i 

(b) The portion of the parabola. 

FIGURE 6.8 The two contours C\ and C2 joining — 1 - i to 3 + i. 
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The line segment joining ( - 1 , - 1 ) to (3, 1) is given by the slope intercept 
formula y = \x - \ , which can be written as x = 2y + 1. It is convenient to choose 
the parameterization y = t and x = It -f 1. Then the segment C\ can be given by 

C,: z(t) = 2t + 1 + it and dz = (2 + i) dt for - 1 < t < 1. 

Along Ci, we have/(z(t)) = 2t + 1 + /t. Computing the value of the integral in 
equation (7), we obtain 

Jc zdz = J (2f + 1 + it)(2 + /) a7, 

which can be evaluated by using straightforward techniques to obtain 

J z dz = J ] (3t + 2) dr + i J ^ (4r + 1) dt = 4 + 2/. 

Similarly, for the portion of the parabola x ~ y2 + 2y joining ( - 1 , - 1 ) to 
(3, 1), it is convenient to choose the parameterization y = t and x = t2 + It. Then 
C2 can be given by 

C2: z(r) = t2 + 2t + /t and dz = {It + 2 + /) A for - 1 < t < 1. 

Along C2 we have f(z(t)) = t2 + 2t + /t. Computing the value of the integral in 
equation (7), we obtain 

- / : 

(t2 + 2t + /t)(2t + 2 + /) A 

1 (2t3 + 6t2 + 3t) dt + 1 (3t2 + 4t) rfr = 4 + 2i. 

In this example, the value of the two integrals is the same. This does not hold in 
general, as is shown in Example 6.10. 

EXAMPLE 6 . 1 0 Let us show that 

zdz = -niy but zdz = - 4i, 
Jc, Jc2 

where C\ is the semicircular path from — 1 to 1 and C2 is the polygonal path from 
— 1 to 1, respectively, that are shown in Figure 6.9. 

m _1 

J 

+ i ' 

k 

1 

1 4 

l 

- / 

, c 2 

(a) The semicircular path. (b) The polygonal path. 

FIGURE 6.9 The two contours C, and C2 joining - 1 to 1. 
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Solution The semicircle C\ can be parameterized by 

C\\ z{t) = -cos t + i sin t and dz = (sin t + / cos t) dt for 0 < t < 71. 

Along C\ we have/(z(t)) = —cos t — / sin t. Computing the value of the integral 
equation in (7), we obtain 

z dz - (—cos t — i sin t)(sin t + i cos t) dt 
JC| JO 

= — / (cos2 t + sin2 t) dt = — 7U. 
Jo 

The polygonal path C2 must be parameterized in three parts, one for each line 
segment: 

z\(f) = - 1 + it, dz\ = idt, f(z\(t)) = - 1 - it, 
ziit) = — 1 + 2 / + /, dz2 = 2 dt, f(z2(t)) = - 1 + 2f - /, 
z3(t) = 1 + / ( 1 - t), dzi = -i dt, / to(0) = 1 - / ( 1 - t), 

where all of the parameters t are to be taken on the interval 0 < t < 1. The value 
of the integral in equation (7) is obtained by adding the three integrals along the 
above three segments, and the result is 

1 ( - 1 - it)i dt + J (-1 + It - /)2 dt + J [1 - /(1 - 01(-0 dt 

A straightforward calculation now shows that 

z dz = (6t - 3) dt + i\ ( -4) </t = -4i . 
Jc2 Jo Jo 

We remark that the value of the contour integral along C\ is not the same as the 
value of the contour integral along C2, although both integrals have the same initial 
and terminal points. 

Contour integrals have properties that are similar to those of integrals of a 
complex function of a real variable, which were studied in Section 6.1. If C is given 
by equation (1), then the contour integral for the opposite contour — C is given by 

(13) J_c f(z) dz = JJ/(Z(-T))[-Z'(-T)] dr. 

Using the change of variable t = — T in equation (13) and identity (7) of Section 
6.1, we obtain 

(14) j cf(z)dz= -jcf(z)dz. 
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If two functions/and g can be integrated over the same path of integration C, then 
their sum can be integrated over C, and we have the familiar result 

(15) \c lf(z) + g(z)] dz = j c f(z) dz + \c g(z) dz. 

Constant multiples are dealt with in the same manner as in identity (6) in Section 
6.1: 

(16) fc (c + id)f(z) dz = (c + id) j c f(z) dz. 

If two contours C\ and C2 are placed end to end so that the terminal point of C\ 
coincides with the initial point of C2j then the contour C = C\ + C2 is a continuation 
of C], and we have the property 

(17) f r f(z) dz = f f(z) dz + f f(z) dz. 

If the contour C has two parameterizations 

C: z\(i) = xx(t) + iy\(t) for a < t < b and 

C: Z2(T) = X2(T) + iy2(T) for a < T < (i, 

and there exists a differentiable function T = ¢(0 such that 

(18) a = (|>(a), P = <)>(£), and (J)'(t) > 0 for a < t < />, 

then we say that Z2(T) is a reparametenzation of the contour C. I f / i s continuous 
on C, then we have 

(19) \hJ(zi(t))z\{t) dt = jJ(Z2(T))Z'2(T) dr. 

Identity (19) shows that the value of a contour integral is invariant under a change 
in the parametric representation of its contour if the reparameterization satisfies 
equations (18). 

There are a few important inequalities relating to complex integrals, which 
we now state. 

Lemma 6.1 (Integral Triangle Inequality) Iff(t) = u{t) + /v(t) is a 
continuous function of the real parameter t, then 

(20) f"f(t)dt\* f | /(01 dt. 

Proof Write the value of the integral in polar form: 

(21) roe^o = f(t)dt and r0 = e~l^f(t) dt. 
J a J a 
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Taking the real part of the second integral in equations (21), we write 

>o f 
Jo 

Re[e-'V(0] dt. 

Using equation (2) of Section 1.3, we obtain the relation 

Re[e"'V(0] ^ \e-^fif)\ < | / ( 0 |. 

The left and right sides can be used as integrands, and then familiar results from 
calculus can be used to obtain 

>o 
J a 

Re[e-°of(t)] dt< I | /(0 | dt. 

Since 

>o = 
J a 

fit) dt 

we have established inequality (20). 

(22) 

(23) 

Lemma 6.2 (ML Inequality) Iff(z) = u(x, y) + /V(JC, y) is continuous on 
the contour C, then 

J f(z)dz\ <MU 

where L is the length of the contour C and M is an upper bound for the 
modulus | f(z) | on C. 

Proof When inequality (20) is used with Theorem 6.1, we get 

£ f(z) dz\ = | | f(z(t))z\t) dt\ < | | f(z(t))z'(t) I dt 

Let M be the positive real constant such that 

| / (z) | < M for all z on C. 

Then equation (9) and inequality (23) imply that 

J^ f(z) dz\ < Jt M | z'(t) | dt = ML. 

Therefore inequality (22) is proved. 
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EXAMPLE 6.11 Let us use inequality (22) to show that 

i c z2 + 1 
dz 

ijl" 
where C is the straight line segment from 2 to 2 4- i. Here | z2 + 1 | = | z — i | X 
| z + i | , and the terms ) z — i | and | z + i | represent the distance from the point z 

to the points i and —/, respectively. We refer to Figure 6.10 and use a geometric 
argument to see that 

I z — i I ^ 2 and I z + /1 ^ V^ for z on C. 

FIGURE 6.10 The distances I z - i I and I z + /1 for z on C. 

Here we have 

|/fe)| = 
1 1 

| z - / | | z + / | 2^/5 

and L = 1, so inequality (22) implies that 

= M, 

i i 

C Z2 + 1 
* < ML = 

1 

2V5' 

EXERCISES FOR SECTION 6.2 
1. Sketch the following curves. 

(a) z{t) = t2 - 1 + i(t + 4) for 1 < t < 3 
(b) z(t) = sin t + i cos 2t for -TC/2 < t < 7C/2 
(c) ^(r) = 5 cos r - /3 sin r for nil < r < 2?t 

2. Give a parameterization of the contour C - C\ + C2 indicated in Figure 6.11. 
3. Give a parameterization of the contour C = C\ + C2 + C3 indicated in Figure 6.12. 
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2/ 2 + 2/ 

- 3 - 2 - l 1 2 3 -3 - 2 - 1 

! C 3 

1 2 3 

FIGURE 6.11 Accompanies 
Exercise 2. 

FIGURE 6.12 Accompanies 
Exercise 3. 

4. Consider the integral jcz
2dz, where C is the positively oriented upper semi-circle of 

radius 1, centered at 0. 
(a) Given a Riemann sum approximation for the above integral by selecting n = 4, and 

the following points: zk - eiknl4] ck = ei(2k~*)m for appropriate values of k. 
(b) Compute the integral exactly by selecting a parameterization for C and applying 

Theorem 6.1. 

5. Show that the integral in Example 6.7 simplifies to expl 2 + /— j — 1. 

6. Evaluate fc y dz for — i to i along the following contours as shown in Figures 6.13(a) 
and 6.13(b). 
(a) The polygonal path C with vertices - / , - 1 - /, — 1, and i. 
(b) The contour C that is the left half of the circle \z\ = 1. 

-4- i 

d— 
- 1 - i 

(a) (b) 

FIGURE 6.13 Accompanies Exercise 6. 

7. Evaluate / c x dz from - 4 to 4 along the following contours as shown in Figures 6.14(a) 
and 6.14(b). 
(a) The polygonal path C with vertices —4, — 4 + 4r, 4 + 4/, and 4. 
(b) The contour C that is the upper half of the circle \z\ = 4. 

-4 + 4/ 4/ 

2/+ 
I l l 

- 4 - 7 

(a) 

4 + 4/ 

I \ 4 
2 4 

FIGURE 6.14 Accompanies Exercise 7. 
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8. Evaluate fc z dz, where C is the circle | z \ = 4 taken with the counterclockwise ori­
entation. Hint: Let C: z{t) = 4 cos t + /4 sin f for 0 < r < 2TC. 

9. Evaluate JV z dz, where C is the circle | z | = 4 taken with the counterclockwise orien­
tation. 

10. Evaluate fc (z + 1) dz, where C given by C: z(r) = cos t + i sin t for 0 < f < 7i/2. 
11. Evaluate JY z dz, where C is the line segment from i to 1 and z(t) = t + (1 - t)f for 

0 < / < 1. 
12. Evaluate JY z2 dz, where C is the line segment from 1 to 1 + / and z(0 = 1 + it for 

0 < f < 1. 
13. Evaluate JY U2 — /y2) ^ , where C is the upper semicircle C: z(/) = cos t + / sin t for 

0 < t < K. 

14. Evaluate / r | z21 t/z, where C given by C: z(t) = t + /t2 for 0 < t < 1. 
15. Evaluate fc \ z - 1 |2 t/z, where C is the upper half of the circle | z | = 1 taken with the 

counterclockwise orientation. 
16. Evaluate fc (1/z) dz, where C is the circle \z\ =2 taken with the clockwise orientation. 

Hint: C: z{t) = 2 cos t - /2 sin f for 0 < r < 2K. 
17. Evaluate JV (1/z) /̂z, where C is the circle | z \ = 2 taken with the clockwise orientation. 
18. Evaluate JV exp z dz, where C is the straight line segment joining 1 to 1 + in, 
19. Show that JV cos z dz = sin(l + /), where C is the polygonal path from 0 to 1 + / that 

consists of the line segments from 0 to 1 and 1 to 1 + /. 
20. Show that JV exp z dz = exp( 1 + /) — 1, where C is the straight line segment joining 

0 to 1 + /. 
21. Evaluate JV z exp z dz, where C is the square with vertices 0, 1, 1 + / , and i taken with 

the counterclockwise orientation. 
22. Let z{t) = x(t) + (y(0 for a < r < b be a smooth curve. Give a meaning for each of the 

following expressions. 

(a) z(t) (b) | z ' (0 | dt (c) £ *'(/)<// (d) | |z '(t)| </t 

23. Let / be a continuous function on the circle | z - Zo | — R. Let the circle C have the 
parameterization C: z(8) = z<> + /te/H for 0 < 8 < 2it. Show that 

Jcf(z) dz = iR J(j /(z„ + / t e ' V /̂6. 

24. Use the results of Exercise 23 to show that 

(a) dz = 2TC/ and 
Jc z - Zo 

^ ) rfz — Q̂  where n ¥" 1 is an integer, 
J<' (z - zc»)" 

where the contour C is the circle | z — zo | = R taken with the counterclockwise 
orientation. 

25. Explain how contour integrals studied in complex analysis and line integrals studied in 
calculus are different. How are they similar? 

26. Write a report on contour integrals. Include some of the more complicated techniques 
in your discussion. Resources include bibliographical items 5, 16, 81, 82, and 157. 

6.3 The Cauchy-Goursat Theorem 

The Cauchy-Goursat theorem states that within certain domains the integral of an 
analytic function over a simple closed contour is zero. An extension of this theorem 
will allow us to replace integrals over certain complicated contours with integrals 
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over contours that are easy to evaluate. We will show how to use the technique of 
partial fractions together with the Cauchy-Goursat theorem to evaluate certain in­
tegrals. In Section 6.4 we will see that the Cauchy-Goursat theorem implies that an 
analytic function has an antiderivative. To start with, we need to introduce a few 
new concepts. 

We saw in Section 1.6 that with each simple closed contour C there are as­
sociated two disjoint domains, each of which has C as its boundary. The contour C 
divides the plane into two domains. One domain is bounded and is called the interior 
of C, and the other domain is unbounded and is called the exterior of C. Figure 6.15 
illustrates this concept. This result is known as the Jordan Curve Theorem. 

Interior 

FIGURE 6.15 The interior and exterior of simple closed contours. 

In Section 1.6 we saw that a domain D is an open connected set. In particular, 
if Z\ and zi are any pair of points in D, then they can be joined by a curve that lies 
entirely in D. A domain D is said to be simply connected if it has the property that 
any simple closed contour C contained in D has its interior contained in D. In other 
words, there are no "holes" in a simply connected domain. A domain that is not 
simply connected is said to be a multiply connected domain. Figure 6.16 illustrates 
the use of the terms "simply connected" and "multiply connected." 

^ < t ^ ' 
f'••:• •. ::.y * * 

•+-X 

/¾¾¾ 

fr 
&3S \ 

m r v r \ /-1 

(a) A simply connected domain. 

N 

mm iOO) 
%<±j.-*' 

(b) A simply connected domain. 

y 

^ - • x 
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Let the simple closed contour C have the parameterization C: z(t) = x(t) + 
iy(t) for a < t < b. If C is parameterized so that the interior of C is kept on the left 
as z(t) moves around C, then we say that C is oriented in the positive (counterclock­
wise) sense; otherwise, C is oriented negatively. If C is positively oriented, then 
— C is negatively oriented. Figure 6.17 illustrates the concept of positive and neg­
ative orientation. 

*~x 

-C 

-+-x 

(a) A positively oriented contour. (b) A negatively oriented contour. 

FIGURE 6.17 Simple closed contours that are positively and negatively oriented. 

An important result from the calculus of real variables is known as Green's 
theorem and is concerned with the line integral of real-valued functions. 

Theorem 6.2 (Green's Theorem) Let C be a simple closed contour with 
positive orientation, and let R be the domain that forms the interior of C. If P 
and Q are continuous and have continuous partial derivatives Px, Py, Qx, and 
Qx at all points on C and R, then 

(1) l P(x, y) dx + Q(x, y) dy = / / [QAx, y) - Pv(*, y)\ dx dy 

Proof for a Standard Region* If R is a standard region, then there exist 
functions y = g\(x) and y = g2(x) for a < x < b whose graphs form the lower and 
upper portions of C, respectively, as indicated in Figure 6.18. Since C is to be given 
the positive (counterclockwise) orientation, these functions can be used to express 
C as the sum of two contours C\ and C2 where 

d : z\(t) = t + ig,(r) 
C2; z2(t) = -t + ig2(-t) 

for a < t < b and 
for -b < t < -a. 

We now use the functions g\(x) and g2{x) to express the double integral of 
— Py(x, y) over R as an iterated integral, first with respect to y and second with 
respect to JC, as follows: 

(2) - J J /\(JC, y)dxdy=-\ \ " Px(x, y) 
J J J a \ J git*) 

dy dx. 

*A standard region is bounded by a contour C, which can be expressed in the two forms C = C\ + C2 

and C = C?, + CJ, that are used in the proof. 
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i 
! y=g,{x) 

FIGURE 6.18 Integration over a standard region where C = C\ + C2 

Computing the first iterated integral on the right side of equation (2), we obtain 

(3) - J J /\(JC, 30 dx dy = J^ P(x, g,U)) dx - J P(x, g2(x)) dx. 
R 

In the second integral on the right side of equation (3) we can use the change of 
variable x = — t and manipulate the integral to obtain 

(4) -J J /\(x, v) dx dy = ja P{x, gx(x)) <k+ j h P{-U g 2 ( - 0 ) ( - 1) du 

When the two integrals on the right side of equation (4) are interpreted as contour 
integrals along C\ and C2, respectively, we see that 

(5) ~\\ Py(x, y) dx dy = I P(x, y) dx + \ P(x, y) dx = I P(x, v) dx. 

To complete the proof, we rely on the fact that for a standard region, there 
exist functions x — h\(y) and x = h2(v) for c < v < d whose graphs form the left 
and right portions of C, respectively, as indicated in Figure 6.19. Since C has the 
positive orientation, it can be expressed as the sum of two contours C3 and C4, where 

Cy. z3(f) = hi(-t) - it for -d < t < -c and 
C4: z4(t) = h2(t) + it for c < t < d. 

J 
J 

d-

c -

i 

c Jn\\ 1 J\\ 

J , . ^*XI 1 If 
A — n A y ) ^*^t\\ 

\ ( J 111 M I I IX 

:/? H 1 IT 

13^ Y — h ( V 

FIGURE 6.19 Integration over a standard region where C = C3 + C 
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Using the functions h{{y) and h2(y), we express the double integral of 
QK(x, y) over R as an iterated integral: 

(6) J }QX (*, y) dx dy = j j j ^ Qx(x, v) dx dy. 

A similar derivation will show that equation (6) is equivalent to 

(7) J J QAx, y) dx dy = Jc Q(x, y) dy. 
R 

When equations (5) and (7) are added, the result is equation (1), and the proof is 
complete. 

We are now ready to state our main result in this section. 

Theorem 6.3 (Cauchy-Goursat Theorem) Let f be analytic in a simply 
connected domain D.IfC is a simple closed contour that lies in D, the« 

I (8) )cf(z)dz = 0. 

Proof If we add the additional hypothesis that the derivative f(z) is also contin­
uous, the proof is more intuitive. It was Augustin Cauchy who first proved this 
theorem under the hypothesis that/'(z) is continuous. His proof, which we will now 
state, used Green's theorem. 

Proof Using Green's Theorem We assume that C is oriented in the 
positive sense and use equation (12) in Section 6.2 to write 

(9) f(z) dz = J u dx — v dy + i I v dx + u dy. 

If we use Green's theorem on the real part of the right side of equation (9) with 
P — u and Q = — v, then we obtain 

(10) u dx — v dy = I J ( — v* — ux) dx dy, 

where R is the region that is the interior of C. If we use Green's theorem on the 
imaginary part, the result will be 

(11) I v dx + u dy = I I (ux — vv) dx dy. 
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The Cauchy-Riemann equations ux = vv and uy = —vx can be used in equations (10) 
and (11) to see that the value of equation (9) is given by 

J f(z) dz = J J 0 dx dy + i J J 0 dx dy = 0, 
R R 

and the proof is complete. 

A proof that does not require the continuity of f(z) was devised by Edward 
Goursat (1858-1936) in 1883. 

Goursat's Proof Of Theorem 6.3 We first establish the result for a 
triangular contour C with positive orientation. Construct four positively oriented 
contours C1, C2, C \ and C4 that are the triangles obtained by joining the midpoints 
of the sides of C as shown in Figure 6.20. 

y 
i 

FIGURE 6.20 The triangular contours C and C , C2, C -\ CA 

Since each contour is positively oriented, if we sum the integrals along the 
four triangular contours, then the integrals along the segments interior to C cancel 
out in pairs. The result is 

(12) f/(z)& = 2 Lf(z)dz. 

Let C\ be selected from C\ C2, C3, and C4 so that the following relation holds true: 

(13) |c/U)*U|lt/k)*U4|/Ci/(z)* 

We can proceed inductively and carry out a similar subdivision process to obtain a 
sequence of triangular contours {C,,}, where the interior of Cn+\ lies in the interior 
of C„ and the following inequality holds: 

(14) II. f(z) dz\ \L fit) dz\ for n = 1,2, . . . . 
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Let Tn denote the closed region that consists of Cn and its interior. Since the length 
of the sides of Cn go to zero as n —> °°, there exists a unique point z0 that belongs 
to all of the closed triangular regions Tn. Since f is analytic at the point zo, there 
exists a function r\(z) with 

(15) f(z) = f(zo) + f(z0)(z - zo) + TI(Z)(Z - z0). 

Using equation (15) and integrating /along Cm we find that 

(16) £ f(z) dz = £ /(zo) dz + £ /'(z0)(z - zo) dz 

+ J c r|(zXz - zo) dz 

= Ifizo) - f'{Zo)Zol Jc 1 dz + /(zo) £ z * 

1 TI (z)(z ~ zo) dz 

-L T|(z)(z - Zo) dz. 

If e > 0 is given, then a 8 > 0 can be found such that 

(17) | z - zo | < 8 implies that | r|(z) | < 
L 2 ' 

where L is the length of the original contour C. An integer n can now be chosen so 
that Cn lies in the neighborhood | z - Zo | < 8, as shown in Figure 6.21. 

FIGURE 6.21 The contour Cn that lies in the neighborhood | z — Zo I < 8. 

Since the distance between a point z on a triangle and a point z0 interior to the 
triangle is no greater than half the perimeter of the triangle, it follows that 

(18) | z - zo | < y U for all z on C„, 

where Ln is the length of the triangle Cn. From the preceding construction process, 
it follows that 

(19) Ln = {\)nL and | z - z0 | < (T)" + 1 L for z on Cn. 
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We can use equations (14), (17), and (19) of this section and equation (23) of Section 
6.2 to obtain the following estimate: 

l f(z) dz < 4 " J \r](z)(z-

^\,m 
-*?J>I 

2"-'e / l \ " 

" L \2) L = 

- zo)11 dz 
l 

L\dz\ 

e 
2' 

Since e was arbitrary, it follows that equation (12) holds true for the triangular 
contour C. If C is a polygonal contour, then interior edges can be added until the 
interior is subdivided into a finite number of triangles. The integral around each 
triangle is zero, and the sum of all these integrals is equal to the integral around the 
polygonal contour C. Therefore equation (12) holds true for polygonal contours. 
The proof for an arbitrary simple closed contour is established by approximating 
the contour ''sufficiently close" with a polygonal contour. 

EXAMPLE 6 . 1 2 Let us recall that exp z, cos z, and zn, where n is a positive 
integer are all entire functions and have continuous derivatives. The Cauchy-Goursat 
theorem implies that for any simple closed contour we have 

JcexPZ<fe = 0, l cos z dz = 0, 
Jc Z" dz = 0. 

EXAMPLE 6 . 1 3 If C is a simple closed contour such that the origin does not 
lie interior to C, then there is a simply connected domain D that contains C in which 
f(z) = \lztl is analytic, as is indicated in Figure 6.22. The Cauchy-Goursat theorem 
implies that 

Jcz
n dz = 0 provided that the origin does not lie interior to C. 

FIGURE 6.22 A simple connected domain D containing the simple closed 
contour C that does not contain the origin. 
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It is desirable to be able to replace integrals over certain complicated contours 
with integrals that are easy to evaluate. If C\ is a simple closed contour that can be 
continuously deformed into another simple closed contour C2 without passing 
through a point where/ is not analytic, then the value of the contour integral of/ 
over Ci is the same as the value of the integral of/over C2. To be precise, we state 
the following result. 

Theorem 6.4 (Deformation of Contour) Let C{ and C2 be two simple 
closed positively oriented contours such that C\ lies interior to C2. Iff is 
analytic in a domain D that contains both C\ and C2 and the region between 
them, as shown in Figure 6.23, then 

jcj(z)dZ = lnz)dz. 

FIGURE 6.23 The domain D that contains the simple closed contours C\ and C2 
and the region between them. 

Proof Assume that both Cj and C2 have positive (counterclockwise) ori­
entation. We construct two disjoint contours or cuts L\ and L2 that join C\ to C2. 
Hence the contour C\ will be cut into two contours C\ and C**, and the contour C2 

will be cut into C\ and C*2*. We now form two new contours: 

K{ = - C * + L{ + C\ - L2 and K2 = ~ C " + L2 + C*2* - Lu 

which are shown in Figure 6.24. The function / will be analytic on a simply con­
nected domain Dj that contains Ku and/will be analytic on the simply connected 
domain D2 that contains K2, as is illustrated in Figure 6.24. 
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(a) The contour Kl and domain Dy (b) The contour K2 and domain Dr 

FIGURE 6.24 The cuts L, and L2 and the contours K\ and K2 used to prove the 
Deformation Theorem. 

The Cauchy-Goursat theorem can be applied to the contours K\ and K2, and 
the result is 

JK} L (20) f(z) <fe = 0 and f(z) dz = 0. 

Adding contours, we observe that 

(21) Kt+K2= -C\ + U + C\- L2- C** + L2 + CT - L, 

We can use identities (14) and (17) of Section 6.2 and equations (20) and (21) given 
in this section to conclude that 

\ c m dZ - JC| Az) dz = £ ( m dZ + jKm dZ = o, 

which completes the proof of Theorem 6.4. 

We now state an important result that is proven by the deformation theorem. 
This result will occur several times in the theory to be developed and is an important 
tool for computations. 

EXAMPLE 6-14 Let z0 denote a fixed complex value. If C is a simple closed 
contour with positive orientation such that zo lies interior to C, then 

(22) 
f dz 

JC Z - Zn 

I 
Z ~ ZQ 

dz 
c (z - ZoT 

2ni and 

0 where n ^ 1 is an integer. 
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Solution Since Zo lies interior to C, we can choose R so that the circle CR 

with center zo and radius R lies interior to C. Hence f(z) = \l(z- ZQ)" is analytic in 
a domain D that contains both C and CR and the region between them, as shown in 
Figure 6.25. Let CR have the parameterization 

CR\ z(6) = zo + ReiB and dz = i Reid dQ for 0 < 6 < 2n. 

FIGURE 6.25 The domain D that contains both C and CR. 

The deformation theorem implies that the integral off over CR has the same value 
as the integral of/over C, and we obtain 

and 

f dz ( dz f2URe<» Jfl . P« Jfl ^ . 
= = —— dd = i d% = 2TT; 

Jc 2 - zo J Q z - zo Jo /?e/e Jo 

f dz __ f dz _ f2n i Re* 

J c (z ~ Zo)n " JQ (Z - Zo)" ~ Jo #V"H ^ 6 = * ' 
•I/IH -r 

Jo 

^•(1-«)e ^ 9 

^ i ( l - n ) e | — 

1 - n 
z?1 

e=o \ — n \ — n 
= 0. 

The deformation theorem is an extension of the Cauchy-Goursat theorem to a 
doubly connected domain in the following sense. Let D be a domain that contains 
Cx and C2 and the region between them, as shown in Figure 6.25. Then the contour 
C = C2 — C\ is a parameterization of the boundary of the region R that lies between 
C\ and C2 so that the points of R lie to the left of C as a point z{t) moves around C 
Hence C is a positive orientation of the boundary of /?, and Theorem 6.4 implies 
that 

1 f{z) dz = 0. 

We can extend Theorem 6.4 to multiply connected domains with more than one 
"hole." The proof, which is left for the reader, involves the introduction of several 
cuts and is similar to the proof of Theorem 6.4. 
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Theorem 6.5 (Extended Cauchy-Goursat Theorem) 
Let C, C], C2, . • . , C„ Z?e simple closed positively oriented contours with the 
property that Ck lies interior to C for k = 1, 2, . . . , ft, and the set interior 
to Cf, has no points in common with the set interior to Cj if k # j . Let f be 
analytic on a domain D that contains all the contours and the region between 
C and C/ 4- C2 + • • • + Cny which is shown in Figure 6.26. Then 

(23) j f(z) * = i f f(z) dz. 
JC £=1 JQ 

FIGURE 6.26 The multiply connected domain D and the contours C and 
Ci, C2, • . . , Cn in the statement of the Extended Cauchy-Goursat Theorem. 

EXAMPLE 6 . 1 5 If C is the circle \z\ = 2 taken with positive orientation, 
then 

<*> UT5-« 
Solution Using partial fractions, the integral in equation (24) can be written 

as 

, w [ 2zdz [ dz [ & 

z - 1V5 * 

Since the points z = ± /*V2 lie interior to C, Example 6.14 implies that 

f dz 
Jcz±ij2 

(26) I — ^ = 2ni. 

The results in (26) can be used in (25) to conclude that 

f 2zdz 
~; ~ = 2ni + 2JU = 4TC«. 

Jc z2 + 2 
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EXAMPLE 6-16 If C is the circle \z - i\ 
then 

1 taken with positive orientation, 

(27) 

as 

(28) 

l 2z dz 
271/. ]cz

2 + 2 

Solution Using partial fractions, the integral in equation (27) can be written 

f 2zdz _ f <fe | f &_ 
72* 

In this case, only the point z = ijl lies interior to C, so the second integral on the 
right side of equation (28) has the value 2TC/. The function/(z) = l/(z + ijl) is 
analytic on a simply connected domain that contains C. Hence by the Cauchy-
Goursat theorem the first integral on the right side of equation (28) is zero (see 
Figure 6.27). Therefore 

/ . 

2z dz 
cz

2 + 2 
= 0 + 2n/ = 2ni. 

FIGURE 6.27 The circle \z - i\ = 1 and the points z = ±ijl. 

EXAMPLE 6.17 Show that 

z - 2 I dz = — 6ni 

where C is the ''figure eight" contour shown in Figure 6.28(a). 

& • 
€f 

(a) The figure eight contour C. (b) The contours C, and C2. 

FIGURE 6.28 The contour C = Cx + C2. 
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S o l u t i o n Partial fractions can be used to express the integral as 

(29) 
Jc z2 - z Jc z JC z -z - 1 

dz. 

Using the Cauchy-Goursat theorem and property (14) of Section 6.2 together with 
Example 6.13, we compute the value of the first integral on the right side of equation 
(29): 

(30) 2 \ -dz = 2 \ - dz + 2 - dz 
Jc z Jct z Jci z 

= - 2 - dz + 0 = -2(271/) = -471/. 
J -c . z 

In a similar fashion we find that 

dz 
(31) 

Jc 7 - 1 JC, 7 - 1 JC2 

dz 
= 0 - 2TI/ = -27 i / . 

z - 1 Jc, z - 1 J c 2 Z - 1 

The results of equations (30) and (31) can be used in equation (29) to conclude that 

z-2 L C72 _ • dz = —Am - 2ni = -6rti. 

EXERCISES FOR SECTION 6.3 
1. Determine the domain of analyticity for the following functions, and conclude that 

fcfiz) dz = 0, where C is the circle | z \ = 1 with positive orientation. 
z 1 

(a) f(z) = 
z2 + 2 

(b) f(z) = 
z2 + 2z + 2 

(d) f(z) = Log(z + 5) 
27i/, where C is the square with vertices 1 ± /, 1 ± i with 

(c) f(z) = tan z 

2. Show that fc z~[ dz 
positive orientation. 

3 . Show that Jc (4z2 — 4z + 5)" ' dz = 0, where C is the unit circle | z \ = 1 with positive 
orientation. 

4. Find fc (z2 — zY] dz for the following contours. 
(a) The circle | z — 1 | = 2 with positive orientation. 
(b) The circle j z — 1 | = \ with positive orientation. 

5. Find / c (2z - l)(z2 - z ) _ l dz for the following contours. 
(a) The circle | z 
(b) The circle j z 

6. Evaluate / c (z2 -
7. Evaluate / c (2z -

6.28(a). 
8. Eva lua te /c (4z2 + 4z - 3 ) - ' dz = fc(2z ~ l )" ' (2z + 3)- 1 dz for the following contours. 

= 2 with positive orientation. 
= y with positive orientation. 

z) ' dz, where C is the figure eight contour shown in Figure 6.28(a). 
l)(z2 — z) ' dz, where C is the figure eight contour shown in Figure 

(a) The circle 
(b) The circle 
(c) The circle 

9. E v a l u a t e / c (z
2 

z I = 1 with positive orientation. 
z + y I = 1 with positive orientation. 
z | = 3 with positive orientation. 
- l ) _ l dz for the contours given in Figure 6.29. 
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(a) (b) 

FIGURE 6.29 Accompanies Exercise 9. 

10. Let C be the triangle with vertice 0, 1, and i with positive orientation. Parameterize C 
and show that 

i J ldz = 0 and \ z dz = 0. 

11. Let the circle \z\ = 1 be given the parameterization 

C: z(t) = cos t + * sin t for — n < t < n. 

Use the principal branch of the square root function: 

f) ft 

z\/2 — ri/2C0S - + /r1/2sin - for -n < 6 < 71 
2 2 

and find fc zU2 dz. 
12. Evaluate / c | z p exp z dz, where C is the unit circle | z | = 1 with positive orientation. 
13. Let/(z) = u(r, 6) + iv(r, G) be analytic for all values of z = re'Q. Show that 

I [w(r, 6) cos 0 - v(r, 6) sin 6] dQ = 0. 

Hint: Integratef around the circle \z\ = 1. 
14. Show by using Green's theorem that the area enclosed by a simple closed contour C is 

y fc x dy - v dr. 

15. Compare the various methods for evaluating contour integrals. What are the limitations 
of each method? 

6.4 The Fundamental Theorems of Integration 

Let f be analytic in the simply connected domain D. The theorems in this section 
show that an antiderivative F can be constructed by contour integration. A conse­
quence will be the fact that in a simply connected domain, the integral of an analytic 
funct ion/a long any contour joining z\ to zi is the same, and its value is given by 
F(zi) — F(z\). Hence we will be able to use the antiderivative formulas from calculus 
to compute the value of definite integrals. 

Theorem 6.6 (Indefinite Integrals or Antiderivat ives) Let f be ana­
lytic in the simply connected domain D. If zo is a fixed value in D and if C is 
any contour in D with initial point Zo and terminal point z, then the function 
given by 
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(1) Hz)= \ /(&</£ = [ M)dt, 
JC J z(> 

is analytic in D and 

(2) F'(z)=f(z). 

Proof We first establish that the integral is independent of the path of integration. 
Hence we will need to keep track only of the endpoints, and we can use the notation 

I™*-1 M) d% = M) d(i). 

Let C\ and Ci be two contours in Z), both with the initial point zo and the 
terminal point z, as shown in Figure 6.30. Then C = C\ — C2 is a simple closed 
contour, and the Cauchy-Goursat theorem implies that 

Ic/®^-L/©^=L./®^=°-
Therefore the contour integral in equation (1) is independent of path. Here we have 
taken the liberty of drawing contours that intersect only at the endpoints. A slight 
modification of the foregoing proof will show that a finite number of other points 
of intersection are permitted. 

FIGURE 6.30 The contours C\ and C2 joining za to z. 

We now show that F\z) = f(z). Let z be held fixed, and let Az be chosen small 
enough so that the point z + Az also lies in the domain D. Since z is held fixed, 
f(z) = K where K is a constant, and equation (12) of Section 6.1 implies that 

(3) £ + A 7fe) di = £A< Kd£ = KAz= f(z) Az. 

Using the additive property of contours and the definition of F given in equation 
(1), it follows that 

(4) F(z + Az) - F(z) = r + A 7 ( © dk - f /(€) dk 
J Z() J Z{) 

= jcM) di - jc M) di = jcM) di, 
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where the contour C is the straight line segment joining z to z + Az and C\ and C2 

join zo to z and zo to z + Az, respectively, as shown in Figure 6.31. 

z + Az 

FIGURE 6.31 The contours C, and C2 and the line segment C = -C] + C2. 

Since / i s continuous at z, then if e > 0, there is a 8 > 0 so that 

(5) \M) ~ f(z) | < e whenever | 5 - z | < 8. 

If we require that | Az | < 8, then using equations (3) and (4), inequality (5), and 
inequality (22) of Section 6.2, we obtain the following estimate: 

(6) 
F(z + Az) - F(z) 

Az 
-f(z) "|i| | /c^*-/c^>* 

Consequently, the left side of equation (6) tends to 0 as Az —> 0; that is, F'(z) = 
/(z), and the theorem is proven. 

It is important to notice that the line integral of an analytic function is inde­
pendent of path. An easy calculation shows 

Jc'Wc, z dz = 4 + 2/, 

where C\ and C2 were contours joining — 1 — i to 3 + i. Since the integrand 
f(z) = z is an analytic function, Theorem 6.6 implies that the value of the two 
integrals is the same; hence one calculation would suffice. 

If we set z = Z\ in Theorem 6.6, then we obtain the following familiar result 
for evaluating a definite integral of an analytic function. 
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Theorem 6.7 (Definite Integrals) Letf be analytic in a simply connected 
domain D. If ZQ and Z\ are two points in D, then 

(7) f ' / fe) dz = F(zi) ~ F(z0) 

where F is any antiderivative off. 

Proof If F is chosen to be the function in equation (1), then equation (7) 
holds true. If G is any other antiderivative of/, then H(z) = G(z) — F(z) is analytic, 
and H'(z) = 0 for all points z in D. Hence H(z) = K where A' is a constant, and 
G(z) = F(z) + K. Therefore G{z\) ~ G(zo) = F(zi) - F(zo), and Theorem 6.7 is 
proven. 

Theorem 6.7 is an important method for evaluating definite integrals when the 
integrand is an analytic function. In essence, it permits us to use all the rules of 
integration that were introduced in calculus. For analytic integrands, application of 
Theorem 6.7 is easier to use than the method of parameterization of a contour. 

EXAMPLE 6 . 1 8 Show that /J cos z dz = -s in 1 + i sinh 1. 

Solution An antiderivative of f(z) = cos z is F(z) = sin z. Hence 

cos zdz — sin / — sin 1 = — sin 1 + i sinh 1. / ; 

EXAMPLE 6 . 1 9 Evaluate ( 2 + j ) P eV"*4 dt. 

Solution In Example 6.7, we broke the integrand up into its real and imag­
inary parts, which then required integration by parts. Using Theorem 6.7, however, 
we see that 

= e ( 2 + /7i/4) _ e0 

~ e(2-+iit/4) _ I 
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EXAMPLE 6.20 Show that 

I* 2zm / : 1 + i\ 

where zin is the principal branch of the square root function and the integral is to 
be taken along the line segment joining 4 to 8 + 6/. 

Solution Example 3.8 showed that if F(z) = zu\ then F'(z) = U(2zl/2\ 
where the principal branch of the square root function is used in both the formulas 
for F and F'. Hence 

J'8 + 6/ 

4 

dz_ 
2zm = (8 + 6/)1/2 ™ 41/2 = 3 + / - 2 = 1 + /. 

EXAMPLE 6.21 Let D = {z = reiB: r > 0 and -n < 6 < re} be the simply 
connected domain shown in Figure 6.32. Then F(z) = Log z is analytic in D, and 
its derivative is F'(z) = 1/z. If C is a contour in D that joins the point z\ to the point 
z2, then Theorem 6.7 implies that 

fZ2 dz f * T 
~ = I ~~ == L°g & - Log z\. 

Jzi Z JC z 

(a) The path C joining zx and zr (b) The path that is a portion 
of the unit circle \z\= 1. 

FIGURE 6.32 The simply connected domain D in Examples 6.21 and 6.22. 

EXAMPLE 6 . 2 2 As a consequence of Example 6.21, let us show that 

— = 27i/, where C is the unit circle | z | = 1, 

taken with positive orientation. 

Solution If we let zi approach - 1 through the upper half plane and z\ 
approaches - 1 through the lower half plane, then we can integrate around the por­
tion of the circle shown in Figure 6.32(b) and take limits to obtain 
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— = lim — = lim Log z2 - lim Log z\ 
Jc z -,^-i Jz\ z z2^-\ .-!->-! 

z2-»-1 lm(z2)>0 lm(z})<0 

= in — ( — in) = 2ni. 

EXERCISES FOR SECTION 6.4 

For Exercises 1-14, use antiderivatives to find the value of the definite integral. 
fin/2 

exp z dz 

~2i z 

f2+/ V 1 + z V 
1. z2dz 2. dz (use Log z) 3. 

J]+i J i z J2 

4. J (z2 + z~2)dz 5. I cos zdz 6. Jo sin ~ dz 

f2+ici f l+2 / p 

7. z exp zt/z 8. z exp(z2) dz 9. z cos z dz 
J_|_iV2 JI-2/ r JO 

r r , + / r2+/ dz 
10. Ĵ  sin2 zdz 11. J] Log z dz 12. J2 - ^ -

f2+/ 2z - l r2+/ 

13. -7 -dz 14. 
J2 z2 - z h • 

z'2-dz 

zL - z n zf- - Z 

15. Show that J:2 \ dz = zi ~ z\ by parameterizing the line segment from z\ to z2. 
16. Let zi and Z2 be points in the right half plane. Show that 

r ̂  dz i i 

Z 2 Z | Z2 ' 

17. Find 

P^Jz_ 
h 2zm' 

where z,/2 is the principal branch of the square root function and the integral is to be 
taken along the line segment from 9 to 3 + 4z. 

18. Find /2'2, z,/2 dz, where zl/2 is the principal branch of the square root function and the 
integral is to be taken along the right half of the circle \z\ = 2. 

19. Using the equation 

1 i 1 i \ 

z2 + 1 2 z + i 2z- i' 

show that if z lies in the right half plane, then 

[z d^ i i 
= arctan z — ~ Log(z + 0 - — Log(z - /)• 

h ¥ + 1 2 & 2 

20. Le t / ' and g' be analytic for all z. Show that 

J*f(z)g'(z)dz = f(z2)g(z2) -fizi)g(zi) - }*f'(z)g(z)dz. 

21. Compare the various methods for evaluating contour integrals. What are the limitations 
of each method? 

22. Explain how the fundamental theorem of calculus studied in complex analysis and the 
fundamental theorem of calculus studied in calculus are different. How are they similar? 
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6.5 Integral Representations for Analytic Functions 

We now present some major results in the theory of functions of a complex variable. 
The first result is known as Cauchy's integral formula and shows that the value of 
an analytic function f can be represented by a certain contour integral. The nih 
derivative, f"\z), will have a similar representation. In Chapter 7 we will show how 
the Cauchy integral formulae are used to prove Taylor's theorem, and we will es­
tablish the power series representation for analytic functions. The Cauchy integral 
formulae will also be a convenient tool for evaluating certain contour integrals. 

Theorem 6.8 (Cauchy's Integral Formula) Let f be analytic in the 
simply connected domain D, and let C be a simple closed positively oriented 
contour that lies in D. If zo is a point that lies interior to C, then 

m * ^ l f f(z)
 A 

(1) f(zo) = — I dz. 
2ni Jc z - zo 

Proof Since/is continuous at zo, if £ > 0 is given, there is a 8 > 0 such 
that 

(2) \f(z) - f(zo) | < e whenever | z - z0 | < 5. 

Also the circle C0: | z - Zo | = y 5 lies interior to C as shown in Figure 6.33. 

FIGURE 6.33 The contours C and C0 in the proof of Cauchy's integral formula. 

Since/(zo) is a fixed value, we can use the result of Exercise 24 of Section 6.2 to 
conclude that 

, - , „ , f(zo) f dz I f /(zo) , 
(3) /(zo) = — L = 7TT. L ~ *• 

2ni J Co z - Zo 2ni JC{) Z ~ Zo 
Using the deformation theorem we see that 
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Using inequality (2), equations (3) and (4), and inequality (22) of Section 6.2, we 
obtain the following estimate: 

(5) IJL f / f e ) dz f(J\ = I— [ f(z) dz - — f /(Zo) dz 

\2ni Jc z - zo I \2ni Jc„ z - ZQ 2ni Jc„ z - Zo zQ 2m Jcn z - Zo 

1 f |/(z)-/(zt>) -L f • dz 
| z - zo I 

< n g _ £ 
271(1/2)5 

Since e can be made arbitrarily small, the theorem is proven. 

EXAMPLE 6-23 Show that 

exp z i • dz = Hue, 
Jcz- 1 

where C is the circle | z | = 2 with positive orientation. 

Solution Here we have/(z) = exp z and/(1) = e. The point zo = 1 lies 
interior to C, so Cauchy's integral formula implies that 

1 f expz J = /(1) = —- -dz, J 2ni Jcz - 1 z 

and multiplication by 2ni will establish the desired result. 

EXAMPLE 6 . 2 4 Show that 

L sin z — ^/ini 
• dz = 

ic4z + 7i 4 

where C is the circle | z | = 1 with positive orientation. 

Solution Here we have/(z) = sin z. We can manipulate the integral and 
use Cauchy's integral formula to obtain 

f sinz = j . f sin z = J. f /(z) 
JC4Z + TC Z 4Jc z-h(7r/4) Z 4 J c z - ( - 7 t / 4 ) Z 

= 4 ( 2 KnTj=7 s i n(TJ=-^-
We now state a general result that shows how differentiation under the integral 

sign can be accomplished. The proof can be found in some advanced texts. See, for 
instance, Rolf Nevanlinna and V. Paatero, Introduction to Complex Analysis 
(Reading, Massachusetts: Addison-Wesley Publishing Company, 1969), Section 
9.7. 
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Theorem 6.9 (Leibniz's Rule) Let D be a simply connected domain, and 
let I: a < t < b be an interval of real numbers. Let f(z, t) and its partial 
derivative /:(z, t) with respect to z be continuous functions for all z in D and 
all t in I. Then 

(6) F(z) - | / fc t) dt 
Ja 

is analytic for z in D, and 

F'(z) = f f(z, t) dt 
Ja 

We now show how Theorem 6.8 can be generalized to give an integral rep­
resentation for the nth derivative, f{n)(z). Leibniz's rule will be used in the proof, 
and we shall see that this method of proof will be a mnemonic device for remem­
bering how the denominator is written. 

Theorem 6.10 (Cauchy's Integral Formulae for Derivatives) Let f 
be analytic in the simply connected domain D, and let C be a simple closed 
positively oriented contour that lies in D.Ifz is a point that lies interior to C, 
then 

<7> ' " ' w - i / c F ^ r * 2niJc(i - Z)n 

Proof We will establish the theorem for the case n = 1. We start by using 
the parameterization 

C: £ = £(t) and d£ = £'(t) dt for a < t < b. 

We use Theorem 6.8 and write 

2m Jc £ — z 2ni Ja t;(t) — z 

The integrand on the right side of equation (8) can be considered as a function 
/(z, t) of the two variables z and t, where 

(9) / f c 0 ^ l ^ T "* te» = m=#-
Using equations (9) and Leibniz's rule, we see that/'(z) is given by 

1 {Z) 2ni Ja (£(t) - z)2 2ni Jc (£ - z)
2' 

and the proof for the case n = 1 is complete. We can apply the same argument to 
the analytic function/' and show that its derivative/" has representation (7) with 
n = 2. The principle of mathematical induction will establish the theorem for any 
value of n. 
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EXAMPLE 6 . 2 5 Let zo denote a fixed complex value. If C is a simple closed 
positively oriented contour such that zo lies interior to C, then 

(10) f - ^ - = 271/ and f /
 d\n+{ = 0, 

Jcz-Zo Jc(z-zo)n+l 

where n > 1 is a positive integer. 

Solution Here we have/(z) = 1 and the nth derivative is/(n)(z) = 0. The­
orem 6.8 implies that the value of the first integral in equations (10) is given by 

l dz = 2nif(zo) = 2TT/, 
•>cz - zo 

and Theorem 6.10 can be used to conclude that 

1 c^-^™-* 
We remark that this is the same result that was proven earlier in Example 6.14. It 
should be obvious that the technique of using Theorems 6.8 and 6.10 is easier. 

EXAMPLE 6.26 Show that 

exp z2 —471 L •dz = 
)c (z - if 3e ' 

where C is the circle | z | = 2 with positive orientation. 

Solution Here we have f(z) = exp z2, and a straightforward calculation 
shows that/ (3)(z) = (12z + 8z3) exp z2- Using Cauchy's integral formulae with 
n = 3, we conclude that 

i exp z2 , 2TU* w .x 2 T I / 4 / -4TC 

c (z - 0 3! 6 e 3e 

EXAMPLE 6.27 Show that 

exp(mz) az 27i i ic 2z2 - 5z + 2 3 ' 

where C is the circle | z \ = 1 with positive orientation. 
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S o l u t i o n By factoring the denominator we obtain 2z2 — 5z + 2 = 
(2z - l)(z - 2). Only the root zo = y lies interior to C. Now we s e t / ( z ) = 
[exp(mz)]/(z — 2) and use Theorem 6.8 to conclude that 

L exp(mz) dz 
2z2 - 5z + 2 

-If 
2 Jr 

3 ' 

f(z) dz 
z ~ (1/2) 

1 . exp(m/2) 

2 J 2 ( 1 / 2 ) - 2 

We now state two important corollaries to Theorem 6.10. 

Corollary 6.1 tffis analytic in the domain D, then all derivatives f\ f'\ 
. . . , / (" } , . . . exist and are analytic in D. 

Proof For each point zo in D, there exists a closed disk | z — Zo \ ^ R that 
is contained in D. The circle C: \z — zo\ = R can be used in Theorem 6.10 to show 
that/ ( '?,(zo) exists for all n. 

This result is interesting, since the definition of analytic function means that 
the der iva t ive / ' exists at all points in D. Here we find something more, that the 
derivatives of all orders exist! 

Corollary 6.2 If u is a harmonic function at each point (x, y) in the domain 
D, then all partial derivatives ux, wv, wvv, wvv, and wvv exist and are harmonic 
functions. 

Proof For each point (JCO, yo) in D there exists a closed disk | z — Zo \ ^ R 
that is contained in D. A conjugate harmonic function v exists in this disk, so the 
function/(z) = u + iv is an analytic function. We use the Cauchy-Riemann equa­
tions and see tha t / ' (z ) = ux + /VA = vv — ius. S i n c e / ' is analytic, the functions ux 

and ux are harmonic. Again, we can use the Cauchy-Riemann equations to see that 

f'{Z) = UXX + lVxx = VyX - iUyX = -Uyy - IVvv. 

S i n c e / " is analytic, the functions uxx, uxy, and wvv are harmonic. 

EXERCISES FOR SECTION 6.5 

For Exercises 1-15, assume that the contour C has positive orientation. 

1. Find Jc (exp z + cos z)z~l dz, where C is the circle 
2. Find fc (z + l)_l(z - l)"1 dz, where C is the circle 
3. Find J> (z + 1) '(z - 1)~2 dz, where C is the circle 

z - 1 
z - 1 

= 1. 
= 1. 

4. Find } c (z
3 - 1)_1 dz, where C is the circle \z ~ 1 = 1. 
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5. Find fc (z cos zK1 dz, where C is the circle \z\ = 1. 
6. Find fcZ~4 sin z dz, where C is the circle \z\ = 1. 
7. Find fc z~3 sinh(z2) dz, where C is the circle \z\ = 1. 
8. Find fc z'2 sin z </z along the following contours: 

(a) The circle \z - (TC/2) | = 1. (b) The circle \z - (TT/4) | = 1. 

9. Find / c z~" exp z dz, where C is the circle | z | = 1 and n is a positive integer. 
10. Find fc z~2(z2 — 16)-1 exp z dz along the following contours: 

(a) The circle \z\ = 1. (b) The circle \z - 4 | = 1. 
11. Find JY (z4 + 4)-1 dz, where C is the circle |z - 1 - / | = 1. 
12. Find fc (z2 + 1)"' dz along the following contours: 

(a) The circle \z - i\ = 1. (b) The circle \z + / | = 1. 
13. Find fc (z2 + 1)-1 sin z dz along the following contours: 

(a) The circle \z - «| = 1. (b) The circle \z + / | = 1. 
14. Find fc (z2 + 1)~2 dz, where C is the circle | z - 11 = 1. 
15. Find / c r ' ( z ~ 1) ' exp z dz along the following contours: 

(a) The circle \z\ = 1/2. (b) The circle \z\ = 2. 

For Exercises 16-19, assume that the contour C has positive orientation. 

16. Let P(z) = ao 4- a\z + a2z
2 + a^z3 be a cubic polynomial. Find fc P(z)z~" dz, where C 

is the circle | z | = 1 and n is a positive integer. 
17. Let/be analytic in the simply connected domain £>, and let C be a simple closed contour 

in D. Suppose that zo lies exterior to C. Find fcf(z)(z ~ Zo)~* dz. 
18. Let Z] and zi be two complex numbers that lie interior to the simple closed contour C. 

Show that J c (z - z^^iz - z2Y
x dz = 0. 

19. Le t /be analytic in the simply connected domain D, and let z\ and zi be two complex 
numbers that lie interior to the simple closed contour C that lies in D. Show that 

/(¾) - / ( z . ) 1 f f(z)dz 
2ni Jc (z -Zi ~ Z\ 

State what happens when Z2 —> Zi-
20. The Legendre polynomial P„(z) is defined by 

1 d" 
2"n\ dzn 

Use Cauchy's integral formula to show that 

p(, ± f (g2 - 1)" dj 
,AZ) 2niJc2»($-zr+l' 

where z lies inside C. 
21. Discuss the importance of being able to define an analytic function/(z) with the contour 

integral in formula (1). How does this differ from other definitions of a function that 
you have learned? 

22. Write a report on Cauchy integral formula. Include examples of complicated examples 
discussed in the literature. Resources include bibliographical items 13, 59, 107, 110, 
118, 119, and 187. 
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6.6 The Theorems of Morera and Liouville 
and Some Applications 

In this section we investigate some of the qualitative properties of analytic and 
harmonic functions. Our first result shows that the existence of an antiderivative for 
a continuous function is equivalent to the statement that the integral off is inde­
pendent of the path of integration. This result is stated in a form that will serve as 
a converse to the Cauchy-Goursat theorem. 

Theorem 6.11 (Morera's Theorem) Let f be a continuous function in a 
simply connected domain D. If 

Jc f(z) dz = 0 

for every closed contour in D, then f is analytic in D. 

Proof Select a point Zo in D and define F(z) by the following integral: 

F(z)= P/(©<*£ 

The function F(z) is uniquely defined because if C\ and C2 are two contours in D, 
both with initial point zo and terminal point z, then C = C\ — C2 is a closed contour 
in A and 

0 = \c M) dt = JCi M) di - Jcj/(© dg. 

Since f(z) is continuous, then if £ > 0, there exists a 8 > 0 such that | £ - z \ < 8 
implies that | /¾) — f(z) | < £. Now we can use the identical steps to those in the 
proof of Theorem 6.6 to show that F'(z) = f(z). Hence F(z) is analytic on D, and 
Corollary 6.1 implies that F'(z) and F'\z) are also analytic. Therefore/'(z) = F"(z) 
exists for all z in D, and we have proven that/(z) is analytic on D. 

Cauchy's integral formula shows how the value f(zo) can be represented by a 
certain contour integral. If we choose the contour of integration C to be a circle with 
center zo, then we can show that the value f(zo) is the integral average of the values 
of f(z) at points z on the circle C. 

Theorem 6.12 (Gauss's Mean Value Theorem) Iff is analytic in a 
simply connected domain D that contains the circle C: \z — Zo\ = R, then 

(1) /(¾) = ^ [*f(zo + Re1") d6. 
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Proof The circle C can be given the parameterization 

(2) C: z(0) = zo + Re* and dz = / Re* dQ for 0 < 0 < 2TT. 

We can use the parameterization (2) and Cauchy's integral formula to obtain 

1 f2nf(zo + Re*)iRe* d$ I f 2 " n .^ m 

and Theorem 6.12 is proven. 

We now prove an important result concerning the modulus of an analytic 
function. 

Theorem 6.13 (Maximum Modulus Principle) Let f be analytic and 
nonconstant in the domain D. Then \f(z) | does not attain a maximum value 
at any point zo in D-

Proof by Contradiction Assume the contrary, and suppose that there 
exists a point zo in D such that 

(3) |/(z)| < | / fe) | holds for all z in D. 

If C0: | z — Zo | = R is any circle contained in D, then we can use identity (1) and 
property (22) of Section 6.2 to obtain 

(4) |/(zo)| = 1 ^ jjfizo + re*) Jel < ~ jj \f(Zo + re*) | <ffl for 0 < r < /?. 

But in view of inequality (3), we can treat | f(z) | = | f(zo + re*) | as a real-valued 
function of the real variable 0 and obtain 

(5) ^ jj | / f e + re*) | d6 < ^ J ^ )/(¾) | </8 = )/(¾) | for 0 < r < R. 

If we combine inequalities (4) and (5), the result is the equation 

I/(¾) | = ^ J'J 1/(10 + re*) \ d», 

which can be written as 

(6) jj (\f(zo)\ - |/(zo + re<e)|)Je = 0 f o r 0 < r < / ? . 

A theorem from the calculus of real-valued functions states that if the integral of a 
nonnegative continuous function taken over an interval is zero, then that function 
must be identically zero. Since the integrand in equation (6) is a nonnegative real-
valued function, we conclude that it is identically zero; that is, 

(7) 1/(¾) | = )/(¾ + re*) ] for 0 < r < R and 0 < 6 < 2TC. 
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If the modulus of an analytic function is constant, then the results of Example 3.13 
show that the function is constant. Therefore identity (7) implies that 

(8) f(z) = f(zo) for all z in the diskD0: \z~ z0\ ^ R. 

Now let Z denote an arbitrary point in A and let C be a contour in D that joins 
ZQ to Z Let 2d denote the minimum distance from C to the boundary of D. Then we 
can find consecutive points zo, Zu Zi, • • • » z„ = Z along C with ) ¾ \ - zu\ ^ d, 
such that the disks Dk: \z - Zk\ ^ d for k = 0, 1, . . . , n are contained in D and 
cover C, as shown in Figure 6.34. 

Since each disk Dk contains the center Zh+\ of the next disk Dk^u it follows 
that z\ lies in D0, and from equation (8) we see that/(zi) = f(zo). Hence \f(z) | also 
assumes its maximum value at z\. An argument identical to the one given above 
will show that 

(9) f(z) = /fei) = f(z0) for all z in the disk £>,. 

We can proceed inductively and show that 

(10) f(z) = f(zk+,) = f(Zk) for all z in the disk Dk+,. 

By using equations (8), (9), and (10) it follows that/(Z) = f(z{)). Therefore f is 
constant in D. With this contradiction the proof of the theorem is complete. 

FIGURE 6.34 The "chain of disks" D0, D,, . . . , Dn that cover C. 

The maximum modulus principle is sometimes stated in the following weaker 
form. 

Theorem 6.13* (Maximum Modulus Principle) Let f be analytic and 
nonconstant in the bounded domain D. Iffis continuous on the closed region 
R that consists of D and all of its boundary points B, then \f(z) | assumes its 
maximum value, and does so only at point(s) ZQ on the boundary B. 
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EXAMPLE 6-28 Let f(z) = az + b, where the domain is the disk D = 
{z: \z\ < 1}. Then / i s continuous on the closed region R = {z: | z | < 1}. Prove 
that 

max | / fe) | = \a\ + | * | 
\z\*\ 

and that this value is assumed b y / a t a point z0 = e'9<> on the boundary of D. 

Solution From the triangle inequality and the fact that | z | < 1 it follows 
that 

| / ( z ) | = \az + b\ < \az\ + \b\ < \a\ + | * | . 

If we choose zo = e'\ where 60 = arg b — arg a, then 

arg azo = arg a + (arg b — arg a) = arg b, 

so the vectors azo and b lie on the same ray through the origin. Hence 
| azo + b | = | azo | + \b\ = \a\ + \b\, and the result is established. 

Theorem 6.14 (Cauchy's Inequalities) Let f be analytic in the simply 
connected domain D that contains the circle C: \z — Zo\ = R. If \ f(z) | ^ M 
holds for all points z on C, then 

(11) |/<«>&>) | < — / 0 r n = l , 2 , . . . . 

Proof Let C have the parameterization 

C: z(6) = z0 + Re** and dz = i Re* dd for 0 < 9 < 2n. 

We can use Cauchy's integral formulae and write 

(12) fin), ) = -^-1 f(z) dz = -5L rfizo + R^JR^dB 

Using equation (12) and property (22) of Section 6.2, we obtain 

< —— M dQ = - — M2n = — - , 
2%Rn Jo 2nRn Rn 

and Theorem 6.14 is established. 
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The next result shows that a nonconstant entire function cannot be a bounded 
function. 

Theorem 6.15 (LiOUVille'S Theorem) If f is an entire function and is 
bounded for all values of z in the complex plane, then f is constant. 

Proof Suppose that |/(z) | < M holds for all values of z. Let zo denote an 
arbitrary point. Then we can use the circle C: | z — Zo | = R, and Cauchy's inequality 
with n = 1 implies that 

M 
(13) | / ' (z0) | £ — . 

If we let R —> oo in inequality (13), then we see that/'(zo) = 0. Hence/'(z) = 0 for 
all z. If the derivative of an analytic function is zero for all z, then it must be a 
constant function. Therefore/is constant, and the theorem is proven. 

EXAMPLE 6 . 2 9 The function sin z is not a bounded function. 

Solution One way to see this is to observe that sin z is a nonconstant entire 
function, and therefore Liouville's theorem implies that sin z cannot be bounded. 
Another way is to investigate the behavior of real and imaginary parts of sin z. If 
we fix x = nil and let y -» ©o, then we see that 

hm sinl —h ty I = hm sin — cosh y + i cos — sinh y 

= lim cosh y = +°°. 

Liouville's theorem can be used to establish an important theorem of elemen­
tary algebra. 

Theorem 6.16 (The Fundamental Theorem of Algebra) If P(z) is a 
polynomial of degree n, then P has at least one zero. 

Proof by Contradiction Assume the contrary and suppose that P(z) ¥> 0 
for all z. Then the function/(z) = l/^(z) is an entire function. We show tha t / i s 
bounded as follows. First we write P(z) = anz

n + a„_iz"_1 + • • • + ajZ + ao and 
consider the equation 

1 1 1 
(14) l /fe)l = i^i=]7F 

an H 1 — + • • • + — - + — 
z z2 zn~l zn 
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Since \ak\/\ zn~k | = \ak\ lrn~k -> 0 as \z\ = r ^ oo, it follows that 

(15) an H 1 r - + • • • H —> an as \z -» °°. 

z r z" 

If we use statement (15) in equation (14), then the result is 

| / ( z ) | -> 0 as \z\ -» oo. 

In particular, we can find a value of R such that 

(16) \f(z)\ < 1 for all \z\ > R. 

Consider 

| / ( z ) | =([u(x,y)]2 + Mx, y)]2)m, 
which is a continuous function of the two real variables x and v. A result from 
calculus regarding real functions says that a continuous function on a closed and 
bounded set is bounded. Hence | f(z) | is a bounded function on the closed disk 

x2 + y2 < R2; 

that is, there exists a positive real number K such that 

(17) \f(z)\ <K for all | z | < R. 

Combining inequalities (16) and (17), it follows that \f(z)\ < M = max{AT, 1} 
holds for all z. Liouville's theorem can now be used to conclude t h a t / i s constant. 
With this contradiction the proof of the theorem is complete. 

Corollary 6.3 Let P be a polynomial of degree n. Then P can be expressed 
as the product of linear factors. That is, 

P(z) = A(z - Z\)(z - z2) • • • (z - in) 

where z\, Zi, • . . , zn are the zeros ofP counted according to multiplicity and 
A is a constant. 

EXERCISES FOR SECTION 6.6 
For Exercises 1-4, express the given polynomial as a product of linear factors. 

1. Factor Pfe) = z4 + 4. 2. Factor P(z) = z2 + (1 + i)z + 5i. 
3. Factor P(z) = z4 - 4z3 + 6z2 - 4z + 5. 
4. Factor P{z) = z3 - ( 3 + 3i)z2 + ( - 1 + 6/)z + 3 - / . Hint: Show that P(i) = 0. 
5. Let/(z) = az" + b, where the region is the disk R = {z: \z\ ^ 1}. Show that 

max I f(z) I = I a I + \b\. 

6. Show that cos z is not a bounded function. 
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7. Let f(z) = z2, where the region is the rectangle R = {z = x + iy: 2 < x < 3 and 
1 < y < 3 } . 
Find the following: 
(a) max I f{z) I (b) min I f{z) I 

R K 

(c) max Re [f(z)] (d) min Im [f(z)] 
R K 

Hint for (a) and (b): \z\ is the distance from 0 to z. 
8. Let F{z) = sin z, where the region is the rectangle 

fl = j z = x + <y: 0 < x < - and 0 < y < 2 

Find max/? |/(z) | . //mf: | sin z p = sin2x + sinh2y. 
9. Le t /be analytic in the disk \z\ < 5, and suppose that |/(£) | < 10 for values of £ on 

the circle | £ — 1 | = 3. Find a bound for |/ (3 ,(1) |. 
10. Le t /be analytic in the disk \z\ < 5, and suppose that |/(£) | < 10 for values of £ on 

the circle | £ - 1 | = 3. Find a bound for |/ ,3)(0) | . 
11. Let /be an entire function such that \f(z) | < M | z | holds for all z. 

(a) Show that/"(z) = 0 for all z, and (b) conclude that/(z) = az + b. 
12. Establish the following minimum modulus principle. Le t /be analytic and nonconstant 

in the domain D. If \f(z) | ^ m, where m > 0 holds for all z in D, then | f(z) | does not 
attain a minimum value at any point zo in D. 

13. Let u(x, y) be harmonic for all (x, v). Show that 

1 P* 
u(xo, v0) = — w(̂ 0 + R cos 0, y0 + R sin 6) of0, where R > 0. 

1% M) 

Hint. Consider/(z) = u(x, y) + iv(x, y). 
14. Establish the following maximum principle for harmonic functions. Let u(x, y) be har­

monic and nonconstant in the simply connected domain D. Then u does not take on a 
maximum value at any point (jto, y0) in D. Hint: Let/(z) = u(x, y) + iv(x, y) be analytic 
in D, and consider F(z) = exp|/(z)] where |F(z)| = euU-x). 

15. Let / be an entire function that has the property | f(z) | ^ 1 for all z. Show that / is 
constant. 

16. Let / b e a nonconstant analytic function in the closed disk R = {z: \z\ ^ 1}. Suppose 
that \f(z) | = Â  for all z on the circle \z\ = 1. Show that/has a zero in D. Hint: Use 
both the maximum and minimum modulus principles. 

17. Why is it important to study the fundamental theorem of algebra in a complex analysis 
course? 

18. Look up the article on Morera's theorem and discuss what you found. Use bibliograph­
ical item 163. 

19. Look up the article on Liouville's theorem and discuss what you found. Use biblio­
graphical item 117. 

20. Write a report on the fundamental theorem of algebra. Discuss ideas that you found in 
the literature that are not mentioned in the text. Resources include bibliographical items 
6, 18, 29, 38, 60, 66, 150, 151, 170, and 184. 

21. Write a report on zeros of polynomials and/or complex functions. Resources include 
bibliographical items 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171, 174, and 
178. 


