\$Q. 1 The sequence $\mathrm{S}=\mathrm{i}+2 \mathrm{i}^{2}+3 \mathrm{i}^{3}+$ \qquad upto 100 terms simplifies to where $i=\sqrt{-1}$:
(A*) 50 (1-i)
(B) 25 i
(C) $25(1+\mathrm{i})$
(D) $100(1-\mathrm{i})$
\$Q. 2 If $\mathrm{z}+\mathrm{z}^{3}=0$ then which of the following must be true on the complex plane?
(A) $\operatorname{Re}(\mathrm{z})<0$
(B^{*}) $\operatorname{Re}(z)=0$
(C) $\operatorname{Im}(\mathrm{z})=0$
(D) $z^{4}=1$
[Hint: $\mathrm{z}\left(1+\mathrm{z}^{2}\right)=0 \Rightarrow \mathrm{z}=0$ or $\mathrm{z}^{2}=i^{2} \Rightarrow \mathrm{z}=0$ or $\left.\left.\mathrm{z}= \pm i \Rightarrow \operatorname{Re}(\mathrm{z})=0\right] \quad\left[\mathbf{1 3}^{\text {th }} \mathbf{(2 5 - 9 - 2 0 0 5}\right)\right]$
Q. 3 Number of integral values of n for which the quantity $(n+i)^{4}$ where $i^{2}=-1$, is an integer is
(A) 1
(B) 2
(C*) 3
(D) 4
[Sol. $\quad(n+i)^{4}=n^{4}+4 n^{3} i+6 n^{2} i^{2}+4 n i^{3}+i^{4}$
[12th, 06-01-2008]

$$
=n^{4}-6 n^{2}+1+i\left(4 n^{3}-4 n\right)
$$

for this to be integer
$4 n^{3}-4 n=4 n\left(n^{2}-1\right)$ must be zero
$\Rightarrow \quad \mathrm{n}=0 \quad$ or $\quad \mathrm{n}= \pm 1 \Rightarrow 3$ values $\Rightarrow \quad$ (C)]
\$Q. 4 Let $i=\sqrt{-1}$. The product of the real part of the roots of $z^{2}-\mathrm{z}=5-5 i$ is
(A) -25
(B*) -6
(C) -5
(D) 25
[Hint: roots are $3-\mathrm{i}$ and $-2+\mathrm{i} \quad \Rightarrow \quad-6$]
Q. 5 There is only one way to choose real numbers M and N such that when the polynomial $5 x^{4}+4 x^{3}+3 x^{2}+M x+N$ is divided by the polynomial $x^{2}+1$, the remainder is 0 . If M and N assume these unique values, then $\mathrm{M}-\mathrm{N}$ is
(A) -6
(B) -2
(C*) 6
(D) 2
[Sol. Let $\mathrm{P}(\mathrm{x})=5 \mathrm{x}^{4}+4 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{Mx}+\mathrm{N}$
$\left[12^{\text {th }} \& 13^{\text {th }} \mathbf{1 5 - 1 0 - 2 0 0 6]}\right.$
$\operatorname{let} \mathrm{Q}(\mathrm{x})=\mathrm{x}^{2}+1$
if the quotient is Q
then $P(x)=Q\left(x^{2}+1\right)$
if $\quad x=i$ then $P(i)=0$
if $\quad x=-i$ then $P(-i)=0$
hence $5-4 \mathrm{i}-3+\mathrm{M} i+\mathrm{N}=0$
hence $\mathrm{N}+\mathrm{Mi}=-2+4 i$
$\therefore \quad \mathrm{N}=-2 ; \quad \mathrm{M}=4$
$\therefore \quad \mathrm{M}-\mathrm{N}=6$ Ans.]
\$Q. 6 In the quadratic equation $x^{2}+(p+i q) x+3 i=0, p \& q$ are real. If the sum of the squares of the roots is 8 then
(A) $\mathrm{p}=3, \mathrm{q}=-1$
(B) $\mathrm{p}=-3, \mathrm{q}=-1$
(C*) $\mathrm{p}= \pm 3, \mathrm{q}= \pm 1$
(D) $\mathrm{p}=-3, \mathrm{q}=1$
[Hint: $\alpha+\beta=-(p+i q) ; \alpha \beta=3 \mathrm{i}$
Given: $\alpha^{2}+\beta^{2}=8$

$$
(\alpha+\beta)^{2}-2 \alpha \beta=8
$$

$$
(p+i q)^{2}-6 i=8
$$

$$
\mathrm{p}^{2}-\mathrm{q}^{2}+\mathrm{i}(2 \mathrm{pq}-6)=8 \Rightarrow \mathrm{p}^{2}-\mathrm{q}^{2}=8 \text { and } \mathrm{pq}=3
$$

$\Rightarrow \quad \mathrm{p}=3 \& \mathrm{q}=1$ or $\mathrm{p}=-3$ and $\mathrm{q}=1 \quad$]
Q. 7 The complex number z satisfying $\mathrm{z}+|\mathrm{z}|=1+7 \mathrm{i}$ then the value of $|\mathrm{z}|^{2}$ equals
(A*) 625
(B) 169
(C) 49
(D) 25
[Sol.

$$
\begin{array}{ll}
& \mathrm{z}=\mathrm{x}+\mathrm{iy} \\
\therefore \quad & \mathrm{x}+\mathrm{iy}+\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=1+7 \mathrm{i} \\
& \mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=1 \\
\text { and } \quad & \mathrm{y}=7 \tag{2}\\
\therefore \quad & \mathrm{x}+\sqrt{\mathrm{x}^{2}+49}=1 \\
& \mathrm{x}^{2}+49=1+\mathrm{x}^{2}-2 \mathrm{x} \\
& 2 \mathrm{x}=-48 \\
& \mathrm{x}=-24 \\
\therefore \quad & \left.\mathrm{z}\right|^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}=625 \text { Ans.] }
\end{array}
$$

Q. 8 The figure formed by four points $1+0 \mathrm{i} ;-1+0 \mathrm{i} ; 3+4 \mathrm{i} \& \frac{25}{-3-4 \mathrm{i}}$ on the argand plane is :
(A) a parallelogram but not a rectangle
(B) a trapezium which is not equilateral
(C*) a cyclic quadrilateral
(D) none of these

; Note that opposite angles are supplementary]
Q. 9 If $\mathrm{z}=(3+7 i)(\mathrm{p}+i \mathrm{q})$ where $\mathrm{p}, \mathrm{q} \in \mathrm{I}-\{0\}$, is purely imaginary then minimum value of $|\mathrm{z}|^{2}$ is
(A) 0
(B) 58
(C) $\frac{3364}{3}$
(D*) 3364
[Hint: $\quad z=(3 p-7 q)+i(3 q+7 p)$
for purely imaginary $3 \mathrm{p}=7 \mathrm{q} \Rightarrow \mathrm{p}=7$ or $\mathrm{q}=3$ (for least value)

$$
\left.|\mathrm{z}|=|3+7 \mathrm{i}| \mathrm{p}+\left.\mathrm{iq}|\Rightarrow| \mathrm{z}\right|^{2}=58\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)=58\left[7^{2}+9\right]=58^{2} \Rightarrow(\mathrm{D})\right]
$$

Q. 10 Number of values of z (real or complex) simultaneously satisfying the system of equations
$1+z+z^{2}+z^{3}+$ \qquad $+\mathrm{z}^{17}=0$
and
$1+z+z^{2}+z^{3}+$ $+\mathrm{z}^{13}=0 \quad$ is
(A*) 1
(B) 2
(C) 3
(D) 4
[Sol. $\quad 1-z^{18}=0 ; 1-z^{14}=0 \quad \Rightarrow \quad z^{14}=1$ or $z^{18}=1$
since one is extraneous root $\mathrm{z}=-1$ is the common root.]
$\$ \mathrm{Q} .11$ If $\frac{\mathrm{x}-3}{3+i}+\frac{\mathrm{y}-3}{3-i}=i$ where $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ then
(A) $x=2 \& y=-8$
(B*) $x=-2 \& y=8$
(C) $x=-2 \& y=-6$
(D) $x=2 \& y=8$
Q. 12 Number of complex numbers z satisfying $z^{3}=\bar{z}$ is
(A) 1
(B) 2
(C) 4
(D*) 5
[Sol. $\mathrm{z}=0 ; \mathrm{z}= \pm 1 ; \mathrm{z}= \pm i$;
$z^{3}=\bar{z} \Rightarrow|z|^{3}=|\bar{z}|=|z|$
note that $\mathrm{z}^{\mathrm{n}}=|\overline{\mathrm{z}}|$ has $\mathrm{n}+2$ solutions
hence $|z|=0$ or $|z|^{2}=1$
again $\quad z^{4}=\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}=1 \quad \Rightarrow \quad \mathrm{z}^{4}=1 \Rightarrow \quad$ total number of roots are 5

Note that the equation $\mathrm{z}^{\mathrm{n}}=\overline{\mathrm{z}}$ will have $(\mathrm{n}+2)$ solutions.]
Q. 13 If $x=9^{1 / 3} 9^{1 / 9} \quad 9^{1 / 27} \ldots \ldots$. ad inf

$$
\mathrm{y}=4^{1 / 3} 4^{-1 / 9} 4^{1 / 27} \ldots \ldots . \operatorname{ad} \inf
$$ then , the argument of the complex number $\mathrm{w}=\mathrm{x}+\mathrm{yz}$ is $\mathrm{z}=\sum_{\mathrm{r}=1}^{\infty}(1+1)^{-\mathrm{r}}$

(A) 0
(B) $\pi-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
$\left(C^{*}\right)-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
(D) $-\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
[Sol. $x=9^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots}=9^{\frac{\frac{1}{3}}{1-\frac{1}{3}}}=9^{\frac{1}{2}}=3$
$y=4^{\frac{1}{3}-\frac{1}{9}+\frac{1}{27}+\ldots}=4^{\frac{\frac{1}{3}}{1+\frac{1}{3}}}=4^{\frac{1}{4}}=\sqrt{2}$
$\mathrm{z}=\sum_{\mathrm{r}=1}^{\infty}(1+\mathrm{i})^{-\mathrm{r}}=\frac{1}{1+\mathrm{i}}+\frac{1}{(1+\mathrm{i})^{2}}+\frac{1}{(1+\mathrm{i})^{3}}+\ldots \ldots . .=\frac{\frac{1}{1+\mathrm{i}}}{1-\frac{1}{1+\mathrm{i}}}=\frac{1}{\mathrm{i}}=-\mathrm{i}$
Let $\quad \omega=x+y z=3-\sqrt{2} i \quad\left(4^{\text {th }}\right.$ quad. $\left.) \Rightarrow \operatorname{Arg} \omega=-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right) \Rightarrow(C)\right]$
$\$ \mathrm{Q} .14$ Let $\mathrm{z}=9+\mathrm{b} i$ where b is non zero real and $i^{2}=-1$. If the imaginary part of z^{2} and z^{3} are equal, then b^{2} equals
(A) 261
(B*) 225
(C) 125
(D) 361
[Sol. $\quad z^{2}=81-b^{2}+18 b i$
$z^{3}=729+243 b i-27 b^{2}-b^{3} i$
hence $243 b-b^{3}=18 b$ and

$$
243-b^{2}=18
$$

$$
\left.\mathrm{b}^{2}=225 \text { Ans. }\right]
$$

One or more than one is/are correct:

\$Q. 15 If the expression $(1+\mathrm{ir})^{3}$ is of the form of $s(1+i)$ for some real ' s ' where ' r ' is also real and $\mathrm{i}=\sqrt{-1}$, then the value of ' r ' can be
(A) $\cot \frac{\pi}{8}$
(B*) $\sec \pi$
$\left(\mathrm{C}^{*}\right) \tan \frac{\pi}{12}$
(D*) $\tan \frac{5 \pi}{12}$
[Sol. We have $(1+\text { ri })^{3}=s(1+$ i) \quad [13th, 04-10-2009, P-1]
$1+3 r i+3 r^{2} i^{2}+r^{3} i^{3}=s(1+i) \quad[12 t h, 22-06-2008]$
$1-3 r^{2}+i\left(3 r-r^{3}\right)=s+s i \quad \Rightarrow \quad 1-3 r^{2}=s=3 r-r^{3}$
Hence $1-3 r^{2}=3 r-r^{3}$
$\Rightarrow \quad \mathrm{r}^{3}-3 \mathrm{r}^{2}-3 \mathrm{r}+1=0 \Rightarrow\left(\mathrm{r}^{3}+1\right)-3 \mathrm{r}(\mathrm{r}+1)=0 \Rightarrow(\mathrm{r}+1)\left(\mathrm{r}^{2}+1-\mathrm{r}-3 \mathrm{r}\right)=0$
$\therefore \quad \mathrm{r}=-1$ or $\mathrm{r}^{2}-4 \mathrm{r}+1=0$
$\Rightarrow \quad r=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm 2 \sqrt{3}}{2} \Rightarrow r=2+\sqrt{3}$ or $\left.2-\sqrt{3} \Rightarrow \mathbf{B}, \mathbf{C}, \mathbf{D}\right]$
\$Q. 1 The digram shows several numbers in the complex plane. The circle is the unit circle centered at the origin. One of these numbers is the reciprocal of F , which is
(A) A
(B) B
(C*) C
(D) D
[Sol. Let F as $\mathrm{a}+\mathrm{bi}, \mathrm{a}, \mathrm{b} \in \mathrm{R}$

where we see from the diagram that $\mathrm{a}, \mathrm{b}>0$ and $\mathrm{a}^{2}+\mathrm{b}^{2}>1$ (as F lies outside the unit circle)
Since $\alpha=\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i$,
(real part + ve and imaginary part - ve and both less than unity)
we see that the reciprocal of F is in IV quadrant, since the real part is positive and the imaginary part is negative. Also, the magnitude of the reciprocal is

$$
\frac{1}{a^{2}+b^{2}} \sqrt{a^{2}+(-b)^{2}}=\frac{1}{\sqrt{a^{2}+b^{2}}}<1
$$

Thus the only possibility is point C .]
$\left[19-2-2006,12^{\text {th }} \& 13^{\text {th }}\right]$
\$Q. 2 If $\mathrm{z}=\mathrm{x}+\mathrm{iy} \& \omega=\frac{1-\mathrm{iz}}{\mathrm{z}-\mathrm{i}}$ then $|\omega|=1$ implies that, in the complex plane
(A) z lies on the imaginary axis
(B*) z lies on the real axis
(C) z lies on the unit circle
(D) none
[Sol. $w=\frac{-i(z+i)}{z-i} ; \quad|w|=\left|\frac{z+i}{z-i}\right|=1 \quad \Rightarrow \quad|z+i|=|z-i|$

$\Rightarrow \quad z$ lies on the perpendicular bisector of the segment joining $(0,1)$ and $(0,-1)$ which is x -axis
$\Rightarrow \quad \mathrm{z}$ lies on x -axis
$\Rightarrow \quad \operatorname{Im}(\mathrm{z})$ is real]
Q. 3 On the complex plane locus of a point z satisfying the inequality

$$
2 \leq|z-1|<3 \text { denotes }
$$

(A) region between the concentric circles of radii 3 and 1 centered at (1,0)
(B) region between the concentric circles of radii 3 and 2 centered at (1,0) excluding the inner and outer boundaries.
(C) region between the concentric circles of radii 3 and 2 centered at $(1,0)$ including the inner and outer boundaries.
(D^{*}) region between the concentric circles of radii 3 and 2 centered at $(1,0)$ including the inner boundary and excluding the outer boundary.
[12 ${ }^{\text {th }}$ test (09-10-2005)]
\$Q. 4 The complex number z satisfies $\mathrm{z}+|\mathrm{z}|=2+8 i$. The value of $|\mathrm{z}|$ is
(A) 10
(B) 13
(C*) 17
(D) 23
[Sol. Let $\mathrm{z}=\mathrm{a}+\mathrm{b}$.
$|z|^{2}=a^{2}+b^{2}$.
So, $\quad \mathrm{z}+|\mathrm{z}|=2+8 i$
$a+b i+\sqrt{a^{2}+b^{2}}=2+8 i$

$$
\begin{aligned}
& a+\sqrt{a^{2}+b^{2}}=2, b=8 \\
& a+\sqrt{a^{2}+64}=2 \\
& a^{2}+64=(2-a)^{2}=a^{2}-4 a+4, \\
& 4 a=-60, a=-15 . \quad \text { Thus, } a^{2}+b^{2}=225+64=289 \\
\therefore \quad & |z|=\sqrt{a^{2}+b^{2}}=\sqrt{289}=17 \text { Ans.] }
\end{aligned}
$$

Q. 5 Let $\mathrm{Z}_{1}=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $\mathrm{Z}_{2}=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ are two complex numbers. If $Z_{1} \cdot Z_{2}=a+i b$ where $a, b \in R$ then the largest value of $(a+b) \forall \theta \in R$, is
(A) 75
(B) 100
(C*) 125
(D) 130
[Sol. $\quad \mathrm{Z}_{1}=(8 \sin \theta+7 \cos \theta)+i(\sin \theta+4 \cos \theta) \quad$ [13th, 10-08-2008, P-1]
$\mathrm{Z}_{2}=(\sin \theta+4 \cos \theta)+i(8 \sin \theta+4 \cos \theta)$
hence $\left.\begin{array}{l}\mathrm{Z}_{1}=\mathrm{x}+i \mathrm{y} \\ \mathrm{Z}_{2}=\mathrm{y}+i \mathrm{x}\end{array}\right] \quad$ where $\mathrm{x}=(8 \sin \theta+7 \cos \theta)$ and $\mathrm{y}=(\sin \theta+4 \cos \theta)$

$$
\begin{aligned}
& \mathrm{Z}_{1} \cdot \mathrm{Z}_{2}=(\mathrm{xy}-\mathrm{xy})+i\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=0 \quad \Rightarrow \quad \mathrm{a}=0 ; \mathrm{b}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \text { now, } \quad x^{2}+y^{2}=(8 \sin \theta+7 \cos \theta)^{2}+(\sin \theta+4 \cos \theta)^{2} \\
& =65 \sin ^{2} \theta+65 \cos ^{2} \theta+120 \sin \theta \cdot \cos \theta \\
& =65+60 \sin 2 \theta
\end{aligned}
$$

hence $\left.Z_{1} \cdot Z_{2}\right|_{\max }=125$ Ans.]
Q. 6 The locus of z , for $\arg \mathrm{z}=-\pi / 3$ is
(A) same as the locus of z for $\arg z=2 \pi / 3$
(B) same as the locus of z for $\arg z=\pi / 3$
(C*) the part of the straight line $\sqrt{3} x+y=0$ with $(y<0, x>0)$
(D) the part of the straight line $\sqrt{3} x+y=0$ with $(y>0, x<0)$
[Hint:

Q. 7 If $\mathrm{z}_{1} \& \overline{\mathrm{z}}_{1}$ represent adjacent vertices of a regular polygon of n sides with centre at the origin \& if $\frac{\operatorname{Im} z_{1}}{\operatorname{Re}_{z_{1}}}=\sqrt{2}-1$ then the value of n is equal to :
(A*) 8
(B) 12
(C) 16
(D) 24
[Hint: $\frac{y}{x}=\tan \frac{\theta}{2}=\sqrt{2}-1=\tan \frac{\pi}{8}$

$$
=\frac{\theta}{2}=\frac{\pi}{8} \Rightarrow \theta=45^{\circ} \Rightarrow \mathrm{n}=\frac{360^{\circ}}{45^{\circ}}=8
$$

if $\frac{y}{x}=2-\sqrt{3} \quad \Rightarrow \quad n=12 \quad$]

$\$$ Q. 8 If $\mathrm{z}_{1}, \mathrm{z}_{2}$ are two complex numbers \& a, b are two real numbers then, $\left|\mathrm{az}_{1}-\mathrm{bz}_{2}\right|^{2}+\left|\mathrm{bz}_{1}+\mathrm{az}\right|^{2}=$
(A) $(\mathrm{a}+\mathrm{b})^{2}\left[\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right]$
(B) $(a+b)\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]$
(C) $\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left[\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right]$
(D*) $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left[\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right]$
Q. $9_{15 \text { complex }}$ The value of $\mathrm{e}(\mathrm{CiS}(-\mathrm{i})-\mathrm{CiS}(\mathrm{i}))$ is equal to
(A) 0
(B) $1-\mathrm{e}$
(C) $\mathrm{e}-\frac{1}{\mathrm{e}}$
(D*) $\mathrm{e}^{2}-1$
[Sol. using $\operatorname{CiS} \theta=\mathrm{e}^{\mathrm{i} \theta}$
[13th, 25-01-2009]

$$
\left.\mathrm{E}=\mathrm{e}\left[\mathrm{e}^{-i^{2}}-\mathrm{e}^{\mathrm{i}^{2}}\right]=\mathrm{e}\left[\mathrm{e}-\mathrm{e}^{-1}\right]=\mathrm{e}^{2}-1 \text { Ans. }\right]
$$

\&Q. 10 All real numbers x which satisfy the inequality $\left|1+4 \mathrm{i}-2^{-\mathrm{x}}\right| \leq 5$ where $i=\sqrt{-1}, \mathrm{x} \in \mathrm{R}$ are
(A*) $[-2, \infty)$
(B) $(-\infty, 2]$
(C) $[0, \infty)$
(D) $[-2,0]$
[12 ${ }^{\text {th }}$ test (29-10-2005)]
[Sol. $\left(1-2^{-x}\right)^{2}+16 \leq 25 ;\left(1-2^{-x}\right)-3^{2} \leq 0 ; \quad\left(4-2^{-x}\right)\left(-2-2^{-x}\right) \leq 0$ $\left.\left(2^{-x}-4\right)\left(2^{-x}+2\right) \geq 0\right]$
Q. 11 For $Z_{1}=\sqrt[6]{\frac{1-\mathrm{i}}{1+\mathrm{i} \sqrt{3}}} ; \mathrm{Z}_{2}=\sqrt[6]{\frac{1-\mathrm{i}}{\sqrt{3}+\mathrm{i}}} ; \mathrm{Z}_{3}=\sqrt[6]{\frac{1+\mathrm{i}}{\sqrt{3}-\mathrm{i}}}$ which of the following holds good?
(A) $\sum\left|Z_{1}\right|^{2}=\frac{3}{2}$
(B*) $\left|Z_{1}\right|^{4}+\left|Z_{2}\right|^{4}=\left|Z_{3}\right|^{-8}$
(C) $\sum\left|Z_{1}\right|^{3}+\left|Z_{2}\right|^{3}=\left|Z_{3}\right|^{-6}$
(D) $\left|Z_{1}\right|^{4}+\left|Z_{2}\right|^{4}=\left|Z_{3}\right|^{8}$
[Hint: $\quad\left|\mathrm{z}_{1}\right|=\left|\frac{1-\mathrm{i}}{1+\mathrm{i} \sqrt{3}}\right|^{\frac{1}{6}}=\left|\frac{\sqrt{2}}{2}\right|^{\frac{1}{6}}=2^{-\frac{1}{12}}$
Illly $\left|z_{2}\right|=2^{-\frac{1}{12}} ;\left|z_{3}\right|=2^{-\frac{1}{12}}$ hence the result]
Q. 12 Number of real or purely imaginary solution of the equation, $z^{3}+i z-1=0$ is:
(A*) zero
(B) one
(C) two
(D) three
[Hint: Let x be the real solution.
$\Rightarrow \mathrm{x}^{3}-1+\mathrm{xi}=0 \Rightarrow \mathrm{x}^{3}-1=0 \& \mathrm{x}=0$ which is not possible note that the equation has no purely imaginary root as well.]
\$Q. 13 A point 'z' moves on the curve $|z-4-3 i|=2$ in an argand plane. The maximum and minimum values of $|z|$ are
(A) 2,1
(B) 6,5
(C) 4,3
(D*) 7, 3
[Sol. $\quad|(\mathrm{x}-4)+i(\mathrm{y}-3)|=2$
circle with centre $(4,3)$ and radius 2 ;
Hence $\mathrm{OC}=5$
$|\mathrm{z}|_{\text {max }}=5+2=7$
$\left.|z|_{\text {min }}=5-2=3\right]$

Q. 14 If z is a complex number satisfying the equation $|\mathrm{z}+\mathrm{i}|+|\mathrm{z}-\mathrm{i}|=8$, on the complex plane then maximum value of $|\mathrm{z}|$ is
(A) 2
(B*) 4
(C) 6
(D) 8
[Sol. If $|z+i|+|z-i|=8$,
[12th, 04-01-2008]

$$
\mathrm{PF}_{1}+\mathrm{PF}_{2}=8
$$

$$
\therefore \quad|\mathrm{z}|_{\max }=4 \quad \Rightarrow \quad \text { (B) }
$$

Q. 15 Let $\mathrm{z}_{\mathrm{r}}(1 \leq \mathrm{r} \leq 4)$ be complex numbers such that $\left|\mathrm{z}_{\mathrm{r}}\right|=\sqrt{\mathrm{r}+1}$
and $\left|30 z_{1}+20 z_{2}+15 z_{3}+12 z_{4}\right|=k\left|z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}+z_{3} z_{4} z_{1}+z_{4} z_{1} z_{2}\right|$.
Then the value of k equals
(A) $\left|z_{1} z_{2} z_{3}\right|$
(B) $\left|z_{2} z_{3} z_{4}\right|$
(C) $\left|\mathrm{z}_{3} \mathrm{z}_{4} \mathrm{z}_{1}\right|$
(D*) $\left|z_{4} z_{1} z_{2}\right|$
[Sol. We have $\left|\frac{\mathrm{z}_{1}}{2}+\frac{\mathrm{z}_{2}}{3}+\frac{\mathrm{z}_{3}}{4}+\frac{\mathrm{z}_{4}}{5}\right|=\frac{\mathrm{k}}{60}\left|\mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3} \mathrm{z}_{4}\right|\left|\frac{1}{\mathrm{z}_{1}}+\frac{1}{\mathrm{z}_{2}}+\frac{1}{\mathrm{z}_{3}}+\frac{1}{\mathrm{z}_{4}}\right|$ [12th, 06-12-2009, P-2] Now, $\mathrm{z}_{1} \overline{\mathrm{z}}_{1}=2, \quad \mathrm{z}_{2} \overline{\mathrm{z}}_{2}=3, \quad \mathrm{z}_{3} \overline{\mathrm{z}}_{3}=4 \quad$ and $\quad \mathrm{z}_{4} \overline{\mathrm{z}}_{4}=5$

So, $\quad k=\frac{60}{\left|z_{1} z_{2} z_{3} z_{4}\right|}=\frac{60}{\sqrt{2} \sqrt{3} \sqrt{4} \sqrt{5}}=\sqrt{30}=\left|z_{4} z_{1} z_{2}\right|$ Ans.
Note for objective takez $\left.{ }_{1}=\sqrt{2} ; z_{2}=\sqrt{3} ; z_{3}=2 ; z_{4}=\sqrt{5}\right]$
Q.1 If $z_{1} \& z_{2}$ are two non-zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}$ is equal to:
(A) $-\pi$
(B) $-\pi / 2$
(C*) 0
(D) $\pi / 2$
[Hint: $\quad\left|z_{1}+z_{2}\right|=|z|+\left|z_{2}\right|$
$\Rightarrow \quad \sqrt{\left(\mathrm{r}_{1} \cos \theta_{1}+\mathrm{r}_{2} \cos \theta_{2}\right)+\mathrm{i}\left(\mathrm{r}_{1} \sin \theta_{1}+\mathrm{r}_{2} \sin \theta_{2}\right)}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\sqrt{r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}=r_{1}+r_{2}$

This is possible only if $\theta_{1}=\theta_{2}$
$\Rightarrow \quad 0, \mathrm{z}_{1}$ and z_{2} are collinear with z_{1} and z_{2} on the same side of the origin
$\Rightarrow \quad \operatorname{Arg} \mathrm{z}_{1}=\operatorname{Arg} \mathrm{z}_{2}$]
Q. $2 \quad$ Let Z be a complex number satisfying the equation
$\left(Z^{3}+3\right)^{2}=-16$ then $|Z|$ has the value equal to
(A) $5^{1 / 2}$
(B*) $5^{1 / 3}$
(C) $5^{2 / 3}$
(D) 5
[Sol. $\quad\left(Z^{3}+3\right)^{2}=16 i^{2}$
$\mathrm{Z}^{3}+3=4 i$ or -4 i
$Z^{3}=-3+4 i$ or $-3-4 i$
$|Z|^{3}=|-3+4 i|=5$
$\left.|Z|^{3}=5 \quad \Rightarrow \quad|Z|=5^{1 / 3} \quad\right]$
Q. 3 If z_{1}, z_{2}, z_{3} are 3 distinct complex numbers such that $\frac{3}{\left|z_{2}-z_{3}\right|}=\frac{4}{\left|z_{3}-z_{1}\right|}=\frac{5}{\left|z_{1}-z_{2}\right|}$, then the value of $\frac{9}{z_{2}-z_{3}}+\frac{16}{z_{3}-z_{1}}+\frac{25}{z_{1}-z_{2}}$ equals
(A*) 0
(B) 3
(C) 4
(D) 5
[Sol. We have $\frac{3}{\left|z_{2}-z_{3}\right|}=\frac{4}{\left|z_{3}-z_{1}\right|}=\frac{5}{\left|z_{1}-z_{2}\right|}=k$ (let) \quad [12th, 20-12-2009, complex]
$\Rightarrow \quad \frac{9}{\left|z_{2}-z_{3}\right|^{2}}=\frac{16}{\left|z_{3}-z_{1}\right|^{2}}=\frac{25}{\left|z_{1}-z_{2}\right|^{2}}=k^{2}$
Now $\frac{9}{\left|z_{2}-z_{3}\right|^{2}}=k^{2} \quad \Rightarrow \quad \frac{9}{z_{2}-z_{3}}=k^{2}\left(\bar{z}_{2}-\bar{z}_{3}\right) \quad \ldots .(1) \quad\left[\right.$ As $\left.|z|^{2}=z \bar{z}\right]$
Illly $\frac{16}{\left|z_{3}-z_{1}\right|^{2}}=k^{2} \quad \Rightarrow \quad \frac{16}{z_{3}-z_{1}}=k^{2}\left(\bar{z}_{3}-\bar{z}_{1}\right)$
Illly $\frac{25}{\left|z_{1}-z_{2}\right|^{2}}=k^{2} \quad \Rightarrow \quad \frac{25}{z_{1}-z_{2}}=k^{2}\left(\bar{z}_{1}-\bar{z}_{2}\right)$
$\therefore \quad$ On adding (1), (2) and (3), we get

$$
\frac{9}{z_{2}-z_{3}}+\frac{16}{z_{3}-z_{1}}+\frac{25}{z_{1}-z_{2}}=\mathrm{k}^{2}\left(\overline{\mathrm{z}}_{2}-\overline{\mathrm{z}}_{3}+\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2}\right)=0 \text { Ans.] }
$$

\$Q. 4 The points representing the complex number z for which $|z+5|^{2}-|z-5|^{2}=10$ lie on
(A*) a straight line
(B) a circle
(C) a parabola
(D) the bisector of the line joining $(5,0) \&(-5,0)$
[Hint: $(\mathrm{z}+5)(\overline{\mathrm{z}}+5)-(\mathrm{z}-5)(\overline{\mathrm{z}}-5)=10$ or $5(\mathrm{z}+\overline{\mathrm{z}})+25+5(\mathrm{z}+\overline{\mathrm{z}})-25=10$
$2 \cdot 2 \mathrm{x}=2 \Rightarrow \mathrm{x}=\frac{1}{2} \Rightarrow$ (A) $\left.\quad\right]$
Q. 5 If $\mathrm{x}=\frac{1+\sqrt{3} i}{2}$ then the value of the expression, $\mathrm{y}=\mathrm{x}^{4}-\mathrm{x}^{2}+6 \mathrm{x}-4$, equals
$\left(\mathrm{A}^{*}\right)-1+2 \sqrt{3} i$
(B) $2-2 \sqrt{3} i$
(C) $2+2 \sqrt{3} i$
(D) none
[Sol. $\quad \mathrm{x}=\frac{1+\sqrt{3} i}{2}=-\omega^{2} \quad\left[12^{\text {th }} \& \mathbf{1 3}^{\text {th }} \mathbf{0 3 - 1 2 - 2 0 0 6]}\right.$

$$
\therefore \quad y=\omega^{8}-\omega^{4}-6 \omega^{2}-4=\omega^{2}-\omega-6 \omega^{2}-4=5 \omega^{2}-\omega-4
$$

$$
=\underbrace{-1-\omega-\omega^{2}}_{\text {zero }}-4 \omega^{2}-3=+4\left(\frac{1+i \sqrt{3}}{2}\right)-3=2(1-i \sqrt{3})-3=-1+2 \sqrt{3} i \text { Ans. }]
$$

\$Q. 6 Consider two complex numbers α and β as
$\alpha=\left(\frac{a+b i}{a-b i}\right)^{2}+\left(\frac{a-b i}{a+b i}\right)^{2}$, where $a, b \in R$ and $\beta=\frac{z-1}{z+1}$, where $|z|=1$, then
(A) Both α and β are purely real
(B) Both α and β are purely imaginary
$\left(\mathrm{C}^{*}\right) \alpha$ is purely real and β is purely imaginary
(D) β is purely real and α is purely imaginary
[Hint: Note that $\alpha=\bar{\alpha} \Rightarrow \alpha$ is real
[12 ${ }^{\text {th }}$ test (29-10-2005)]
and $\quad \beta+\bar{\beta}=\frac{z-1}{z+1}+\frac{\bar{z}-1}{\bar{z}+1}=\frac{(z-1)(\bar{z}+1)+(z+1)(\bar{z}-1)}{(z+1)(\bar{z}+1)}=\frac{2 z \bar{z}-2}{D^{r}}=0$

$$
\text { as } \mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}=1 \text { (given)] }
$$

Q. 7 Let Z is complex satisfying the equation

$$
z^{2}-(3+i) z+m+2 i=0, \text { where } m \in R \text {. Suppose the equation has a real root. }
$$

The additive inverse of non real root, is
(A) $1-\mathrm{i}$
(B) $1+\mathrm{i}$
(C*) -1 - i
(D) -2
[Sol. Let α be the real root
[12 ${ }^{\text {th }}$ test (29-10-2005)]
$\alpha^{2}-(3+i) \alpha+m+2 i=0$
$\left(\alpha^{2}-3 \alpha+m\right)+\mathrm{i}(2-\alpha)=0$
$\therefore \alpha=2 \quad$ (real root)
$\therefore \quad 4-6+\mathrm{m}=0 \Rightarrow \mathrm{~m}=2$
Product of the roots $=2(1+i)$ with one root as 2
non real root $=1+\mathrm{i}$, addivitve inverse is $-1-\mathrm{i}$ Ans]
Q. 8 The minimum value of $|1+\mathrm{z}|+|1-\mathrm{z}|$ where z is a complex number is :
(A*) 2
(B) $3 / 2$
(C) 1
(D) 0
[Hint: distance of $z(1,0) \&(-1,0)$, will be minimum with z is at ' O ' $\mathrm{y} \leq|\mathrm{z}|+1+|\mathrm{z}|+1=2+2|\mathrm{z}|=2$ where $\mathrm{z}=0 \quad]$

Q. 9 If $\mathrm{i}=\sqrt{-1}$, then $4+5\left(-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}\right)^{365}$ is equal to
(A) $1-\mathrm{i} \sqrt{3}$
(B) $-1+\mathrm{i} \sqrt{3}$
(C*) $\mathrm{i} \sqrt{3}$
(D) $-\mathrm{i} \sqrt{3}$
[JEE '99, 2 out of 200]
Q. 10 Let $|\mathrm{z}-5+12 i| \leq 1$ and the least and greatest values of $|\mathrm{z}|$ are m and n and if l be the least positive value of $\frac{x^{2}+24 x+1}{x}(x>0)$, then l is
(A) $\frac{m+n}{2}$
(B*) $\mathrm{m}+\mathrm{n}$
(C) m
(D) n
[Hint: $|\mathrm{z}|_{\text {least }}=13-1=12=\mathrm{m} ; \quad|\mathrm{z}|_{\text {greatest }}=13+1=14=\mathrm{n}$
also $\quad l=\mathrm{x}+\frac{1}{\mathrm{x}}+24 ; \quad \therefore \quad l=26 ; \quad$ Hence $l=\mathrm{m}+\mathrm{n} \quad$]
Q. $11 \begin{array}{lll}\text { The system of equations } & \left.\begin{array}{cc}\mid z+1-i & =2 \\ \operatorname{Re} z & \geq 1\end{array}\right\} \text { where } \mathrm{z} \text { is a complex number has: }\end{array}$
(A) no solution
(B*) exactly one solution
(C) two distinct solutions
(D) infinite solution
[Hint: $\quad \mathrm{z}=1+\mathrm{i}$ only satisfies both
Q. 12 Let C_{1} and C_{2} are concentric circles of radius 1 and $8 / 3$ respectively having cèntreat $\underset{\substack{\infty \\ x=1}}{(1, Q)}$ on the argand plane. If the complex number z satisfies the inequality, $\log _{1 / 3}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$ then :
(A*) z lies outside C_{1} but inside C_{2}
(B) z lies inside of both C_{1} and C_{2}
(C) z lies outside both of C_{1} and C_{2}
(D) none of these
[Hint: note that $11|z-3|-2>0$
$\frac{|\mathrm{z}-3|^{2}+2}{11|\mathrm{z}-3|-2}<\frac{1}{3} ;$ put $|\mathrm{z}-3|=\mathrm{t} \Rightarrow(3 \mathrm{t}-8)(\mathrm{t}-1)<0 \Rightarrow 1<|\mathrm{z}-3|<8 / 3$
$\Rightarrow \quad \mathrm{z}$ lies between the two concentric circles]
Q. 13 Identify the incorrect statement.
(A) no non zero complex number z satisfies the equation, $\overline{\mathrm{z}}=-4 \mathrm{z}$
(B) $\bar{z}=z$ implies that z is purely real
(C) $\bar{z}=-z$ implies that z is purely imaginary
(D*) if z_{1}, z_{2} are the roots of the quadratic equation $\mathrm{az}^{2}+\mathrm{bz}+\mathrm{c}=0$ such that $\operatorname{Im}\left(z_{1} z_{2}\right) \neq 0$ then a, b, c must be real numbers.
[Hint: (D) If $\operatorname{Im}\left(z_{1} z_{2}\right) \neq 0 \Rightarrow z_{1}$ and z_{2} are not conjugates of each other. A quadratic equation having complex roots will have real co-efficients if and only if the roots are conjugates of each other \Rightarrow False]
Q. 14 The equation of the radical axis of the two circles represented by the equations, $|\mathrm{z}-2|=3$ and $|\mathrm{z}-2-3 \mathrm{i}|=4$ on the complex plane is:
(A) $3 y+1=0$
(B*) $3 y-1=0$
(C) $2 \mathrm{y}-1=0$
(D) none
[Hint: square both the sides, use $\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}$ and subtract]
Q. 15 If $\mathrm{z}_{1}=-3+5 i ; \mathrm{z}_{2}=-5-3 i$ and z is a complex number lying on the line segment joining $\mathrm{z}_{1} \& \mathrm{z}_{2}$ then $\arg \mathrm{z}$ can be :
(A) $-\frac{3 \pi}{4}$
(B) $-\frac{\pi}{4}$
(C) $\frac{\pi}{6}$

[Hint: $\quad \tan \theta=\frac{5}{3} \Rightarrow \theta>\frac{\pi}{4}$
$\tan \alpha=\frac{3}{5} \Rightarrow \alpha<\frac{\pi}{4}$
$\Rightarrow \quad \mathrm{A} / \mathrm{B} / \mathrm{C}$ cannot be the answer \quad]
Q. 16 Given $\mathrm{z}=f(\mathrm{x})+\mathrm{ig}(\mathrm{x})$ where $f, \mathrm{~g}:(0,1) \rightarrow(0,1)$ are real valued functions then, which of the following holds good?
(A) $z=\frac{1}{1-i x}+i\left(\frac{1}{1+i x}\right)$
$\left(B^{*}\right) z=\frac{1}{1+i x}+i\left(\frac{1}{1-\mathrm{ix}}\right)$
(C) $\mathrm{z}=\frac{1}{1+\mathrm{ix}}+\mathrm{i}\left(\frac{1}{1+\mathrm{ix}}\right)$
(D) $z=\frac{1}{1-i x}+i\left(\frac{1}{1-i x}\right)$
[Hint: Choice Aon simplification gives, $\quad z=\frac{1+x}{1+x^{2}}+i \frac{1+x}{1+x^{2}}$
for $x=0.5 ; f(0.5)>1$ which is out of range $\Rightarrow A$ is not correct
Choice B ; $\quad \mathrm{z}=\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}+\mathrm{i} \frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}$

$$
f(x) \& g(x) \in(0,1) \text { if } x \in(0,1) \Rightarrow B \text { is correct }
$$

Choice C; $z=\frac{1+x}{1+\mathrm{x}^{2}}+\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{i} \Rightarrow \mathrm{C}$ is not correct;
Choice $D ; z=\frac{1-x}{1+x^{2}}+\frac{1+x}{1+x^{2}} i \Rightarrow D$ is not correct]
\$Q. $17 \mathrm{z}_{1}=\frac{\mathrm{a}}{1-\mathrm{i}} ; \mathrm{z}_{2}=\frac{\mathrm{b}}{2+\mathrm{i}} ; \mathrm{z}_{3}=\mathrm{a}-\mathrm{bi}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
if $\mathrm{z}_{1}-\mathrm{z}_{2}=1$ then the centroid of the triangle formed by the points $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ in the argand's plane is given by
(A*) $\frac{1}{9}(1+7 \mathrm{i})$
(B) $\frac{1}{3}(1+7 \mathrm{i})$
(C) $\frac{1}{3}(1-3 \mathrm{i})$
(D) $\frac{1}{9}(1-3 \mathrm{i})$
[Sol. $\quad \mathrm{z}_{1}=\frac{\mathrm{a}(1+\mathrm{i})}{2} ; \quad \mathrm{z}_{2}=\frac{\mathrm{b}(2-\mathrm{i})}{5}$

$$
\frac{\mathrm{a}(1+\mathrm{i})}{2}-\frac{\mathrm{b}(2-\mathrm{i})}{5}=1
$$

$5 \mathrm{a}(1+\mathrm{i})-2 \mathrm{~b}(2-\mathrm{i})=10$
$(5 a-4 b-10)+i(5 a+2 b)=0$
$5 \mathrm{a}-4 \mathrm{~b}=10 ; \quad 5 \mathrm{a}=-2 \mathrm{~b}$
$-6 b=10 \quad \Rightarrow \quad b=\frac{-5}{3}$
$\left.5 a=-2\left(\frac{-5}{3}\right)=\frac{10}{3} \Rightarrow \quad a=\frac{2}{3}\right]$
Q. 18 Consider the equation $10 \mathrm{z}^{2}-3 i \mathrm{z}-\mathrm{k}=0$, where z is a complex variable and $i^{2}=-1$. Which of the following statements is True?
(A) For all real positive numbers k, both roots are pure imaginary.
(B*) For negative real numbers k, both roots are pure imaginary.
(C) For all pure imaginary numbers k, both roots are real and irrational.
(D) For all complex numbers k, neither root is real.
[Sol. Use the quadratic formula to obtain $\mathrm{z}=\frac{3 i \pm \sqrt{-9+40 \mathrm{k}}}{20}$
$\left[19-2-2006,12^{\text {th }} \& 13^{\text {th }}\right]$
which has discriminant $\mathrm{D}=-9+40 \mathrm{k}$. If $\mathrm{k}=1$, then $\mathrm{D}=31$, so (A) is false.
If k is a negative real number, then D is a negative real number, so (B) is true.
If $\mathrm{k}=i$, then $\mathrm{D}=-9+40 i=16+40 i+25 i^{2}=(4+5 i)^{2}$, and the roots are $\frac{1}{5}+\frac{2}{5} i$ and $-\frac{1}{5}-\frac{1}{10} i$, so (C) is false.
If $\mathrm{k}=0$ (which is a complex number), then the roots are 0 and $\frac{3}{10} i$, so (D) is false.]
Q. 19 Number of complex numbers z such that $|\mathrm{z}|=1$ and $\left|\frac{\mathrm{z}}{\overline{\mathrm{z}}}+\frac{\overline{\mathrm{z}}}{\mathrm{z}}\right|=1$ is
(A) 4
(B) 6
(C*) 8
(D) more than 8
[Sol. Let $\mathrm{z}=\cos \mathrm{x}+\mathrm{i} \sin \mathrm{x}, \mathrm{x} \in[0,2 \pi)$. Then

$$
1=\left|\frac{\mathrm{z}}{\overline{\mathrm{z}}}+\frac{\overline{\mathrm{z}}}{\mathrm{z}}\right|=\frac{\left|\mathrm{z}^{2}+\overline{\mathrm{z}}^{2}\right|}{|\mathrm{z}|^{2}}=|\cos 2 \mathrm{x}+i \sin 2 \mathrm{x}+\cos 2 \mathrm{x}-i \sin 2 \mathrm{x}|=2|\cos 2 \mathrm{x}|
$$

hence $\cos 2 x=1 / 2 \quad$ or $\quad \cos 2 x=-1 / 2$
If $\cos 2 x=1 / 2$, then

$$
\mathrm{x}_{1}=\frac{\pi}{6}, \mathrm{x}_{2}=\frac{5 \pi}{6}, \mathrm{x}_{3}=\frac{7 \pi}{6}, \mathrm{x}_{4}=\frac{11 \pi}{6}
$$

If $\cos 2 x=-\frac{1}{2}$, then

$$
\mathrm{x}_{5}=\frac{\pi}{3}, \mathrm{x}_{6}=\frac{2 \pi}{3}, \mathrm{x}_{7}=\frac{4 \pi}{3}, \mathrm{x}_{8}=\frac{5 \pi}{3}
$$

Hence there are eight solutions

$$
\left.\mathrm{z}_{\mathrm{k}}=\cos \mathrm{x}_{\mathrm{k}}+i \sin \mathrm{x}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots ., 8\right]
$$

$$
\begin{aligned}
& \text { Alternatively: } \\
& \qquad \begin{array}{l}
|\mathrm{z}|=1 \Rightarrow \quad \mathrm{z}=\frac{1}{\overline{\mathrm{z}}} \\
\text { hence } \\
\left|\frac{\mathrm{z}}{\overline{\mathrm{z}}}+\frac{\overline{\mathrm{z}}}{\mathrm{z}}\right|=1 ; \mathrm{z}=\mathrm{e}^{i \theta} \\
\\
\left|\mathrm{e}^{i 2 \theta}+\mathrm{e}^{-i 2 \theta}\right|=1 \\
|2 \cos 2 \theta|=1 \\
\cos 2 \theta=\frac{1}{2} \text { or }-\frac{1}{2} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Q. 20 Number of ordered pairs(s) (a, b) of real numbers such that $(a+i b)^{2008}=a-i b$ holds good, is
(A) 2008
(B) 2009
(C*) 2010
(D) 1
[Sol. Let $\mathrm{z}=\mathrm{a}+\mathrm{ib} \quad \Rightarrow \quad \overline{\mathrm{z}}=\mathrm{a}-\mathrm{ib}$
[12th, 04-01-2009]
hence wehave $z^{2008}=\bar{z}$

$$
\begin{aligned}
\therefore \quad & |\mathrm{z}|^{2008}=|\bar{z}|=|\mathrm{z}| \\
& |\mathrm{z}|\left[|\mathrm{z}|^{2007}-1\right]=0
\end{aligned}
$$

$|z|=0 \quad$ or $\quad|z|=1 ; \quad$ if $|z|=0 \quad \Rightarrow \quad z=0 \quad \Rightarrow \quad(0,0)$
if $|\mathrm{z}|=1 \quad \mathrm{z}^{2009}=\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}=1 \Rightarrow \quad 2009$ values of $\mathrm{z} \quad \Rightarrow \quad$ Total $=2010$ Ans.]
Q. $1 \quad$ Consider $\mathrm{az}^{2}+\mathrm{bz}+\mathrm{c}=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ and $4 \mathrm{ac}>\mathrm{b}^{2}$.
(i) If z_{1} and z_{2} are the roots of the equation given above, then which one of the following complex numbers is purely real?
(A) $\mathrm{z}_{1} \overline{\mathrm{Z}}_{2}$
(B) $\bar{z}_{1} z_{2}$
(C) $\mathrm{z}_{1}-\mathrm{z}_{2}$
(D*) $\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right) \mathrm{i}$
(ii) In the argand's plane, if A is the point representing z_{1}, B is the point representing z_{2} and $z=\frac{\overrightarrow{\mathrm{OA}}}{\overrightarrow{\mathrm{OB}}}$ then
(A) z is purely real
(B) z is purely imaginary
(C*) $|z|=1$
(D) $\triangle \mathrm{AOB}$ is a scalene triangle.
[Sol.
(i) As a, b, c are real number and $\mathrm{b}^{2}-4 \mathrm{ac}<0$
$\therefore \quad \mathrm{z}_{1}$ and z_{2} are complex conjugates of each other
$\Rightarrow \quad \mathrm{z}_{1}-\mathrm{z}_{2}=2 \operatorname{Im} .\left(\mathrm{z}_{1}\right) \mathrm{i} \quad \Rightarrow \quad\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)$ i is purely real $\Rightarrow \quad$ (D)
(ii) As z_{1} and z_{2} are the complex conjugate of each other $\Rightarrow \quad\left|z_{1}\right|=\left|z_{2}\right|$

$$
\left.\therefore \quad|\mathrm{z}|=\left|\frac{\overrightarrow{\mathrm{OA}}}{\overrightarrow{\mathrm{OB}}}\right|=\frac{|\overrightarrow{\mathrm{OA}}|}{|\overrightarrow{\mathrm{OB}}|}=\frac{\left|\mathrm{z}_{1}\right|}{\left|\mathrm{z}_{2}\right|}=1\right]
$$

Q. 2 Let z be a complex number having the argument $\theta, 0<\theta<\pi / 2$ and satisfying the equality $|\mathrm{z}-3 \mathrm{i}|=$ 3. Then $\cot \theta-\frac{6}{z}$ is equal to :
(A) 1
(B) -1
(C*) i
(D) -i
[Hint: $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$ now $\mathrm{r}=\mathrm{OA} \sin \theta=6 \sin \theta$

$$
\begin{aligned}
z & =6 \sin \theta(\cos \theta+i \sin \theta) \quad \frac{6}{z}=\frac{1}{\sin \theta(\cos \theta+i \sin \theta)} \\
& \left.=\frac{\cos \theta-i \sin \theta}{\sin \theta}=-i+\cot \theta \Rightarrow \cot \theta-\frac{6}{z}=i \Rightarrow C\right]
\end{aligned}
$$

Q. 3 If the complex number z satisfies the condition $|z| \geq 3$, then the least value of $\left|z+\frac{1}{z}\right|$ is equal to:
(A) $5 / 3$
(B*) $8 / 3$
(C) $11 / 3$
(D) none of these
[Hint: $\left|\mathrm{z}+\frac{1}{\mathrm{z}}\right| \geq|\mathrm{z}|-\frac{1}{|\mathrm{z}|}$

$$
\left|\mathrm{z}+\frac{1}{\mathrm{z}}\right|_{\text {least }} \geq 3-\frac{1}{3} \geq \frac{8}{3}
$$

Q. 4 Given $z_{p}=\cos \left(\frac{\pi}{2^{P}}\right)+i \sin \left(\frac{\pi}{2^{P}}\right)$, then $\operatorname{Lim}_{n \rightarrow \infty}\left(z_{1} z_{2} z_{3} \ldots . z_{n}\right)=$
(A) 1
(B*) -1
(C) i
(D) -i
[Hint: $z_{p}=e^{\frac{i \pi}{2^{p}}} ; \quad z_{1}=e^{\frac{i \pi}{2}} ; z_{2}=e^{\frac{i \pi}{2^{2}}}$ and so on
$\operatorname{Lim}_{n \rightarrow \infty} z_{1} z_{2} \ldots \ldots \ldots . z_{n}=\operatorname{Lim}_{n \rightarrow \infty} e^{i \pi\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{2^{n}}\right)}$
Q. 5 The maximum \& minimum values of $|z+1|$ when $|z+3| \leq 3$ are :
(A*) $(5,0)$
(B) $(6,0)$
(C) $(7,1)$
(D) $(5,1)$
[Hint: $|z+3| \leq 3$ denotes set of points
on or inside a circle with centre $(-3,0)$ and
radius $3 .|z+1|$ denotes the distance of P
from A of $|z+1|_{\text {min }}=0 \quad \&$
$\left.|\mathrm{z}+1|_{\text {max }}=\mathrm{AD}\right]$

Q. 6 If $z^{3}+(3+2 i) \mathrm{z}+(-1+i \mathrm{a})=0$ has one real root, then the value of 'a' lies in the interval $(\mathrm{a} \in \mathrm{R})$
(A) $(-2,-1)$
(B*) $(-1,0)$
(C) $(0,1)$
(D) $(1,2)$
[Hint: Let $\mathrm{z}=\alpha$ be a real root

$$
\begin{array}{ll}
& \alpha^{3}+(3+2 \mathrm{i}) \alpha+(-1+\mathrm{ia})=0 \\
& \left(\alpha^{3}+3 \alpha-1\right)+\mathrm{i}(\mathrm{a}+2 \alpha)=0 \\
\therefore \quad & \alpha^{3}+3 \alpha-1=0 \text { and } \alpha=-\mathrm{a} / 2 \\
\therefore \quad & -\frac{\mathrm{a}^{3}}{8}-\frac{3 \mathrm{a}}{2}-1=0 \\
& \mathrm{a}^{3}+12 \mathrm{a}+8=0
\end{array}
$$

Let $\quad f(a)=a^{3}+12 a+8$
$\therefore \quad \mathrm{f}(-1)<0$ and $\mathrm{f}(0)>0$
hence $a \in(-1,0) \quad]$
Q. 7 If $|z|=1$ and $|\omega-1|=1$ where $z, \omega \in \mathrm{C}$, then the largest set of values of $|2 z-1|^{2}+|2 \omega-1|^{2}$ equals
(A) $[1,9]$
(B) $[2,6]$
(C) $[2,12]$
(D*) $[2,18]$
[Sol. Least distance and greatest distance of any z and ω from
the point $\left(\frac{1}{2}, 0\right)$ are $\frac{1}{2}$ and $\frac{3}{2}$ respectively.
$\therefore \quad\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \leq\left|z-\frac{1}{2}\right|^{2}+\left|\omega-\frac{1}{2}\right|^{2} \leq\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}$
Hence $2 \leq|2 z-1|^{2}+|2 \omega-1|^{2} \leq 18$
Alternatively: $(2 z-1)(2 \bar{z}-1)+(2 \omega-1)(2 \bar{\omega}-1)$
[12th, 20-12-2009, complex]

$$
\begin{aligned}
& 4+1-2(z+\bar{z})+4-2(\omega+\bar{\omega})+1 \\
& 10-2[2 \operatorname{Re} z+2 \operatorname{Re} \omega] \\
& 10-4[\operatorname{Re} z+\operatorname{Re} \omega] \quad]
\end{aligned}
$$

Q. $8 \quad$ If $\operatorname{Arg}(\mathrm{z}+\mathrm{a})=\frac{\pi}{6}$ and $\operatorname{Arg}(\mathrm{z}-\mathrm{a})=\frac{2 \pi}{3} ; \mathrm{a} \in \mathrm{R}^{+}$, then
(A) z is independent of a
(B) $|\mathrm{a}|=|\mathrm{z}+\mathrm{a}|$
(C) $\mathrm{z}=\mathrm{a} \operatorname{Cis} \frac{\pi}{6}$
(D*) $\mathrm{z}=\mathrm{a}$ Cis $\frac{\pi}{3}$
[Sol. Refer the figure z lies on the point of intersection of the rays from A and $\mathrm{B} . \triangle \mathrm{ACB}$ is a right angle and OBC is an equilateral triangle
$\Rightarrow \mathrm{OC}=\mathrm{a} \Rightarrow \mathrm{z}=\mathrm{a} \operatorname{Cis} \frac{\pi}{3} \Rightarrow(\mathrm{D})$

Q. 9 If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are the vertices of the $\Delta \mathrm{ABC}$ on the complex plane which are also the roots of the equation, $z^{3}-3 \alpha z^{2}+3 \beta z+x=0$, then the condition for the $\Delta \mathrm{ABC}$ to be equilateral triangle is
(A^{*}) $\alpha^{2}=\beta$
(B) $\alpha=\beta^{2}$
(C) $\alpha^{2}=3 \beta$
(D) $\alpha=3 \beta^{2}$
[Hint: $\quad \mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}=3 \alpha ; \sum \mathrm{z}_{1} \mathrm{z}_{2}=3 \beta$
If $A B C$ is equilateral $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$

$$
\begin{aligned}
& \left(z_{1}+z_{2}+z_{3}\right)^{2}=3 \sum z_{1} z_{2} \\
& \left.9 \alpha^{2}=3 \cdot 3 \beta=9 \beta \Rightarrow \alpha^{2}=\beta \quad\right]
\end{aligned}
$$

Q. 10 The locus represented by the equation, $|\mathrm{z}-1|+|\mathrm{z}+1|=2$ is :
(A) an ellipse with focii $(1,0) ;(-1,0)$
(B) one of the family of circles passing through the points of intersection of the circles $|\mathrm{z}-1|=1$ and $|z+1|=1$
(C) the radical axis of the circles $|\mathrm{z}-1|=1$ and $|\mathrm{z}+1|=1$
(D*) the portion of the real axis between the points $(1,0) ;(-1,0)$ including both.
[Hint: Note that $|z-1|+|z+1|$ denotes the sum of the distances of P from F_{1} and F_{2}
since $\left|z_{1}+1\right|+\left|z_{1}-1\right|=2$
hence locus will not be the ellipse]

Q. 11 The points $\mathrm{z}_{1}=3+\sqrt{3} i$ and $\mathrm{z}_{2}=2 \sqrt{3}+6 i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z_{1} and z_{2} is :
(A) $\mathrm{z}=\frac{(3+2 \sqrt{3})}{2}+\frac{\sqrt{3}+2}{2} i$
(B*) $\mathrm{z}=5+5 i$
(C) $\mathrm{z}=-1-i$
(D) none
[Hint: Note that $z_{1}=3+\sqrt{3}$ i lies on the line $y=\frac{1}{\sqrt{3}} x \quad \&$ $z_{2}=2 \sqrt{3}+6 i$ lies on the line $y=\sqrt{3} x$. Hence $z=5+5 i$ will only lie on the bisector of $z_{1} \& z_{2}$ i.e. $y=x$

Q. 12 Let $z_{1} \& z_{2}$ be non zero complex numbers satisfying the equation, $z_{1}^{2}-2 z_{1} z_{2}+2 z_{2}^{2}=0$. The geometrical nature of the triangle whose vertices are the origin and the points representing $z_{1} \& z_{2}$ is :
(A*) an isosceles right angled triangle
(B) a right angled triangle which is not isosceles
(C) an equilateral triangle
(D) an isosceles triangle which is not right angled .
[Hint:

$$
\begin{aligned}
& \frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}=\mathrm{z} \Rightarrow \mathrm{z}^{2}-2 \mathrm{z}+2=0 \Rightarrow \mathrm{z}=1 \pm \mathrm{i} \\
\Rightarrow \quad & \frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}=1 \pm \mathrm{i} \Rightarrow \mathrm{z}_{1}=\mathrm{z}_{2} \pm \mathrm{z}_{2} \mathrm{i} \Rightarrow \mathrm{z}_{1}-\mathrm{z}_{2}= \pm \mathrm{z}_{2} \mathrm{i} \\
\Rightarrow \quad & \left.\mathrm{z}_{1}-\mathrm{z}_{2} \text { is perpendicular to } \mathrm{z}_{2} \text { and }\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|=\left|\mathrm{z}_{2}\right|\right]
\end{aligned}
$$

Q. 13 Let P denotes a complex number z on the Argand's plane, and Q denotes a complex number $\sqrt{2|z|^{2}} \operatorname{CiS}\left(\frac{\pi}{4}+\theta\right)$ where $\theta=\mathrm{amp} \mathrm{z}$. If ' O ' is the origin, then the $\Delta \mathrm{OPQ}$ is :
(A) isosceles but not right angled
(B) right angled but not isosceles
(C^{*}) right isosceles
(D) equilateral.
$\left[\right.$ Hint: $\mathrm{Z}_{\mathrm{P}}=\mathrm{r} \operatorname{Cis} \theta ; \mathrm{Z}_{\mathrm{Q}}=\left.\sqrt{2}\right|_{\mathrm{z}} \left\lvert\, \operatorname{Cis}\left(\theta+\frac{\pi}{4}\right)=\sqrt{2} \mathrm{r}\left[\cos \left(\theta+\frac{\pi}{4}\right)+i \sin \left(\theta+\frac{\pi}{4}\right)\right]\right.$

$$
\begin{aligned}
& \cos \frac{\pi}{4}=\frac{2 r^{2}+r^{2}-x^{2}}{2 \cdot \sqrt{2} r \cdot r}=\frac{3 r^{2}-x^{2}}{2 \sqrt{2} r^{2}} \\
\therefore \quad & \left.1=\frac{3 r^{2}-x^{2}}{2 r^{2}} \quad \Rightarrow \quad r^{2}=x^{2} \quad \Rightarrow \quad x=r \quad\right]
\end{aligned}
$$

Q. 14 On the Argand plane point ' A ' denotes a complex number z_{1}. A triangle OBQ is made directily similiar to the triangle OAM , where $\mathrm{OM}=1$ as shown in the figure. If the point B denotes the complex number z_{2}, then the complex number corresponding to the point ' Q ' is
(A) $\mathrm{z}_{1} \mathrm{z}_{2}$
(B) $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}$
(C*) $\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}}$
(D) $\frac{z_{1}+z_{2}}{z_{2}}$

[Sol. $\frac{z_{2}}{\left|z_{2}\right|}=\frac{z}{|z|} e^{i \theta} \quad \ldots . .(1) ; \quad \frac{z_{1}}{\left|z_{1}\right|}=1 e^{i \theta}$
substitute the value of $\mathrm{e}^{\mathrm{i} \theta}$ from (2) in (1)
$\frac{z}{|z|}=\frac{z_{2}}{\left|z_{2}\right|} \cdot \frac{\left|z_{1}\right|}{z_{1}} \Rightarrow \frac{z}{|z|}=\frac{z_{2} / z_{1}}{\left|z_{2} / z_{1}\right|} ; z=\frac{z_{2}}{z_{1}} \quad$ Ans.]
Q. $15 z_{1} \& z_{2}$ are two distinct points in an argand plane. If a $\left|z_{1}\right|=b\left|z_{2}\right|$, (where $a, b \in R$) then the point $\frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}$ is a point on the :
(A*) line segment $[-2,2]$ of the real axis
(B) line segment $[-2,2]$ of the imaginary axis
(C) unit circle $|z|=1$
(D) the line with $\arg \mathrm{z}=\tan ^{-1} 2$.
[Hint: Assuming $\arg \mathrm{z}_{1}=\theta$ and $\arg \mathrm{z}_{2}=\theta+\alpha$.

$$
\frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}=\frac{a\left|z_{1}\right| e^{i \theta}}{b\left|z_{2}\right| e^{i(\theta+\alpha)}}+\frac{\mathrm{b}\left|z_{2}\right| e^{i(\theta+\alpha)}}{a\left|z_{1}\right| e^{i \theta}}=e^{-i \alpha}+e^{i \alpha}=2 \cos \alpha
$$

Alternatively: Let $\alpha=\frac{\mathrm{az}_{1}}{\mathrm{bz}} ; 2, \frac{1}{\alpha}=\frac{b z_{2}}{a z_{1}} ;$ Also $|\alpha|=\frac{\left|a z_{1}\right|}{\left|b z_{2}\right|}=\frac{a\left|z_{1}\right|}{b\left|z_{2}\right|}=1 \Rightarrow \alpha=\frac{1}{\bar{\alpha}}$

$$
\left.\Rightarrow \alpha+\frac{1}{\alpha}=\alpha+\bar{\alpha}=2 \operatorname{Re} \cdot(\alpha)=2 \cos \alpha\right]
$$

Q. 16 When the polynomial $5 x^{3}+M x+N$ is divided by $x^{2}+x+1$ the remainder is 0 . The value of $(\mathrm{M}+\mathrm{N})$ is equal to
(A) -3
(B) 5
(C*) - 5
(D) 15
$\left[\right.$ Sol. Let $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{3}+\mathrm{Mx}+\mathrm{N}$, also $\mathrm{x}^{2}+\mathrm{x}+1=(\mathrm{x}-\omega)\left(\mathrm{x}-\omega^{2}\right) \quad\left[\mathbf{1 9 - 2 - 2 0 0 6}, \mathbf{1 2}^{\text {th }} \boldsymbol{\&} \mathbf{1 3}^{\text {th }}\right]$

$$
\begin{array}{ll}
& f(\omega)=5+\mathrm{M} \omega+\mathrm{N}=0 \\
& \mathrm{f}\left(\omega^{2}\right)=5+\mathrm{M} \omega^{2}+\mathrm{N}=0 \\
\Rightarrow \quad \mathrm{M}=0 ; \mathrm{N}=-5 \quad \Rightarrow \quad \mathrm{M}+\mathrm{N}=-5 \text { Ans. }
\end{array}
$$

Q. 17 If $\mathrm{z}=\frac{\pi}{4}(1+i)^{4}\left(\frac{1-\sqrt{\pi} i}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} i}\right)$ then $\left(\frac{|\mathrm{z}|}{\mathrm{ampz}}\right)$ equals
(A) 1
(B) π
(C) 3π
(D*) 4
[Hint: $\quad \mathrm{z}=\frac{\pi}{2}\left[\sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)\right]^{4}=-\frac{\pi}{2}\left[\sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)\right]^{4}=-2 \pi\left[\frac{2(\pi+1)}{\sqrt{\pi}+\pi \mathrm{i}+\mathrm{i}-\sqrt{\pi}}\right]$
Alternatively: $\quad \mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^{4}\left(\frac{(1-\pi)+(\pi+1)}{\sqrt{\pi}+\pi \mathrm{i}+\mathrm{i}-\sqrt{\pi}}\right) ; \quad \mathrm{z}=\frac{\pi}{2}(1+\mathrm{i})^{4} \cdot \frac{1}{i}$

$$
\left.\left.\therefore \quad|\mathrm{z}|=\frac{\pi}{2} \cdot 4=2 \pi ; \quad \text { amp. } \mathrm{z}\right)=0+4 \cdot \frac{\pi}{4}-\frac{\pi}{2} \quad \Rightarrow \quad \frac{\phi \mathrm{z}_{1}}{\text { amp. }(\mathrm{z})}=4 \text { Ans. }\right]
$$

One ore more than one is/are correct:

Q. 18 Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ be non-zero complex numbers satisfying the equation $\mathrm{z}^{4}=\mathrm{iz}$.

Which of the following statement(s) is/are correct?
(A*) The complex number having least positive argument is $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
(B*) $\sum_{\mathrm{k}=1}^{3} \operatorname{Amp}\left(\mathrm{z}_{\mathrm{k}}\right)=\frac{\pi}{2}$
(C) Centroid of the triangle formed by $\mathrm{z}_{1}, \mathrm{z}_{2}$ and z_{3} is $\left(\frac{1}{\sqrt{3}}, \frac{-1}{3}\right)$
(D) Area of triangle formed by z_{1}, z_{2} and z_{3} is $\frac{3 \sqrt{3}}{2}$
[12th, 20-12-2009, complex]
[Sol We have $z^{4}=i z \quad \Rightarrow \quad z^{3}=i$
$\Rightarrow \quad \mathrm{z}=\mathrm{e}^{\mathrm{i}(4 \mathrm{k}+1) \frac{\pi}{6}}$
(Using D.M.T.)
Put $\mathrm{k}=0,1,2$, we get
$z_{1}=e^{i \frac{\pi}{6}}, z_{2}=e^{i \frac{5 \pi}{6}}$ and $z_{3}=e^{i \frac{3 \pi}{2}}$
Clearly triangle formed by $\mathrm{z}_{1}, \mathrm{z}_{2}$ and z_{3} is equilateral.

$\therefore \quad$ centroid of $\triangle \mathrm{ABC}$ is $(0,0)$ and Area $\left.(\triangle \mathrm{ABC})=\frac{3 \sqrt{3}}{4}\right]$
Q. 19 If $\mathrm{z} \in \mathrm{C}$, which of the following relation(s) represents a circle on an Argand diagram?
(A) $|z-1|+|z+1|=3$
$\left(\mathrm{B}^{*}\right)(\mathrm{z}-3+i)(\overline{\mathrm{z}}-3-i)=5$
(C*) $3|\mathrm{z}-2+\mathrm{i}|=7$
$\left(\mathrm{D}^{*}\right)|\mathrm{z}-3|=2$
[Sol. (A) is obviously ellipse
[11th, 27-01-2008]
(B) $\quad(\mathrm{z}-\alpha)(\overline{\mathrm{z}}-\bar{\alpha})=5 \quad$ where $\alpha=3-i ; \bar{\alpha}=3+i$

$$
|z-\alpha|^{2}=5 \Rightarrow|z-\alpha|=\sqrt{5} \text { circle with centre }(3,-1) \text { and radius }=\sqrt{5} \Rightarrow(\mathbf{B}) \text { is correct }
$$

(C) $|\mathrm{z}-(2-i)|=\frac{7}{3} \quad \Rightarrow \quad$ circle with centre $(2,-1)$ and radius $=\frac{7}{3} \Rightarrow(\mathbf{C})$ is correct
(D) $|z-3|=2 \Rightarrow \quad$ circle with centre $(3,0)$ and radius $=2 \Rightarrow \quad$ (D) is correct]
Q. 20 Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ be three complex number such that

$$
\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1 \text { and } \frac{z_{1}^{2}}{z_{2} z_{3}}+\frac{z_{2}^{2}}{z_{1} z_{3}}+\frac{z_{3}^{2}}{z_{1} z_{2}}+1=0
$$

then $\left|z_{1}+z_{2}+z_{3}\right|$ can take the value equal to
(A*) 1
(B*) 2
(C) 3
(D) 4
[Sol. Given $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1 \Rightarrow \quad z_{1}=\frac{1}{\bar{z}_{1}}$ etc. $\quad[12 t h, 07-12-2008, P-2]$
also $\frac{\mathrm{z}_{1}^{2}}{\mathrm{z}_{2} \mathrm{z}_{3}}+\frac{\mathrm{z}_{2}^{2}}{\mathrm{z}_{1} \mathrm{z}_{3}}+\frac{\mathrm{z}_{3}^{2}}{\mathrm{z}_{1} \mathrm{z}_{2}}+1=0 \quad \Rightarrow \quad\left(\mathrm{z}_{1}\right)^{3}+\left(\mathrm{z}_{2}\right)^{3}+\left(\mathrm{z}_{3}\right)^{3}+\mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}=0$
$\Rightarrow \quad\left(\mathrm{z}_{1}\right)^{3}+\left(\mathrm{z}_{2}\right)^{3}+\left(\mathrm{z}_{3}\right)^{3}-3 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}=-4 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}$
$\left(\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}\right)\left[\left(\mathrm{z}_{1}\right)^{2}+\left(\mathrm{z}_{2}\right)^{2}+\left(\mathrm{z}_{3}\right)^{2}-\sum \mathrm{z}_{1} \mathrm{z}_{2}\right]=-4 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}$
$\sum \mathrm{z}_{1}\left[\left(\sum \mathrm{z}_{1}\right)^{2}-3 \sum \mathrm{z}_{1} \mathrm{z}_{2}\right]=-4 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}$
let $\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}=\mathrm{z} \quad \Rightarrow \quad \overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}+\overline{\mathrm{z}}_{3}=\overline{\mathrm{z}}$
$\mathrm{z}\left[\mathrm{z}^{2}-3 \sum \mathrm{z}_{1} \mathrm{z}_{2}\right]=-4 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}$
$\mathrm{z}^{3}=3 \mathrm{z} \sum \mathrm{z}_{1} \mathrm{z}_{2}-4 \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}$
$\mathrm{z}^{3}=\mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}\left[3 \mathrm{z}\left(\frac{1}{\mathrm{z}_{1}}+\frac{1}{\mathrm{z}_{2}}+\frac{1}{\mathrm{z}_{3}}\right)-4\right]=\mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}\left[3 \mathrm{z}\left(\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}+\overline{\mathrm{z}}_{3}\right)-4\right]$

$$
\begin{align*}
& z^{3}=\mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3}\left[3|\mathrm{z}|^{2}-4\right] \\
\therefore \quad & |\mathrm{z}|^{3}=\left.|3| \mathrm{z}\right|^{2}-4 \mid \tag{1}
\end{align*}
$$

now if $|z| \geq \frac{2}{\sqrt{3}}$
then $|z|^{3}=3|z|^{2}-4 \quad \Rightarrow \quad|z|^{3}-3|z|^{2}+4=0$
$\Rightarrow \quad|z|^{2}(|z|-2)-|z|(|z|-2)-2(|z|-2)=0 \quad \Rightarrow \quad(|z|-2)\left(|z|^{2}-|z|-2\right)=0$
$\Rightarrow \quad(|z|-2)(|z|-2)(|z|+1)=0 \quad \Rightarrow \quad|z|=2 \quad$ or $\quad|z|=-1$ (rejected)
now if $0<|z|<\frac{2}{\sqrt{3}}$ then equation (1) becomes
$|z|^{3}=4-3|z|^{2} \quad \Rightarrow \quad|z|^{3}+3|z|^{2}-4=0$
$\Rightarrow \quad|z|^{2}(|z|-1)+4|z|(|z|-1)+4(|z|-1)=0 \quad \Rightarrow \quad(|z|-1)\left(|z|^{2}+4|z|+4\right)=0$
$\Rightarrow \quad(|z|-1)(|z|+2)^{2}=0 \quad \Rightarrow \quad|z|=+1 \quad$ or $\quad|z|=-2$ (rejected)
hence $|z|=\{1,2\}$ where $|z|=\left|z_{1}+z_{2}+z_{3}\right| \quad \Rightarrow \quad A, B$
NOTE:
$\mathrm{z}_{1}=1 ; \mathrm{z}_{2}=\mathrm{i}$ and $\mathrm{z}_{3}=-\mathrm{i}$
$\mathrm{z}_{1}=1 ; \mathrm{z}_{2}=-\mathrm{w}$ and $\mathrm{z}_{3}=\mathrm{w}^{2}$
also gives the result]
Q. 1 A root of unity is a complex number that is a solution to the equation, $\mathrm{z}^{\mathrm{n}}=1$ for some positive integer n. Number of roots of unity that are also the roots of the equation $z^{2}+a z+b=0$, for some integer a and b is
(A) 6
(B*) 8
(C) 9
(D) 10
[Sol. Let α is a non real complex root of unity that is also a root of the equation $z^{2}+a z+b=0$, then $\bar{\alpha}$ will also be its root. $(|\alpha|=1)$
[13th, 09-03-2008]
Hence $\alpha+\bar{\alpha}=-\mathrm{a}$
$\therefore \quad|\mathrm{a}|=|\alpha+\bar{\alpha}| \leq|\alpha|+|\bar{\alpha}|=2$
and $\quad b=\alpha \bar{\alpha}=1$
Hence we must check those equation for which $-2 \leq \mathrm{a} \leq 2$ and $\mathrm{b}=1$

hence roots are $\pm 1, \pm i ; \quad \frac{-1 \pm \sqrt{-3}}{2}, \frac{1 \pm \sqrt{-3}}{2}$ i.e. 8 Ans.]
Q. $2 \quad \mathrm{z}$ is a complex number such that $\mathrm{z}+\frac{1}{\mathrm{z}}=2 \cos 3^{\circ}$, then the value of $\mathrm{z}^{2000}+\frac{1}{\mathrm{z}^{2000}}+1$ is equal to
(A*) 0
(B) -1
(C) $\sqrt{3}+1$
(D) $1-\sqrt{3}$
[Sol. Let $\mathrm{z}=\cos \theta+\mathrm{i} \sin \theta==\mathrm{e}^{\mathrm{i} \theta} ; \frac{1}{\mathrm{z}}=\cos \theta-\mathrm{i} \sin \theta=\mathrm{e}^{-\mathrm{i} \theta}$
[13 ${ }^{\text {th }}$ test (14-8-2005)]
so that $\mathrm{z}+\frac{1}{\mathrm{z}}=2 \cos \theta\left(\theta=3^{\circ}\right)$
now

$$
\begin{aligned}
& z^{2000}+\frac{1}{z^{2000}}+1 \\
& \mathrm{e}^{\mathrm{i} 2000 \theta}+\mathrm{e}^{-\mathrm{i} 2000 \theta}+1=2 \cos (2000 \theta)+1=2 \cos \left(6000^{\circ}\right)+1 \quad\left(\operatorname{as} \theta=3^{\circ}\right) \\
& \left.=2 \cos \left(\frac{100 \pi}{3}\right)+1=2 \cos \left(\frac{4 \pi}{3}\right)+1=-1+1=0 \quad \text { Ans. }\right]
\end{aligned}
$$

Q. 3 The complex number ω satisfying the equation $\omega^{3}=8 i$ and lying in the second quadrant on the complex plane is
$(\mathrm{A} *)-\sqrt{3}+i$
(B) $-\frac{\sqrt{3}}{2}+\frac{1}{2} i$
(C) $-2 \sqrt{3}+i$
(D) $-\sqrt{3}+2 i$
[Hint: $\quad \omega=2 \cdot i^{1 / 3}=2\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)^{1 / 3}=2\left[\cos \frac{2 \mathrm{n} \pi+\frac{\pi}{2}}{3}+\mathrm{i} \sin \frac{2 \mathrm{n} \pi+\frac{\pi}{2}}{3}\right]$
put $\mathrm{n}=1 \quad=2\left[\cos \frac{5 \pi}{6}+\mathrm{i} \sin \frac{5 \pi}{6}\right]=-\sqrt{3}+i$ Ans. $]$
Q. 4 If $z^{4}+1=\sqrt{3} i$
(A) z^{3} is purely real
(B) z represents the vertices of a square of side $2^{1 / 4}$
(C) z^{9} is purely imaginary
$\left(D^{*}\right) z$ represents the vertices of a square of side $2^{3 / 4}$.
[Sol. $\quad \mathrm{z}^{4}=-1+\sqrt{3} i=2\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$

$$
\mathrm{z}^{4}=2 \mathrm{w}^{2} \quad \Rightarrow \quad \mathrm{~A}, \mathrm{C} \text { are not possible }
$$

root are $\mathrm{z}_{1}=2^{1 / 4}\left(\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}\right) ; \quad \mathrm{z}_{2}=2^{1 / 4}\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)$ etc.
$\left.\therefore \quad a=\sqrt{2^{1 / 2}+2^{1 / 2}}=\left(2^{3 / 2}\right)^{1 / 2}=2^{3 / 4} \Rightarrow(D)\right]$

Q. 5 The complex number z satisfies the condition $\left|\mathrm{z}-\frac{25}{\mathrm{z}}\right|=24$. The maximum distance from the origin of co-ordinates to the point z is :
(A*) 25
(B) 30
(C) 32
(D) none of these
Q. 6 If the expression $x^{2 m}+x^{m}+1$ is divisible by $x^{2}+x+1$, then :
(A) m is any odd integer
(B) m is divisible by 3
(C*) m is not divisible by 3
(D) none of these
[Sol. $\quad x^{2 m}+x^{m}+1$ div. by $x^{2}+x+1$ i.e. $(x-\omega)\left(x-\omega^{2}\right)$
$\Rightarrow \quad \omega^{2 \mathrm{~m}}+\omega^{\mathrm{m}}+1$ must be equal to zero
$\Rightarrow \quad 1^{\mathrm{m}}+\omega^{\mathrm{m}}+\left(\omega^{2}\right)^{\mathrm{m}}=0 \Rightarrow \mathrm{~m}$ is not divisible by $\left.3 \quad\right]$
Q. 7 If $\mathrm{z}_{1}=2+3 i, \mathrm{z}_{2}=3-2 i$ and $\mathrm{z}_{3}=-1-2 \sqrt{3} i$ then which of the following is true?
(A) $\arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$
(B) $\arg \left(\frac{\mathrm{z}_{3}}{\mathrm{z}_{2}}\right)=\arg \left(\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}}\right)$
(C*) $\arg \left(\frac{\mathrm{z}_{3}}{\mathrm{z}_{2}}\right)=2 \arg \left(\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right)$
(D) $\arg \left(\frac{z_{3}}{z_{2}}\right)=\frac{1}{2} \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$
[Hint: Note that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\sqrt{13}$
Hence $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ lies on a circle with centre $(0,0)$
and $r=\sqrt{13}$ as shown
now $\quad \operatorname{Arg} \frac{\mathrm{z}_{2}}{\mathrm{z}_{3}}=2 \operatorname{Arg} \frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\mathrm{z}_{3}-\mathrm{z}_{1}}$
$\therefore \quad \operatorname{Arg} \frac{\mathrm{z}_{3}}{\mathrm{z}_{2}}=2 \operatorname{Arg} \frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}} \quad \Rightarrow \quad$ (C) $]$

Q. 8 If \boldsymbol{m} and \boldsymbol{n} are the smallest positive integers satisfying the relation

$$
\left(2 \operatorname{Cis} \frac{\pi}{6}\right)^{\mathrm{m}}=\left(4 \operatorname{Cis} \frac{\pi}{4}\right)^{\mathrm{n}}, \text { then }(\boldsymbol{m}+\boldsymbol{n}) \text { has the value equal to }
$$

(A) 120
(B) 96
(C*) 72
(D) 60
[Sol. $\quad 2^{\mathrm{m}-2 \mathrm{n}} \cdot\left[\cos \frac{\mathrm{m} \pi}{6}+i \sin \frac{\mathrm{~m} \pi}{6}\right]=\left[\cos \frac{\mathrm{n} \pi}{4}+i \sin \frac{\mathrm{n} \pi}{4}\right]$
for equality $\mathrm{m}=2 \mathrm{n}$
$\frac{\mathrm{n} \pi}{4}=\frac{\mathrm{m} \pi}{6}+2 \mathrm{k} \pi \quad \mathrm{k} \in \mathrm{I}$
[13th, 17-02-2008]
put $m=2 n$
$\frac{\mathrm{n} \pi}{4}=\frac{\mathrm{n} \pi}{3}+2 \mathrm{k} \pi ; \quad-\left(\frac{\mathrm{n} \pi}{12}\right)=2 \mathrm{k} \pi \quad$ (ignore (-)ve sign)
$\mathrm{n}=24 \mathrm{k} ; \quad \mathrm{m}=48 \mathrm{k} ; \quad$ for m, n to be smallest $\mathrm{m}+\mathrm{n}=72$ Ans.]
Q. 9 If z is a complex number satisfying the equation

$$
Z^{6}+Z^{3}+1=0
$$

If this equation has a root re ${ }^{\mathrm{i} \theta}$ with $90^{\circ}<\theta<180^{\circ}$ then the value of ' θ ' is
(A) 100°
(B) 110°
(C*) 160°
(D) 170°
[Sol. Let $\quad Z^{3}=\mathrm{t}$
[12 ${ }^{\text {th }}$ (27-11-2005)]
hence equation becomes

$$
\begin{aligned}
& \mathrm{t}^{2}+\mathrm{t}+1=0 \Rightarrow \mathrm{t}=\omega \quad \text { or } \omega^{2} \\
& \mathrm{Z}^{3}=\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}=\mathrm{e}^{\left(2 \mathrm{~m} \pi+\frac{2 \pi}{3}\right)^{i}} \\
& \mathrm{Z}=\mathrm{e}^{\frac{\left(2 \mathrm{~m} \pi+\frac{2 \pi}{3}\right)_{i}}{3} i} \\
& \text { put } \mathrm{m}=1 \text { to get } \theta=\frac{8 \pi}{9} \in\left(90^{\circ}, 180^{\circ}\right)=160^{\circ} \text { Ans.] }
\end{aligned}
$$

Q. 10 Least positive argument of the $4^{\text {th }}$ root of the complex number $2-\mathrm{i} \sqrt{12}$ is
(A) $\pi / 6$
(B*) $5 \pi / 12$
(C) $7 \pi / 12$
(D) $11 \pi / 12$
[Sol. $\quad \mathrm{z}^{4}=2(1-\sqrt{3} i)=4\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=4\left[\cos \left(-\frac{\pi}{3}\right)+\mathrm{i} \sin \left(-\frac{\pi}{3}\right)\right]$
$\mathrm{z}=\sqrt{2}\left[\cos \frac{2 \mathrm{~m} \pi-(\pi / 3)}{4}+\mathrm{i} \sin \frac{2 \mathrm{~m} \pi-(\pi / 3)}{4}\right]$
[13th, 25-01-2009]
$\left.\mathrm{m}=1, \mathrm{z}=\sqrt{2}\left[\cos \left(\frac{5 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{5 \pi}{12}\right)\right] \quad\right]$
Q. $11 \quad \mathrm{P}(\mathrm{z})$ is the point moving in the Argand's plane satisfying $\arg (\mathrm{z}-1)-\arg (\mathrm{z}+\mathrm{i})=\pi$ then, P is
(A) a real number, hence lies on the real axis.
(B) an imaginary number, hence lies on the imaginary axis.
$\left(\mathrm{C}^{*}\right)$ a point on the hypotenuse of the right angled triangle OAB formed by $\mathrm{O} \equiv(0,0) ; \mathrm{A} \equiv(1,0)$; $\mathrm{B} \equiv(0,-1)$.
(D) a point on an arc of the circle passing through $\mathrm{A} \equiv(1,0) ; \mathrm{B} \equiv(0,-1)$.
[Sol. \quad amp. $\left(\frac{\mathrm{z}-1}{\mathrm{z}+\mathrm{i}}\right)=\pi \Rightarrow \frac{\mathrm{z}-1}{\mathrm{z}+\mathrm{i}}$ is real $\Rightarrow \mathrm{z}$ moves on the lines joining $(0,-1)$ and $(1,0)$]
Q. 12 Number of ordered pair(s) (z, ω) of the complex numbers z and ω satisfying the system of equations, $z^{3}+\bar{\omega}^{7}=0$ and $z^{5} \cdot \omega^{11}=1$ is :
(A) 7
(B) 5
(C) 3
(D*) 2
[Hint: (i, i) and (-i,-i)

$$
\begin{align*}
& \left(z^{3}\right)=\left(-(\bar{\omega})^{7}\right) \Rightarrow|z|^{3}=|\bar{\omega}|^{7}=|\omega|^{7} \quad \text { or }|z|^{15}=|\omega|^{35}- \tag{1}\\
& \text { again } z^{5} \cdot \omega^{11}=1 \Rightarrow|\mathrm{z}|^{5} \cdot|\omega|^{11}=1 \text { or }|\mathrm{z}|^{15}|\omega|^{33}=1 \\
& \quad \text { from (1) and }(2) \Rightarrow|\mathrm{z}|=|\omega|=1 \\
& \text { again }-(\bar{\omega})^{35}=\frac{1}{\omega^{33}} \Rightarrow-(\bar{\omega})^{2}=1 \quad \Rightarrow \quad(\bar{\omega})^{2}=-1=\mathrm{i}^{2} \\
& \Rightarrow \quad \bar{\omega}=\mathrm{i} \text { or }-\mathrm{i} \quad \Rightarrow \quad \omega=-\mathrm{i} \text { or i }]
\end{align*}
$$

Q. 13 If $p=a+b \omega+c \omega^{2} ; q=b+c \omega+a \omega^{2}$ and $r=c+a \omega+b \omega^{2}$ where $a, b, c \neq 0$ and ω is the complex cube root of unity, then :
(A) $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
(B) $\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
(C*) $\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=2(\mathrm{pq}+\mathrm{qr}+\mathrm{rp})$
(D) none of these
[Hint: $p+q+r=a+b \omega+c \omega^{2}$

$$
\begin{align*}
& b+c \omega+a \omega^{2} \\
& c+a \omega+b \omega^{2} \tag{1}
\end{align*}
$$

hence $\mathrm{p}+\mathrm{q}+\mathrm{r}=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(1+\omega+\omega^{2}\right)=0$
$\Rightarrow \quad(\mathrm{p}+\mathrm{q}+\mathrm{r})^{2}=0$
$\Rightarrow \mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=-2 \mathrm{pqr}\left[\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}+\frac{1}{\mathrm{r}}\right]$
$=-2 \operatorname{pqr}\left[\frac{1}{a+b \omega+c \omega^{2}}+\frac{1}{b+c \omega+a \omega^{2}}+\frac{1}{c+a \omega+b \omega^{2}}\right]$
$=-2 \operatorname{pqr}\left[\frac{1}{\omega^{2}\left(a \omega+b \omega^{2}+c\right)}+\frac{1}{\omega\left(b \omega^{2}+c+a \omega\right)}+\frac{1}{c+a \omega+b \omega^{2}}\right]$
$=\frac{-2 \mathrm{pqr}}{\mathrm{a} \omega+\mathrm{b} \omega^{2}+\mathrm{c}}\left[\frac{1}{\omega^{2}}+\frac{1}{\omega}+\frac{1}{1}\right]=0 \quad \ldots$. (2) \quad hence $\left.\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}=2(\mathrm{pq}+\mathrm{qr}+\mathrm{rp})\right]$
Q. 14 If A and B be two complex numbers satisfying $\frac{A}{B}+\frac{B}{A}=1$. Then the two points represented by A and B and the origin form the vertices of
(A*) an equilateral triangle
(B) an isosceles triangle which is not equilateral
(C) an isosceles triangle which is not right angled
(D) a right angled triangle
[Hint: $\mathrm{A}^{2}-\mathrm{AB}+\mathrm{B}^{2}=0$
Let $\frac{A}{B}=z ; \Rightarrow z+\frac{1}{z}=1$ hence $z^{2}-z+1=0 \Rightarrow z=-\omega$ or $-\omega^{2}$
$\Rightarrow \quad \mathrm{A}=-\mathrm{B} \omega$ or $\mathrm{A}=-\mathrm{B} \omega^{2} \Rightarrow|\mathrm{~A}|=|\mathrm{B}|$

and $\left.\quad \operatorname{amp}(\mathrm{A})-\operatorname{amp}(\mathrm{B})=\operatorname{amp}(-\omega)=\operatorname{amp}(-1)+\operatorname{amp}(\omega)=\pi+\frac{2 \pi}{3}\right]$
Q. 15 On the complex plane triangles $\mathrm{OAP} \& \mathrm{OQR}$ are similiar and $l(\mathrm{OA})=1$. If the points P and Q denotes the complex numbers $z_{1} \& z_{2}$ then the complex number ' z ' denoted by the point R is given by :
(A*) $\mathrm{z}_{1} \mathrm{z}_{2}$
(B) $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}$
(C) $\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}}$
(D) $\frac{z_{1}+z_{2}}{z_{2}}$

[Hint: $\frac{\mathrm{OR}}{\mathrm{OQ}}=\frac{\mathrm{OP}}{\mathrm{OA}} \Rightarrow \mathrm{OR} \cdot \mathrm{OA}=\mathrm{OQ} \cdot \mathrm{OP}$
or $O R=\left|z_{2}\right|\left|z_{1}\right| \quad(O A=1)$
Also $\angle \mathrm{ROA}=\angle \mathrm{ROQ}+\angle \mathrm{QOA}=\theta+\phi\left(\right.$ say \arg of $\left.z_{2}\right)$
$=\theta+\phi \quad=\arg \mathrm{z}_{1}+\arg \mathrm{z}_{2}=\arg \left(\mathrm{z}_{1} \mathrm{z}_{2}\right)$
Hence complex number corresponding to the point R is $z_{1} z_{2}$
Alternatively: $\quad \frac{\mathrm{z}}{|\mathrm{z}|}=\frac{\mathrm{z}_{2}}{\left|\mathrm{z}_{2}\right|} \mathrm{e}^{\mathrm{i} \theta}$.

$$
\frac{\mathrm{z}_{1}}{\left|\mathrm{z}_{1}\right|}=1 \cdot \mathrm{e}^{\mathrm{i} \theta}
$$

$$
\begin{aligned}
& \frac{z}{|z|} \cdot e^{i \theta}=\frac{z_{2}}{\left|z_{2}\right|} e^{i \theta} \cdot \frac{z_{1}}{\left|z_{1}\right|} \\
& \left.\frac{z}{|z|}=\frac{z_{1} z_{2}}{\left|z_{1} z_{2}\right|} \Rightarrow \quad z=z_{1} z_{2} \Rightarrow \quad \text { (A) }\right]
\end{aligned}
$$

Q. 16 If $1, \alpha_{1}, \alpha_{2} \ldots \ldots ., \alpha_{2008}$ are (2009) th roots of unity, then the value of $\sum_{r=1}^{2008} \mathrm{r}\left(\alpha_{\mathrm{r}}+\alpha_{2009-\mathrm{r}}\right)$ equals
(A) 2009
(B) 2008
(C) 0
(D*) - 2009
[Sol. Let $S=1\left(\alpha_{1}+\alpha_{2008}\right)+2\left(\alpha_{2}+\alpha_{2007}\right)+3\left(\alpha_{3}+\alpha_{2006}\right)+\ldots \ldots \ldots .+2008\left(\alpha_{2008}+\alpha_{1}\right)$
Also $\quad S=2008\left(\alpha_{2008}+\alpha_{1}\right)+2007\left(\alpha_{2}+\alpha_{2007}\right)+\ldots \ldots . .+2\left(\alpha_{2}+\alpha_{2007}\right)+1\left(\alpha_{1}+\alpha_{2008}\right)$
$\therefore \quad$ On adding (1) and (2), we get
[12th, 20-12-2009, complex]

$$
\begin{aligned}
& 2 S=2009\left[2\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots \alpha_{2008}\right)\right] \\
& 2 S=2009[2(\underbrace{1+\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots \alpha_{2008}}_{\text {zero }}-1)]
\end{aligned}
$$

Hence $S=-2009$ Ans.
Note that $\left(\alpha_{1}\right.$ and $\left.\alpha_{2008}\right),\left(\alpha_{2}\right.$ and $\left.\alpha_{2007}\right),\left(\alpha_{3}\right.$ and $\left.\alpha_{2006}\right), \ldots \ldots \ldots .,\left(\alpha_{1004}\right.$ and $\left.\alpha_{1005}\right)$ are conjugate of each other.]

Paragraph for question nos. 17 to 19

For the complex number $\mathrm{w}=\frac{4 \mathrm{z}-5 \mathrm{i}}{2 \mathrm{z}+1}$
Q. 17 The locus of z , when w is a real number other than 2 , is
(A) a point circle
(B) a straight line with slope $-\frac{5}{2}$ and y-intercept $\frac{5}{4}$
(C) a straight line with slope $\frac{5}{2}$ and y-intercept $\frac{5}{4}$
(D) a straight line passing through the origin
Q. 18 The locus of z , when w is a purely imaginary number is
(A) a circle with centre $\left(\frac{1}{2},-\frac{5}{4}\right)$ passing through origin.
B^{*}) a circle with centre $\left(-\frac{1}{4}, \frac{5}{8}\right)$ passing through origin.
(C) a circle with centre $\left(\frac{1}{4},-\frac{5}{8}\right)$ and radius $\frac{\sqrt{29}}{8}$
(D) any other circle
Q. 19 The locus of z , when $|\mathrm{w}|=1$ is
(A) a circle with centre $\left(-\frac{5}{8}, \frac{1}{4}\right)$ and radius $\frac{1}{2}$
(B) a circle with centre $\left(\frac{1}{4},-\frac{5}{8}\right)$ and radius $\frac{1}{2}$
(C) a circle with centre $\left(\frac{5}{8},-\frac{1}{4}\right)$ and radius $\frac{1}{2}$
(D*) any other circle
[Hint:
(i) $\quad \mathrm{w}=\frac{4 \mathrm{z}-5 \mathrm{i}}{2 \mathrm{z}+1} \quad(\mathrm{w} \neq \mathrm{z})$
[13th, 23-11-2008]
if w is real then $w=\bar{w}$
$\overline{\mathrm{w}}=\underbrace{\frac{4 \overline{\mathrm{z}}+5 \mathrm{i}}{2 \overline{\mathrm{z}}+1}}_{\overline{\mathrm{w}}}=\underbrace{\frac{4 \mathrm{z}-5 \mathrm{i}}{2 \mathrm{z}+1}}_{\mathrm{w}}$
$(4 \bar{z}+5 \mathrm{i})(2 \mathrm{z}+1)=(4 \mathrm{z}-5 \mathrm{i})(2 \overline{\mathrm{z}}+1)$
$8 \mathrm{z} \overline{\mathrm{z}}+4 \overline{\mathrm{z}}+10 \mathrm{z} i+5 \mathrm{i}=8 \mathrm{z} \overline{\mathrm{z}}+4 \mathrm{z}-10 \overline{\mathrm{z}} i-5 i$
$4(\mathrm{z}-\overline{\mathrm{z}})-10 i(\mathrm{z}+\overline{\mathrm{z}})-10 i=0$
$8 i y-20 i x-10 i=0$
$4 \mathrm{y}-10 \mathrm{x}-5=0 \quad \Rightarrow \quad 10 \mathrm{x}-4 \mathrm{y}+5=0$
(ii) If w is purely imaginary then

$$
\begin{gathered}
\mathrm{w}+\overline{\mathrm{w}}=0 \\
\frac{4 \mathrm{z}-5 \mathrm{i}}{2 \mathrm{z}+1}+\frac{4 \overline{\mathrm{z}}+5 \mathrm{i}}{2 \overline{\mathrm{z}}+1}=0 \\
(4 \overline{\mathrm{z}}+5 \mathrm{i})(2 \mathrm{z}+1)+(4 \mathrm{z}-5 \mathrm{i})(2 \overline{\mathrm{z}}+1)=0 \\
\text { simplifying } \quad 16 \mathrm{z} \overline{\mathrm{z}}+4(\mathrm{z}+\overline{\mathrm{z}})+10 i(\mathrm{z}-\overline{\mathrm{z}})=0 \\
16\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+8 \mathrm{x}-20 \mathrm{y}=0 \\
\left.\mathrm{x}^{2}+\mathrm{y}^{2}+\frac{\mathrm{x}}{2}-\frac{5}{4} \mathrm{y}=0\right]
\end{gathered}
$$

Paragraph for question nos. 20 to 22

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three sets of complex numbers as defined below.
$A=\{z:|z+1| \leq 2+\operatorname{Re}(z)\}, \quad B=\{z:|z-1| \geq 1\}$ and $C=\left\{z:\left|\frac{z-1}{z+1}\right| \geq 1\right\}$
Q. 20 The number of point(s) having integral coordinates in the region $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ is
(A) 4
(B*) 5
(C) 6
(D) 10
Q. 21 The area of region bounded by $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ is
(A*) $2 \sqrt{3}$
(B) $\sqrt{3}$
(C) $4 \sqrt{3}$
(D) 2
Q. 22 The real part of the complex number in the region $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ and having maximum amplitude is
(A) -1
(B*) $\frac{-3}{2}$
(C) $\frac{1}{2}$
(D) -2
[Sol. For A, $|\mathrm{z}+1| \leq 2+\operatorname{Re}(\mathrm{z}) \quad$ [12th, 20-12-2009, complex]
$\Rightarrow \quad(\mathrm{x}+1)^{2}+\mathrm{y}^{2} \leq 4+4 \mathrm{x}+\mathrm{x}^{2}$
$\Rightarrow \quad y^{2} \leq 3+2 \mathrm{x}$
$\Rightarrow \quad y^{2} \leq 2\left(x+\frac{3}{2}\right)$
For B, $|\mathrm{z}-1| \geq 1$
$\Rightarrow \quad(\mathrm{x}-1)^{2}+\mathrm{y}^{2} \geq 1$
For $C,|z-1|^{2} \geq|z+1|^{2}$
$\Rightarrow \quad(\mathrm{z}-1)(\overline{\mathrm{z}}-1) \geq(\mathrm{z}+1)(\overline{\mathrm{z}}+1)$
$\Rightarrow \quad(\mathrm{z} \overline{\mathrm{z}}-\overline{\mathrm{z}}-\mathrm{z}+1) \geq(\mathrm{z} \overline{\mathrm{z}}+\overline{\mathrm{z}}+\mathrm{z}+1)$

$\Rightarrow \quad \mathrm{z}+\overline{\mathrm{z}} \leq 0$
i.e. $\quad \mathrm{x} \leq 0$
(i) $\quad(-1,0),(-1,1),(-1,-1),(0,0),(0,1),(0,-1)$ but $\mathrm{z}=-1$ is not in the domain in set C
$\therefore \quad$ Total number of point(s) having integral coordinates in the region $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ is 6 .
(ii) Required area $=2 \int_{\frac{-3}{2}}^{0} \sqrt{2\left(x+\frac{3}{2}\right)} d x=2 \sqrt{3}$ (square units)
(iii) Clearly $\mathrm{z}=\frac{-3}{2}+\mathrm{i} 0$ is the complex number in the region $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ and having maximum amplitude. $\left.\therefore \quad \operatorname{Re}(\mathrm{z})=\frac{-3}{2}\right]$
Q. 1 If the six solutions of $x^{6}=-64$ are written in the form $\mathrm{a}+\mathrm{b} i$, where a and b are real, then the product of those solutions with a>0, is
(A*) 4
(B) 8
(C) 16
(D) 64
[Hint: Use De Moivre's theorem get the product of roots with + ve real part

$$
\mathrm{z}=2(-1)^{1 / 6}=2\left[\cos \frac{(2 \mathrm{~m}+1) \pi}{6}+i \sin \frac{(2 \mathrm{~m}+1) \pi}{6}\right]
$$

put $m=0$ or $m=5$ for positive real part to get
$z_{1} z_{2}=4 e^{i \pi / 6} \cdot e\left({ }^{11 \pi / 6)}=4 e^{2 \pi i}=4 \quad\right]$
Q. 2 Number of imaginary complex numbers satisfying the equation, $\mathrm{z}^{2}=\overline{\mathrm{z}} 2^{1-|z|}$ is
(A) 0
(B) 1
(C*) 2
(D) 3
[Sol. $\quad \mathrm{z}^{2}=\overline{\mathrm{z}} \cdot 2^{1-|z|}$
[12th, 06-01-2008]
$z^{3}=|z|^{2} 2^{1-|z|}$
....(1) $\Rightarrow \quad|z|=2^{1-|z|}$
hence z^{3} is purely + ve real $(\operatorname{as} z \neq 0) \Rightarrow \quad z$ is + ve real
hence $\mathrm{z}=\mathrm{re}^{i \frac{2 \mathrm{k} \pi}{3}} \quad \mathrm{k}=0,1,2$
we therefore need to solve

$$
\mathrm{r}=2^{1-\mathrm{r}} \quad \Rightarrow \quad 2^{\mathrm{r}}=\frac{2}{\mathrm{r}} \quad \Rightarrow \quad \mathrm{r}=1
$$

$\therefore \quad \mathrm{Z}=\mathrm{e}^{i \frac{2 \mathrm{k} \pi}{3}}$
hence $z=1, \omega, \omega^{2}$
but 1 is not imaginary
hence $\mathrm{z}=\mathrm{w}$ or $\mathrm{w}^{2} \Rightarrow \quad$ (C)]
Q. 3 If $z_{1} \& z_{2}$ are two complex numbers \& if $\arg \frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{\pi}{2}$ but $\left|z_{1}+z_{2}\right| \neq\left|z_{1}-z_{2}\right|$ then the figure formed by the points represented by $0, \mathrm{z}_{1}, \mathrm{z}_{2} \& \mathrm{z}_{1}+\mathrm{z}_{2}$ is :
(A) a parallelogram but not a rectangle or a rhombous
(B) a rectangle but not a square
(C*) a rhombous but not a square
(D) a square
Q. 4 If $z_{n}=\cos \frac{\pi}{(2 n+1)(2 n+3)}+i \sin \frac{\pi}{(2 n+1)(2 n+3)}$, then $\underset{n \rightarrow \infty}{\operatorname{Limit}}\left(z_{1} \cdot z_{2} \cdot z_{3} \cdot \ldots \ldots z_{n}\right)=$
(A) $\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$
(B*) $\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$
(C) $\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}$
(D) $\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}$
[Hint: $\quad \mathrm{Z}_{\mathrm{n}}=\mathrm{e}^{\frac{i \pi}{2(}\left(\frac{1}{2 \mathrm{n}+1}-\frac{1}{2 \mathrm{n}+3}\right)}$

$$
\left.\prod_{\mathrm{n}=1}^{\infty} \mathrm{z}_{\mathrm{n}}=\mathrm{e}^{\frac{i \pi}{2}\left[\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\ldots \ldots . .+\left(\frac{1}{2 \mathrm{n}+1}-\frac{1}{2 \mathrm{n}+3}\right)\right]}=\mathrm{e}^{\frac{i \pi}{2}\left[\left(\frac{1}{3}-\frac{1}{2 \mathrm{n}+3}\right)\right]}=\mathrm{e}^{\frac{i \pi}{6}} \text { as } \mathrm{n} \rightarrow \infty \Rightarrow \text { (B) }\right]
$$

Q. 5 The straight line $(1+2 i) \mathrm{z}+(2 i-1) \overline{\mathrm{z}}=10 i$ on the complex plane, has intercept on the imaginary axis equal to
$\left(\mathrm{A}^{*}\right) 5$
(B) $\frac{5}{2}$
(C) $-\frac{5}{2}$
(D) -5
[Hint: putz=iy $(1+2 i) i y-(2 i-1) i y=10 i$

$$
2 y+0 y=10 \Rightarrow y=5
$$

Note: For x-intercept put $z=x+0 i \Rightarrow x=5 / 2$
Alternatively: put $\mathrm{z}+\overline{\mathrm{z}}=0 \Rightarrow \quad \overline{\mathrm{z}}=-\mathrm{z} \quad \Rightarrow \quad(1+2 \mathrm{i}) \mathrm{z}-\mathrm{z}(2 \mathrm{i}-1)=10 \mathrm{i}$

$$
2 \mathrm{z}=10 \mathrm{i} \quad \Rightarrow \quad \mathrm{z}=5 \mathrm{i} ; \quad \mathrm{y}=5 \quad] \quad\left[13^{\text {th }} \text { Test }(24-03-2005)\right]
$$

Q. 6 If $\cos \theta+i \sin \theta$ is a root of the equation $x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots+a_{n-1} x+a_{n}=0$ then the value of $\sum_{r=1}^{n} a_{r} \cos r \theta$ equals (where all coefficient are real)
(A) 0
(B) 1
$\left(\mathrm{C}^{*}\right)-1$
(D) none
[Hint: Divide the equation by x^{n} and put $\mathrm{x}=\cos \theta+\mathrm{i} \sin \theta$.
Equate real and imaginary part]
Q. 7 Let $\mathrm{A}\left(\mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{z}_{2}\right)$ represent two complex numbers on the complex plane. Suppose the complex slope of the line joining A and B is defined as $\frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\overline{\mathrm{Z}}_{1}-\overline{\mathrm{z}}_{2}}$. Then the lines l_{1} with complex slope ω_{1} and l_{2} with complex slope ω_{2} on the complex plane will be perpendicular to each other if
(A*) $\omega_{1}+\omega_{2}=0$
(B) $\omega_{1}-\omega_{2}=0$
(C) $\omega_{1} \omega_{2}=-1$
(D) $\omega_{1} \omega_{2}=1$
[Hint: l_{1} is perpendicular to l_{2}
[12 ${ }^{\text {th }}$ test (29-10-2005)]

$$
\begin{aligned}
\Rightarrow \quad & \frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{3}-\mathrm{z}_{4}} \text { is purely imaginary } \\
& \frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{3}-\mathrm{z}_{4}}+\frac{\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2}}{\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{4}}=0 \\
& \frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{1}-\overline{\mathrm{z}}_{2}}+\frac{\mathrm{z}_{3}-\mathrm{z}_{4}}{\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{4}}=0 \quad \Rightarrow \quad \omega_{1}+\omega_{2}=0
\end{aligned}
$$

Note: If l_{1} parallel to l_{2} then

$$
\left.\frac{\mathrm{z}_{1}-\mathrm{z}_{2}}{\mathrm{z}_{3}-\mathrm{z}_{4}}=\frac{\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2}}{\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{4}} \quad \Rightarrow \quad \omega_{1}=\omega_{2}\right]
$$

Q. 8 If the equation, $z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are real coefficients different from zero has a pure imaginary root then the expression $\frac{a_{3}}{a_{1} a_{2}}+\frac{a_{1} a_{4}}{a_{2} a_{3}}$ has the value equal to:
(A) 0
(B*) 1
(C) -2
(D) 2
[Hint: Let $\quad x \mathrm{i}$ be the root where $\mathrm{x} \neq 0$ and $\mathrm{x} \in \mathrm{R}$ (as if $\mathrm{x}=0$ satisfies then $\mathrm{a}_{4}=0$ which contradicts)

$$
\begin{align*}
& x^{4}-a_{1} x^{3} i-a_{2} x^{2}+a_{3} x i+a_{4}=0 \\
& x^{4}-a_{2} x^{2}+a_{4}=0 \quad \ldots .(1) \text { and } \\
& a_{1} x^{3}-a_{3} x=0 \tag{2}
\end{align*}
$$

From equation (2): $a_{1} x^{2}-a_{3}=0 \Rightarrow x^{2}=a_{3} / a_{1} .($ as $x \neq 0)$
Putting the value of x^{2} in equation \qquad
$\frac{a_{3}^{2}}{a_{1}^{2}}-\frac{a_{2} a_{3}}{a_{1}}+a_{4}=0$ or $a_{3}^{2}+a_{4} a_{1}^{2}=a_{1} a_{2} a_{3}$ or $\frac{a_{3}}{a_{1} a_{2}}+\frac{a_{1} a_{4}}{a_{2} a_{3}}=1$ (dividing by $a_{1} a_{2} a_{3}$)]
Q. 9 Suppose A is a complex number \& $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is
(A) 3
(B*) 6
(C) 9
(D) 12
[Hint: Let $A=x+i y ;|A|=1 \Rightarrow x^{2}+y^{2}=1$ and

$$
\begin{aligned}
& |\mathrm{A}+1|=1 \Rightarrow(\mathrm{x}+1)^{2}+\mathrm{y}^{2}=1 \Rightarrow \mathrm{x}=-\frac{1}{2} \text { and } \mathrm{y}= \pm \frac{\sqrt{3}}{2} \Rightarrow(\mathrm{~A})=\omega \text { or } \omega^{2} \\
\Rightarrow & (\omega)^{\mathrm{n}}=(1+\omega)^{\mathrm{n}}=\left(-\omega^{2}\right)^{\mathrm{n}} \Rightarrow \mathrm{n} \text { must be even and divisible by } 3
\end{aligned}
$$

Alternatively :

$$
A=\frac{-1+i \sqrt{3}}{2} ; A+1=\frac{1+i \sqrt{3}}{2}
$$

and $\mathrm{n} \arg \mathrm{A}=\mathrm{n} \arg (\mathrm{A}+1)=\arg 1=2 \mathrm{n} \pi$
$\Rightarrow \quad \arg A=\arg (A+1)=2 \pi$

$$
\text { now let } \overrightarrow{\mathrm{OQ}}=\mathrm{A}+1 \text { and } \overrightarrow{\mathrm{OP}}=\mathrm{A}
$$

$\Rightarrow \overrightarrow{\mathrm{OP}} \& \overrightarrow{\mathrm{OQ}}$ vectors must be turned a minimum
number of times to coincide with positive $x-$ axis $\Rightarrow 6]$
Q. 10 Intercept made by the circle $\mathrm{z} \overline{\mathrm{z}}+\bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}+\mathrm{r}=0$ on the real axis on complex plane, is
(A) $\sqrt{(\alpha+\bar{\alpha})-r}$
(B) $\sqrt{(\alpha+\bar{\alpha})^{2}-2 r}$
(C) $\sqrt{(\alpha+\bar{\alpha})^{2}+r}$
(D*) $\sqrt{(\alpha+\bar{\alpha})^{2}-4 \mathrm{r}}$
[Sol. Points where the circle cuts the $\mathrm{x}-\mathrm{axis} \mathrm{z}=\overline{\mathrm{z}}$.
[12 ${ }^{\text {th }}$ (27-11-2005)]
Hence substituting $\mathrm{z}=\overline{\mathrm{z}}$ in the equation of circle

$$
\begin{gathered}
z^{2}+\bar{\alpha} z+\alpha z+r=0 \\
z^{2}+(\alpha+\bar{\alpha}) z+r=0 \\
A B=\left|z_{1}-z_{2}\right|=\sqrt{\left(z_{1}+z_{2}\right)^{2}-4 z_{1} z_{2}}=\sqrt{(\alpha+\bar{\alpha})^{2}-4 r} \Rightarrow(D)
\end{gathered}
$$

Alternatively: put $\mathrm{z}=\mathrm{x}$ and $\overline{\mathrm{z}}=\mathrm{x}$ to get $\mathrm{x}^{2}+\bar{\alpha} \mathrm{x}+\alpha \mathrm{x}+\mathrm{r}=0$ which is the same equation]
Q. 11 If $Z_{r} ; r=1,2,3, \ldots, 50$ are the roots of the equation $\sum_{r=0}^{50}(Z)^{r}=0$, then the value of $\sum_{r=1}^{50} \frac{1}{Z_{r}-1}$ is
(A) -85
(B*) -25
(C) 25
(D) 75
[Hint: $E=\frac{1}{z_{1}-1}+\frac{1}{z_{2}-1}+\ldots .+\frac{1}{z_{50}-1}$, where $z_{1}, z_{2}, \ldots ., z_{50}$ are the roots of the equation $z^{51}-1=0$ other than 1 .
$=-25+\left(\frac{1}{2}+\frac{1}{\mathrm{z}_{1}-1}\right)+\left(\frac{1}{2}+\frac{1}{\mathrm{z}_{2}-1}\right)+\ldots \ldots .+\left(\frac{1}{2}+\frac{1}{\mathrm{z}_{50}-1}\right)$
Note that $\left(1^{\text {st }}+\right.$ last $)$ and $\left(2^{\text {nd }}+2^{\text {nd }}\right.$ last $)$ will vanish using $z_{r}=z^{r}$ and $z^{51}=1$
Alternatively: Let $1+\mathrm{z}+\mathrm{z}^{2}+\ldots \ldots .+\mathrm{z}^{50}=\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\mathrm{z}-\mathrm{z}_{50}\right)$
differentiate both sides w.r.t. z after taking logarithm on both the sides.

$$
\frac{1+2 z+3 z^{2}+\ldots .+50 z^{49}}{1+z+z^{2}+\ldots .+z^{50}}=\frac{1}{z-z_{1}}+\frac{1}{z-z_{2}}+\ldots \ldots+\frac{1}{z-z_{50}} . \text { Now put } z=1
$$

we get, $\frac{50 \cdot 51}{2 \cdot 51}=-\left[\frac{1}{\mathrm{z}_{1}-1}+\frac{1}{\mathrm{z}_{2}-1}+\ldots . .+\frac{1}{\mathrm{z}_{50}-1}\right]$
$\therefore \quad \sum \frac{1}{\mathrm{z}_{\mathrm{r}}-1}=-25$ Ans.]
Q. 12 All roots of the equation, $(1+\mathrm{z})^{6}+\mathrm{z}^{6}=0$:
(A) lie on a unit circle with centre at the origin
(B) lie on a unit circle with centre at $(-1,0)$
(C) lie on the vertices of a regular polygon with centre at the origin
(D*) are collinear
[Hint: $\left.\quad \mathrm{z}=-\frac{1}{2}\left(1+\mathrm{i} \cot \frac{2 \mathrm{r}+1}{12} \pi\right), \mathrm{r}=1,2,3,4,5\right]$
Q. 13 If $\mathrm{z} \& \mathrm{w}$ are two complex numbers simultaneously satisfying the equations,

$$
z^{3}+w^{5}=0 \text { and } z^{2} \cdot \bar{w}^{4}=1 \text {, then: }
$$

(A*) z and w both are purely real
(B) z is purely real and w is purely imaginary
(C) w is purely real and z is purely imaginarly
(D) z and w both are imaginary .
[Hint: $z^{3}=-\omega^{5} \Rightarrow|z|^{3}=|\omega|^{5} \Rightarrow|z|^{6}=|\omega|^{10}$
[Ans. $(1,-1)$ or $(-1,1)$]
and $z^{2}=\frac{1}{\bar{\omega}^{4}} \Rightarrow|z|^{2}=\frac{1}{|\omega|^{4}} \Rightarrow|z|^{6}=\frac{1}{|\omega|^{12}}$
From (1) \& (2) $|\omega|=1 \quad \&|z|=1 \Rightarrow z \bar{z}=\omega \bar{\omega}=1$
Again $z^{6}=\omega^{10}-\quad(3) \quad$ and $\quad z^{6} \cdot \bar{\omega}^{12}=1$
$z^{6}=\frac{1}{\bar{\omega}^{12}}=\omega^{10}($ from 3$) \Rightarrow(\omega \bar{\omega})^{10}(\bar{\omega})^{2}=1 \quad \Rightarrow \quad(\bar{\omega})^{2}=1$
$\Rightarrow \bar{\omega}=1$ or $-1 \quad \Rightarrow \omega=1$ or -1
if $\omega=1$ then $z^{3}+1=0$ and $z^{2}=1 \Rightarrow z=-1$
if $\omega=-1$ then $z^{3}-1=0$ and $z^{2}=1 \Rightarrow z=1$
Hence $\mathrm{z}=1 \quad \& \omega=-1$ or $\mathrm{z}=-1 \quad \& \quad \omega=1]$
Q. 14 A function f is defined by $\mathrm{f}(\mathrm{z})=(4+\mathrm{i}) \mathrm{z}^{2}+\alpha \mathrm{z}+\gamma$ for all complex numbers z , where α and γ are complex numbers. If $f(1)$ and $f(i)$ are both real then the smallest possible value of $|\alpha|+|\gamma|$ equals
(A) 1
(B*) $\sqrt{2}$
(C) 2
(D) $2 \sqrt{2}$
[Sol. Let $\alpha=\mathrm{a}+\mathrm{ib}$ and $\gamma=\mathrm{c}+\mathrm{id}$
[13th, 25-01-2009]
where $a, b, c, d \in R$. We have to minimise $\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}$
now $\quad \mathrm{f}(\mathrm{z})=(4+\mathrm{i}) \mathrm{z}^{2}+\mathrm{z}(\mathrm{a}+\mathrm{ib})+(\mathrm{c}+\mathrm{id})$

$$
\begin{equation*}
f(1)=4+i+a+i b+c+i d \text { is real } \tag{1}
\end{equation*}
$$

or $\quad(4+a+c)+i(1+b+d)$ is real
hence $\mathrm{b}+\mathrm{d}+1=0$
$f(i)=-(4+i)+i(a+i b)+(c+i d)$ is real
$f(i)=-4-b+c+i(a+d-1)$ is real
$\mathrm{a}+\mathrm{d}=1$
from (1) and (2) $a-b=2$
hence there is no restriction on ' c '. Let $\mathrm{c}=0$
hence $|\alpha|+|\gamma|=\sqrt{a^{2}+b^{2}}+\sqrt{d^{2}}$

$$
=\sqrt{4+2 a b}+|d| \geq \sqrt{4+2 a b} \geq \sqrt{2}
$$

with equality if $\mathrm{d}=0 ; \mathrm{a}=1$ and $\mathrm{b}=-1 \quad \Rightarrow \quad$ (B) $]$
Q. 15 Given $\mathrm{f}(\mathrm{z})=$ the real part of a complex number z . For example, $\mathrm{f}(3-4 i)=3$. If $\mathrm{a} \in \mathrm{N}, \mathrm{n} \in \mathrm{N}$ then the value of $\sum_{\mathrm{n}=1}^{6 \mathrm{a}} \log _{2}\left|\mathrm{f}\left((1+\mathrm{i} \sqrt{3})^{\mathrm{n}}\right)\right|$ has the value equal to
(A) $18 a^{2}+9 a$
(B) $18 a^{2}+7 a$
(C) $18 a^{2}-3 a$
(D*) $18 a^{2}-a$
$\left[\right.$ Sol. $\quad(1+\mathrm{i} \sqrt{3})^{\mathrm{n}}=\left[2\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)\right]^{\mathrm{n}}=2^{\mathrm{n}}\left(\cos \frac{\mathrm{n} \pi}{3}+\mathrm{i} \sin \frac{\mathrm{n} \pi}{3}\right)$

$$
\mathrm{f}\left((1+\mathrm{i} \sqrt{3})^{\mathrm{n}}\right)=\text { real part of } \mathrm{z}=2^{\mathrm{n}} \cos \frac{\mathrm{n} \pi}{3}
$$

[12th, 04-01-2009]

$$
\begin{aligned}
\therefore \quad \sum_{n=1}^{6 a} \log _{2}\left|2^{n} \cos \frac{n \pi}{3}\right| & =\sum_{n=1}^{6 a}\left(n+\log _{2}\left|\cos \frac{n \pi}{3}\right|\right)=\frac{6 a(6 a+1)}{2}+\underbrace{(-1-1+0-1-1+0)}_{a \text { such term }} \\
& \left.=3 a(6 a+1)-4 a=18 a^{2}-a \text { Ans. }\right]
\end{aligned}
$$

Q. 16 It is given that complex numbers z_{1} and z_{2} satisfy $\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$. If the included angle of their corresponding vectors is 60° then $\left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right|$ can be expressed as $\frac{\sqrt{N}}{7}$ where N is natural number then Nequals
(A) 126
(B) 119
(C*) 133
(D) 19
[Sol. Using cosine rule
[12th, 04-01-2009, P-1]

$$
\begin{aligned}
&\left|\mathrm{z}_{1}+\mathrm{z}_{2}\right|=\sqrt{\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}-2\left|\mathrm{z}_{1}\right|\left|\mathrm{z}_{2}\right| \cos 120^{\circ}} \\
&=\sqrt{4+9+2 \cdot 3}=\sqrt{19} \\
& \text { and } \quad \begin{aligned}
\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right| & =\sqrt{\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}-2\left|\mathrm{z}_{1}\right|\left|\mathrm{z}_{1}\right| \cos 60^{\circ}} \\
& =\sqrt{4+9-6}=\sqrt{7} \\
\therefore \quad\left|\frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{\mathrm{z}_{1}+\mathrm{z}_{2}}\right| & =\sqrt{\frac{19}{7}}=\frac{\sqrt{133}}{7} \Rightarrow \mathrm{~N}=133 \text { Ans.] }
\end{aligned}
\end{aligned}
$$

Q. 17 Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{bx}+\mathrm{c}$ be a cubic polynomial with real coefficients and all real roots. Also $|\mathrm{f}(i)|=1$ where $i=\sqrt{-1}$
Statement-1: All 3 roots of $f(x)=0$ are zero
because
Statement-2: $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B*) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement- 1 is true, statement- 2 is false.
(D) Statement- 1 is false, statement- 2 is true.
[Sol. Let $x_{1}, x_{2}, x_{3} \in R$ be the roots of $f(x)=0$
[12th, 07-12-2008]

$$
\begin{array}{ll}
\therefore & \mathrm{f}\left(\mathrm{x}^{2}\right)=\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2} \mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right) \\
& \mathrm{f}(i)=\left(i-\mathrm{x}_{1}\right)\left(i-\mathrm{x}_{2}\right)\left(i-\mathrm{x}_{3}\right) \\
& |\mathrm{f}(i)|=\left|\mathrm{x}_{1}-i\right|\left|\mathrm{x}_{2}-i\right|\left|\mathrm{x}_{3}-i\right|=1 \\
\therefore & \sqrt{\mathrm{x}_{1}^{2}+1} \sqrt{\mathrm{x}_{2}^{2}+1} \sqrt{\mathrm{x}_{3}^{2}+1}=1
\end{array}
$$

This is possible only if $x_{1}=x_{2}=x_{3}=0$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{3} \quad \Rightarrow \quad \mathrm{a}=0=\mathrm{b}=\mathrm{c} \quad \Rightarrow \quad \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
(sum of coeffiients zero can not imply that all zero roots)]
Q. 18 All complex numbers ' z ' which satisfy the relation $|\mathrm{z}-|\mathrm{z}+1||=|\mathrm{z}+|\mathrm{z}-1||$ on the complex plane lie on the
(A) line $\mathrm{y}=0$ or an ellipse with foci $(-1,0)$ and $(1,0)$
(B) radical axis of the circles $|\mathrm{z}-1|=1$ and $|\mathrm{z}+1|=1$
(C) circle $x^{2}+y^{2}=1$
(D*) line $x=0$ or on a line segment joining $(-1,0)$ to $(1,0)$
[Sol. Given $|\mathrm{z}-|\mathrm{z}+1||^{2}=|\mathrm{z}+|\mathrm{z}-1||^{2}$
[13th, 01-02-2009]
$\therefore \quad(\mathrm{z}-\mathrm{z}+1 \mid)(\overline{\mathrm{z}}-\mathrm{\mid z}+1 \mid)=(\mathrm{z}+|\mathrm{z}-1|)(\overline{\mathrm{z}}+|\mathrm{z}-1|)$ $z \bar{z}-z|z+1|-\bar{z}|z+1|+|z+1|^{2}=z \bar{z}+z|z-1|+\bar{z}|z-1|+|z-1|^{2}$
$|z+1|^{2}-|z-1|^{2}=(z+\bar{z})[z-1|+|z+1|]$
$(z+1)(\bar{z}+1)-(z-1)(\bar{z}-1)=(z+\bar{z})[|z-1|+|z+1|]$
$(\mathrm{z} \overline{\mathrm{z}}+\mathrm{z}+\overline{\mathrm{z}}+1)-(\mathrm{z} \overline{\mathrm{z}}-\mathrm{z}-\overline{\mathrm{z}}+1)=(\mathrm{z}+\overline{\mathrm{z}})[\mathrm{z}-1|+|\mathrm{z}+1|]$
$2(\mathrm{z}+\overline{\mathrm{z}})=(\mathrm{z}+\overline{\mathrm{z}})[|\mathrm{z}+1|+|\mathrm{z}-1|]$
$(\mathrm{z}+\overline{\mathrm{z}})[|\mathrm{z}+1|+|\mathrm{z}-1|-2]=0$
$\Rightarrow \quad$ either $z+\bar{z}=0 \quad \Rightarrow \quad$ zis purely imaginary
$\Rightarrow \quad$ zlies on yaxis $\Rightarrow \quad x=0$
or $\quad|z+1|+|z-1|=2$
$\Rightarrow \quad \mathrm{z}$ lie on the line segment joining $(-1,0)$ and $(1,0) \quad \Rightarrow \quad$ (D)]

One ore more than one is/are correct:

Q. 19 Let A and B be two distinct points denoting the complex numbers α and β respectively. A complex number z lies between A and B where $\mathrm{z} \neq \alpha, \mathrm{z} \neq \beta$. Which of the following relation(s) hold good?
(A*) $|\alpha-z|+|z-\beta|=|\alpha-\beta|$
$\left(B^{*}\right) \exists$ a positive real number 't' such that $z=(1-t) \alpha+t \beta$
(C*) $\left|\begin{array}{ll}z-\alpha & \bar{z}-\bar{\alpha} \\ \beta-\alpha & \bar{\beta}-\bar{\alpha}\end{array}\right|=0$
(D*) $\left|\begin{array}{ccc}z & \bar{z} & 1 \\ \alpha & \bar{\alpha} & 1 \\ \beta & \bar{\beta} & 1\end{array}\right|=0$
[Sol. $\quad \mathrm{AP}+\mathrm{PB}=\mathrm{AB}$

$|z-\alpha|+|\beta-z|=|\beta-\alpha| \Rightarrow$ Ais True $\quad[$ Dpp-6, complex] [13th, 01-02-2009]
Now $z=\alpha+t(\beta-\alpha)$
$=(1-\mathrm{t}) \alpha+\mathrm{t} \beta$ where $\mathrm{t} \in(0,1) \quad \Rightarrow \quad B$ is True
again $\frac{\mathrm{z}-\alpha}{\beta-\alpha}$ is real $\Rightarrow \frac{\mathrm{z}-\alpha}{\beta-\alpha}=\frac{\bar{z}-\bar{\alpha}}{\bar{\beta}-\bar{\alpha}}$
$\Rightarrow \quad\left|\begin{array}{cc}\mathrm{z}-\alpha & \overline{\mathrm{z}}-\bar{\alpha} \\ \beta-\alpha & \bar{\beta}-\bar{\alpha}\end{array}\right|=0$ Ans.
also $\quad\left|\begin{array}{ccc}z & \bar{z} & 1 \\ \alpha & \bar{\alpha} & 1 \\ \beta & \bar{\beta} & 1\end{array}\right|=0$ if and only if $\left|\begin{array}{ccc}z-\alpha & \bar{z}-\bar{\alpha} & 0 \\ \alpha & \bar{\alpha} & 1 \\ \beta-\alpha & \bar{\beta}-\bar{\alpha} & 0\end{array}\right|=0$
$\Rightarrow \quad\left|\begin{array}{cc}(\mathrm{z}-\alpha) & \overline{\mathrm{z}}-\bar{\alpha} \\ \beta-\bar{\alpha} & \bar{\beta}-\bar{\alpha}\end{array}\right|=0$ Ans. $]$
Q. 20 Equation of a straight line on the complex plane passing through a point P denoting the complex number α and perpendicular to the vector $\overrightarrow{\mathrm{OP}}$ where ' O ' is the origin can be written as
(A) $\operatorname{Im}\left(\frac{\mathrm{z}-\alpha}{\alpha}\right)=0$
(B*) $\operatorname{Re}\left(\frac{z-\alpha}{\alpha}\right)=0$
(C) $\operatorname{Re}(\bar{\alpha} z)=0$
(D*) $\bar{\alpha} z+\alpha \bar{z}-2|\alpha|^{2}=0$
[Sol. Required line is passing through $\mathrm{P}(\alpha)$ and parallel to the vector $\overrightarrow{\mathrm{OQ}}$
[12th, 07-12-2008] hence $z=\alpha+i \lambda \alpha, \lambda \in R$

$$
\begin{array}{ll}
& \frac{z-\alpha}{\alpha}=\text { purely imaginary } \\
\Rightarrow \quad & \operatorname{Re}\left(\frac{z-\alpha}{\alpha}\right)=0 \Rightarrow(\mathbf{B}) \quad\left(\text { multiply } N^{r} \text { and } D^{r} \text { by } \bar{\alpha}\right) \\
\Rightarrow \quad & \operatorname{Re}((\mathrm{z}-\alpha) \bar{\alpha})=0 \Rightarrow \operatorname{Re}(\mathrm{z} \bar{\alpha}-|\bar{\alpha}|)=0 \\
\text { also } \quad & \frac{\mathrm{z}-\alpha}{\alpha}+\frac{\bar{z}-\bar{\alpha}}{\bar{\alpha}}=0 \\
& \bar{\alpha}(\mathrm{z}-\alpha)+\alpha(\bar{z}-\bar{\alpha})=0 \\
& \bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}-2|\alpha|^{2}=0 \Rightarrow
\end{array}
$$

Q. 21 Which of the following represents a point on an argands' plane, equidistant from the roots of the equation $(z+1)^{4}=16 z^{4}$?
(A) $(0,0)$
(B) $\left(-\frac{1}{3}, 0\right)$
(C*) $\left(\frac{1}{3}, 0\right)$
(D) $\left(0, \frac{2}{\sqrt{5}}\right)$
[Hint: $\left(\frac{\mathrm{z}+1}{\mathrm{z}}\right)^{4}=16 \Rightarrow \frac{\mathrm{z}+1}{\mathrm{z}}=2$ or -2 or i or $-i$
Roots are $1 ;-\frac{1}{3} ;\left(-\frac{1}{5}-\frac{2}{5} \mathrm{i}\right)$ and $\left(-\frac{1}{5}+\frac{2}{5} \mathrm{i}\right)$
Note that $\left(-\frac{1}{3}, 0\right)$ and $(1,0)$ are equidistant from $\left(\frac{1}{3}, 0\right)$

and since it lies on the perpendicular bisector of AB , it will be equidistant from A and B also.
Alternatively: $|z+1|=2|z|$

$$
\begin{equation*}
(\mathrm{z}+1)(\overline{\mathrm{z}}+1)=4(\mathrm{z} \overline{\mathrm{z}}) \tag{1}
\end{equation*}
$$

This is the equation of circle with centre $(1 / 3,0)$ which is equidistant from the root of the equation.]]
Q. 22 If z is a complex number which simultaneously satisfies the equations $3|z-12|=5|z-8 i|$ and $|z-4|=|z-8|$ then the $\operatorname{Im}(z)$ can be
(A) 15
(B) 16
(C*) 17
(D*) 8
[Sol. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
[12th, 06-01-2008]
from $2^{\text {nd }}$ equation $x=6$ put in (1)

$$
\begin{aligned}
& 3|(x-12)+y i|=5|x+(y-8) i| \\
& 9\left[36+y^{2}\right]=25\left[36+(y-8)^{2}\right] \quad(\text { substituting } x=6) \\
& 9 \cdot 36+9 y^{2}=25 \cdot 36+25\left[y^{2}+64-16 y\right] \\
& 16 y^{2}-25 \cdot 16 y+36 \cdot 16+25 \cdot 64=0 \\
& y^{2}-25 y+36+100=0 \\
& y^{2}-25 y+136=0 \\
& (y-17)(y-8)=0
\end{aligned}
$$

$$
\text { then } y=17 \text { or } y=8 \quad \Rightarrow \quad \text { (C), (D) }]
$$

Q. 23 Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{Z}_{3}$ are the coordinates of the vertices of the triangle $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$. Which of the following statements are equivalent.
(A*) $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$ is an equilateral triangle.
(B*) $\left(\mathrm{z}_{1}+\omega \mathrm{z}_{2}+\omega^{2} \mathrm{z}_{3}\right)\left(\mathrm{z}_{1}+\omega^{2} \mathrm{z}_{2}+\omega \mathrm{z}_{3}\right)=0$, where ω is the cube root of unity.

$$
\text { (C*) } \frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\mathrm{z}_{3}-\mathrm{z}_{2}}=\frac{\mathrm{z}_{3}-\mathrm{z}_{2}}{\mathrm{z}_{1}-\mathrm{z}_{3}}
$$

$$
\text { (D*) }\left|\begin{array}{ccc}
1 & 1 & 1 \\
\mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3} \\
\mathrm{z}_{2} & \mathrm{z}_{3} & \mathrm{z}_{1}
\end{array}\right|=0
$$

Q. 24 If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n-1}$ are the imaginary $n^{\text {th }}$ roots of unity then the product $\prod_{r=1}^{n-1}\left(i-\alpha_{r}\right)$ (where $\mathrm{i}=\sqrt{-1}$) can take the value equal to
(A*) 0
(B*) 1
$\left(\mathrm{C}^{*}\right) \mathrm{i}$
$\left(\mathrm{D}^{*}\right)(1+\mathrm{i})$
[Sol. $\frac{z^{n}-1}{z-1}=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots \ldots \ldots .\left(z-\alpha_{n-1}\right)$
[13th, 08-03-2009, P-2]
put $\mathrm{z}=\mathrm{i}$
$\prod_{r=1}^{n-1}\left(i-\alpha_{r}\right)=\frac{i^{n}-1}{i-1}=\left[\begin{array}{ll}0 & \text { if } n=4 k \\ 1 & \text { if } n=4 k+1 \\ 1+i & \text { if } n=4 k+2 \\ i & \text { if } n=4 k+3\end{array}\right]$

[MATCH THE COLUMN]

\&Q. 25 Match the equation in z, in Column-I with the corresponding values of $\arg (\mathrm{z})$ in Column-II.

Column-I
(equations in z)
(A) $\mathrm{z}^{2}-\mathrm{z}+1=0$
(B) $\mathrm{z}^{2}+\mathrm{z}+1=0$
(C) $2 \mathrm{z}^{2}+1+\mathrm{i} \sqrt{3}=0$
(D) $\quad 2 \mathrm{z}^{2}+1-\mathrm{i} \sqrt{3}=0$

Column-II

(principal value of $\arg (\mathrm{z})$)
(P) $\quad-2 \pi / 3$
(Q) $\quad-\pi / 3$
(R) $\pi / 3$
(S) $2 \pi / 3$
[Ans. (A) Q, R; (B) P, S; (C) Q, S; (D) P, R]
[Sol. (A) $\mathrm{z}=\frac{1 \pm \sqrt{3} \mathrm{i}}{2}=\frac{1+i \sqrt{3}}{2}$ or $\frac{1-i \sqrt{3}}{2}[12 \mathrm{th}, 07-12-2008, \mathrm{P}-2][11 \mathrm{th}, 27-12-2009, \mathrm{P}-2]$
$\operatorname{ampz}=\frac{\pi}{3} \quad$ or $\quad \operatorname{ampz}=-\frac{\pi}{3} \quad \Rightarrow \quad \mathbf{Q}, \mathbf{R}$
(B) $\mathrm{z}=\frac{-1 \pm \sqrt{3} i}{2}=\frac{-1+i \sqrt{3}}{2} \quad$ or $\quad \frac{-1-i \sqrt{3}}{2}$
$\operatorname{amp} \mathrm{z}=\frac{2 \pi}{3} \quad$ or $\quad-\frac{2 \pi}{3} \Rightarrow \mathbf{P}, \mathbf{S}$
(C) $2 \mathrm{z}^{2}=-1-i \sqrt{3} \quad \Rightarrow \quad \mathrm{z}^{2}=\frac{-1-i \sqrt{3}}{2}$
$z^{2}=w^{2}$
$\therefore \mathrm{Z}=\mathrm{W} \quad$ or $\mathrm{Z}=-\mathrm{W}$ $\mathrm{z}=\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right) \quad$ or $\quad \mathrm{z}=\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)$
$\Rightarrow \quad \operatorname{ampz}=-\frac{\pi}{3}$ or $\frac{2 \pi}{3} \Rightarrow \quad \mathbf{Q}, \mathbf{S}$
(D) $\quad 2 \mathrm{z}^{2}+1-i \sqrt{3}=0 \quad \Rightarrow \quad \mathrm{z}^{2}=\frac{-1+i \sqrt{3}}{2}$
$z^{2}=w=w^{4}$
$\therefore \quad \mathrm{Z}=\mathrm{W}^{2} \quad$ or $\quad-\mathrm{W}^{2}$

$$
\left.\begin{array}{lll}
& \mathrm{z}=\frac{-1-i \sqrt{3}}{2} & \mathrm{z}=\frac{1+i \sqrt{3}}{2} \\
\therefore & \cos \left(\frac{-2 \pi}{3}\right)+i \sin \left(\frac{-2 \pi}{3}\right) & \cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right) \\
& & \operatorname{amp}(\mathrm{z})=\frac{-2 \pi}{3} \text { or } \frac{\pi}{3} \Rightarrow
\end{array} \quad \mathbf{P}, \mathbf{R}\right] \quad .
$$

Dpp-1

Q. 9 Square root of $x^{2}+\frac{1}{x^{2}}-\frac{4}{i}\left(x-\frac{1}{x}\right)-6$ where $x \in R$ is equal to :
$\left(A^{*}\right) \pm\left(x-\frac{1}{x}+2 i\right)$
(B) $\pm\left(x-\frac{1}{x}-2 i\right)$
(C) $\pm\left(x+\frac{1}{x}+2 i\right)$
(D) $\pm\left(x+\frac{1}{x}-2 i\right)$
$\left[\right.$ Hint: $\left.E=\left(x-\frac{1}{x}\right)^{2}+4 i\left(x-\frac{1}{x}\right)+4 i^{2}=\left[\left(x-\frac{1}{x}\right)+2 i\right]^{2} \Rightarrow A\right]$

Dpp-2

Q. 5 If S is the set of points in the complex plane such that $z(3+4 i)$ is a real number then S denotes a
(A) circle
(B) hyperbola
(C*) line
(D) parabola
[Hint: $\operatorname{Im}(3+4 i)(x+i y)=0$

$$
3 y+4 x=0 \Rightarrow \quad \text { (B) }]
$$

Dpp-3

Q. 3 Let $i=\sqrt{-1}$. Define a sequence of complex number by $\mathrm{z}_{1}=0, \mathrm{z}_{\mathrm{n}+1}=\mathrm{z}_{\mathrm{n}}^{2}+i$ for $\mathrm{n} \geq 1$. In the complex plane, how far from the origin is z_{111} ?
(A) 1
(B*) $\sqrt{2}$
(C) $\sqrt{3}$
(D) $\sqrt{110}$
[Hint: $\mathrm{z}_{3}, \mathrm{z}_{7}, \mathrm{z}_{11}, \mathrm{z}_{15} \ldots \ldots \ldots . \mathrm{z}_{111}$ will have the same value $=-1+\mathrm{i} \Rightarrow$ result
i.e. periodicity with period 4]

Dpp-4

\$Q. 7 If $\mathrm{x}=\mathrm{a}+\mathrm{b} i$ is a complex number such that $\mathrm{x}^{2}=3+4 i$ and $\mathrm{x}^{3}=2+11 i$ where $\mathrm{i}=\sqrt{-1}$, then $(\mathrm{a}+\mathrm{b})$ equal to
(A) 2
(B*) 3
(C) 4
(D) 5
[Sol. $\mathrm{x}=\frac{\mathrm{x}^{3}}{\mathrm{x}^{2}}=\frac{2+11 i}{3+4 i} \times \frac{3-4 i}{3-4 i}=\frac{6+(33-8) i-44 i^{2}}{9-16 i^{2}}=\frac{(6+44)+25 i}{9+16}=\frac{50+25 i}{25}=2+i$]
[19-2-2006, $\left.12^{\text {th }} \& 13^{\text {th }}\right]$
Q. $18\left(\sqrt[3]{3}+\left(3^{5 / 6}\right) i\right)^{3}$ is an integer where $i=\sqrt{-1}$. The value of the integer is equal to
(A) 24
(B*) -24
(C) -22
(D) -21
[Sol. $\left[3^{1 / 3}(1+\sqrt{3} i)\right]^{3}=3(1+\sqrt{3} i)^{3}=3 \cdot 8\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)^{3}=-24$ Ans. $]$
[13 ${ }^{\text {th }} \mathbf{1 5 - 1 0 - 2 0 0 6]}$
Dpp-5

Paragraph of questions nos. 19 to 21

Consider the two complex numbers z and w such that $w=\frac{z-1}{z+2}=a+b i$, where $a, b \in R$.
Q. 19 If $\mathrm{z}=\operatorname{CiS} \theta$ then, which of the following does hold good?
(A) $\cos \theta=\frac{1-5 \mathrm{a}}{1+4 \mathrm{a}}$
(B) $\sin \theta=\frac{9 \mathrm{~b}}{1-4 \mathrm{a}}$
$\left(C^{*}\right)(1+5 a)^{2}+(3 b)^{2}=(1-4 a)^{2}$
(D) All of these
Q. 20 Which of the following is the value of $-\frac{\mathrm{b}}{\mathrm{a}}$, whenever it exists?
(A) $3 \tan \left(\frac{\theta}{2}\right)$
(B) $\frac{1}{3} \tan \left(\frac{\theta}{2}\right)$
(C) $-\frac{1}{3} \cot \theta$
(D*) $3 \cot \left(\frac{\theta}{2}\right)$
Q. 21 Which of the following equals $|z|$?
(A) $|w|$
(B*) $(a+1)^{2}+b^{2}$
(C) $a^{2}+(b+2)^{2}$
(D) $(a+1)^{2}+(b+1)^{2}$
[Sol.
(19) Consider $z=\operatorname{CiS} \theta$ and $a+i b=\frac{z-1}{z+2}$

$$
\begin{align*}
& \begin{array}{l}
\Rightarrow \quad \mathrm{a}+\mathrm{ib}=\frac{\operatorname{Cis} \theta-1}{\operatorname{Cis} \theta+2}=\frac{(\cos \theta-1)+\mathrm{i} \sin \theta}{(\cos \theta+2)+\mathrm{i} \sin \theta}=\frac{((\cos \theta-1)+\mathrm{i} \sin \theta)((\cos \theta+2)-\mathrm{i} \sin \theta)}{(\cos \theta+2)^{2}+\sin ^{2} \theta} \\
\\
=\frac{\left((\cos \theta-1)(\cos \theta+2)+\sin ^{2} \theta\right)+i((\cos \theta+2) \sin \theta-(\cos \theta-1) \sin \theta)}{\cos ^{2} \theta+4 \cos \theta+4+\sin ^{2} \theta} \\
\quad=\frac{\left(\cos ^{2} \theta+\cos \theta+\sin ^{2} \theta-2\right)+i(3 \sin \theta)}{4 \cos \theta+5}=\frac{\cos \theta-1}{4 \cos \theta+5}+i \frac{3 \sin \theta}{4 \cos \theta+5} \\
\Rightarrow \quad \mathrm{a}=\frac{\cos \theta-1}{4 \cos \theta+5} ; \mathrm{b}=\frac{3 \sin \theta}{4 \cos \theta+5} \quad \ldots .(1)
\end{array} \\
& \Rightarrow \quad 4 \mathrm{a} \cos \theta+5 \mathrm{a}=\cos \theta-1 \quad \Rightarrow \quad(4 \mathrm{a}-1) \cos \theta=-(1+5 \mathrm{a}) \text { or } \cos \theta=\frac{1+5 \mathrm{a}}{1-4 \mathrm{a}} \ldots .(2) \\
& \text { Also, } 4 \mathrm{~b} \cos \theta+5 \mathrm{~b}=3 \sin \theta .
\end{align*}
$$

i.e. $\quad 3 \sin \theta=\frac{4 \mathrm{~b}(1+5 \mathrm{a})}{(1-4 \mathrm{a})}+5 \mathrm{~b}=\frac{4 \mathrm{~b}+20 \mathrm{ab}+5 \mathrm{~b}-20 \mathrm{ab}}{(1-4 \mathrm{a})}$
$\Rightarrow \quad 3 \sin \theta=\frac{9 \mathrm{~b}}{1-4 \mathrm{a}} \quad$ or $\quad \sin \theta=\frac{3 \mathrm{~b}}{1-4 \mathrm{a}}$
as, $\quad \sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{equation*}
\frac{9 b^{2}}{(1-4 a)^{2}}+\frac{(1+5 a)^{2}}{(1-4 a)^{2}}=1 \quad \text { i.e. } \quad(1+5 a)^{2}+9 b^{2}=(1-4 a)^{2} \tag{4}
\end{equation*}
$$

(20) from (1) $\frac{\mathrm{b}}{\mathrm{a}}=\frac{3 \sin \theta}{\cos \theta-1} \Rightarrow-\frac{\mathrm{b}}{\mathrm{a}}=\frac{6 \sin (\theta / 2) \cos (\theta / 2)}{2 \sin ^{2}(\theta / 2)}=3 \cot \left(\frac{\theta}{2}\right)$ Ans.
(21) from (4)
$\Rightarrow \quad 25 a^{2}+10 a+1+9 b^{2}=16 a^{2}-8 a+1 \quad \Rightarrow \quad 9 a^{2}+18 a+9 b^{2}=0 \quad$ or $a^{2}+2 a+b^{2}=0$
i.e. $\quad a^{2}+2 a+1+b^{2}=1 \quad \Rightarrow \quad(a+1)^{2}+b^{2}=1$
but $|z| \geq 0 \quad \therefore \quad|z|=1$
hence $|\mathrm{z}|=1 \quad \Rightarrow(\mathrm{a}+1)^{2}+\mathrm{b}^{2}=|\mathrm{z}|$ Ans.]

Dpp-1

Q. 4 Given $i=\sqrt{-1}$, the value of the sum

$$
\begin{aligned}
& \frac{1}{1+i}+\frac{1}{1-i}+\frac{1}{-1+i}+\frac{1}{-1-i}+\frac{2}{1+i}+\frac{2}{1-i}+\frac{2}{-1+i}+\frac{2}{-1-i}+ \\
& +\frac{3}{1+i}+\frac{3}{1-i}+\frac{3}{-1+i}+\frac{3}{-1-i}+\ldots \ldots \ldots \frac{\mathrm{n}}{1+i}+\frac{\mathrm{n}}{1-i}+\frac{\mathrm{n}}{-1+i}+\frac{\mathrm{n}}{-1-i}, \text { is }
\end{aligned}
$$

(A) $2 n^{2}+2 n$
(B) $2 i \mathrm{n}^{2}+2 i \mathrm{n}$
(C) $(1+i) \mathrm{n}^{2}$
(D*) none of these
[Sol. $\frac{1}{1+i}+\frac{1}{1-i}+\frac{1}{-1+i}+\frac{1}{-1-i}=\frac{(1-i)+(1+i)}{(1+i)(1-i)}+\frac{(-1-i)+(-1+i)}{(-1+i)(-1-i)}=\frac{2}{2}-\frac{2}{2}=0$
The next four terms of the sum will also give 0 , since they are twice the first four terms, and so on, the entire sum is 0 . The correct answer is (D)]
Q. 7 If a point P denoting the complex number z moves on the complex plane such that,
$|\operatorname{Re} z|+|\operatorname{Im} z|=1$ then the locus of z is:
(A*) a square
(B) a circle
(C) two intersecting lines
(D) a line
[Hint: $|x|+|y|=1]$
Dpp-2
Q. 9 If $\frac{3+2 i \sin \mathrm{x}}{1-2 i \sin \mathrm{x}}$ is purely imaginary then $\mathrm{x}=$
(A) $n \pi \pm \frac{\pi}{6}$
(B*) $n \pi \pm \frac{\pi}{3}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
Q. 12 Let $\mathrm{z}=1-\sin \alpha+i \cos \alpha$ where $\alpha \in(0, \pi / 2)$, then the modulus and the principal value of the argument of z are respectively :
(A*) $\sqrt{2(1-\sin \alpha)},\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$
(B) $\sqrt{2(1-\sin \alpha)},\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$
(C) $\sqrt{2(1+\sin \alpha)},\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$
(D) $\sqrt{2(1+\sin \alpha)},\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$
[Sol. $\mathrm{z}=1-\sin \alpha+i \cos \alpha$
$|z|=\sqrt{(1-\sin \alpha)^{2}+\cos ^{2} \alpha}=\sqrt{2-2 \sin \alpha}=\sqrt{2(1-\sin \alpha)}$
$\operatorname{amp} \mathrm{z}=\tan ^{-1}\left(\frac{\cos \alpha}{1-\sin \alpha}\right)=\tan ^{-1}\left(\frac{\cos \alpha / 2+\sin \alpha / 2}{\cos \alpha / 2-\sin \alpha / 2}\right)=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right)=\left(\frac{\pi}{4}+\frac{\alpha}{2}\right) \Rightarrow$ (A)]

Dpp-3

Q. 19 The region represented by inequalities $\operatorname{Arg} \mathrm{Z} \leq \frac{\pi}{3} ;|\mathrm{Z}| \leq 2 ; \operatorname{Im}(\mathrm{z}) \geq 1$ in the Argand diagram is given by
(A)

(B*)

(C)

(D)

Dpp-4

Q. 5 Let A, B, C represent the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ respectively on the complex plane. If the circumcentre of the triangle $A B C$ lies at the origin, then the orthocentre is represented by the complex number :
(A) $\mathrm{z}_{1}+\mathrm{z}_{2}-\mathrm{z}_{3}$
(B) $z_{2}+z_{3}-z_{1}$
(C) $z_{3}+z_{1}-z_{2}$
(D*) $z_{1}+z_{2}+z_{3}$
[Hint:Use O, G, C collinear]
Q. 4 Given that z satisfies $z+\frac{1}{z}=2 \cos 13^{\circ}$, find an angle B so that $0<B<\frac{\pi}{2}$ and $z^{2}+\frac{1}{z^{2}}=2 \cos B$.
(A) 23°
(B) 24°
(C) 25°
(D*) 26°

Dpp-5

Q. 1 If $\alpha=\mathrm{e}^{\mathrm{i} 2 \pi / \mathrm{n}}$, then $(11-\alpha)\left(11-\alpha^{2}\right) \ldots . . .\left(11-\alpha^{\mathrm{n}-1}\right)=$
(A) $11^{\mathrm{n}-1}$
(B*) $\frac{11^{\mathrm{n}}-1}{10}$
(C) $\frac{11^{\mathrm{n}-1}-1}{10}$
(D) $\frac{11^{\mathrm{n}-1}-1}{11}$
[Sol. We have $x^{n}-1=(x-1)\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n-1}\right)$; note that α is the $\mathrm{n}^{\text {th }}$ root of unity

$$
\begin{aligned}
\therefore \quad & \frac{\mathrm{x}^{\mathrm{n}}-1}{\mathrm{x}-1}=\left(\mathrm{x}-\alpha_{1}\right)\left(\mathrm{x}-\alpha_{2}\right) \ldots .\left(\mathrm{x}-\alpha_{\mathrm{n}-1}\right) \\
& \text { put } \mathrm{x}=11 \text { we get the result] }
\end{aligned}
$$

Q. 11 If $\mathrm{D}=\left|\begin{array}{ccc}\mathrm{a} & \omega \mathrm{b} & \omega^{2} \mathrm{c} \\ \omega^{2} \mathrm{~b} & \mathrm{c} & \omega \mathrm{a} \\ \omega \mathrm{c} & \omega^{2} \mathrm{a} & \mathrm{b}\end{array}\right| ; \mathrm{D}^{\prime}=\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right|$
where ω is the non real cube root of unity then which of the following does not hold good?
(A) $\mathrm{D}=0$ if $(\mathrm{a}+\mathrm{b}+\mathrm{c})=0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ all distinct
(B) $\mathrm{D}^{\prime}=0$ if $\mathrm{a}=\mathrm{b}=\mathrm{c}$ and $(\mathrm{a}+\mathrm{b}+\mathrm{c}) \neq 0$
(C*) $\mathrm{D}=-\mathrm{D}^{\prime}$
(D) $\mathrm{D}=\mathrm{D}^{\prime}$
[Hint:On expanding $\mathrm{D}=\mathrm{D}^{\prime}$]
Q. 3 If α, β be the roots of the equation $u^{2}-2 u+2=0 \&$ if $\cot \theta=x+1$, then $\frac{(x+\alpha)^{n}-(x+\beta)^{n}}{\alpha-\beta}$ (where $\mathrm{n} \in \mathrm{N}$) is equal to
(A*) $\frac{\sin n \theta}{\sin ^{n} \theta}$
(B) $\frac{\cos \mathrm{n} \theta}{\cos ^{\mathrm{n}} \theta}$
(C) $\frac{\sin n \theta}{\cos ^{n} \theta}$
(D) $\frac{\cos \mathrm{n} \theta}{\sin ^{\mathrm{n}} \theta}$
[Hint: $\mathrm{u}^{2}-2 \mathrm{u}+2=0 \Rightarrow \mathrm{u}=1 \pm \mathrm{i} \Rightarrow \alpha=1+\mathrm{i}$ and $\beta=1-\mathrm{i}$; also $\mathrm{x}=\cot \theta-1$
L.H.S. $\frac{[(\cot \theta-1)+(1+i)]^{n}-[(\cot \theta-1)+(1-i)]^{n}}{2 i} ; u \operatorname{sing} x=\cot \theta-1$
$\left.=\frac{(\cos \theta+\mathrm{i} \sin \theta)^{\mathrm{n}}-(\cos \theta-\mathrm{i} \sin \theta)^{\mathrm{n}}}{\sin ^{\mathrm{n}} \theta 2 \mathrm{i}}=\frac{2 \mathrm{i} \sin \mathrm{n} \theta}{\sin ^{\mathrm{n}} \theta 2 \mathrm{i}}=\frac{\sin \mathrm{n} \theta}{\sin ^{\mathrm{n}} \theta}\right]$
Q. $8 \frac{(\cos \theta-i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{5}}=$
(A) $\cos \theta-i \sin \theta$
(B) $\cos 9 \theta-i \sin 9 \theta$
(C) $\sin 9 \theta-i \cos 9 \theta$
(D*) $\sin \theta-i \cos \theta$
Q. 9 If $p^{2}-p+1=0$ then the value of $p^{3 n}$ is $(n \in I)$:
(A^{*}) $1,-1$
(B) 1
(C) -1
(D) 0
[Hint: $\mathrm{p}^{2}-\mathrm{p}+1=0 \Rightarrow \mathrm{p}=-\omega$ or $-\omega^{2}$, Hence $\mathrm{p}^{3 \mathrm{n}}=-1$ or 1]
Q. 13 Let z be the root of the equation $\mathrm{z}^{5}-1=0$ such that $\mathrm{z} \neq 1$. Then the value of $\sum_{\mathrm{r}=15}^{50} \mathrm{z}^{\mathrm{r}}$ is equal to
(A*) 1
(B) i
(C) -1
(D) 0
[Sol. $z^{5}-1=0, z \neq 1$
[12th, 06-01-2008]
now $S=z^{15}+z^{16}+z^{17}+\ldots \ldots . .+z^{50}$

$$
=z^{15}\left[1+z+z^{2}+\ldots \ldots . .+z^{35}\right]
$$

$$
=\mathrm{z}^{15} \frac{\left[\mathrm{z}^{36}-1\right]}{\mathrm{z}-1}
$$

but $\quad z^{15}$ and z^{35} both are 1
$\therefore \quad \mathrm{S}=\frac{\mathrm{z}-1}{\mathrm{z}-1}=1 \quad$ Ans.]

Dpp-6

Q. 1 If $z^{2}-z+1=0$ then the value of $\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2}+\ldots \ldots .+\left(z^{24}+\frac{1}{z^{24}}\right)^{2}$ is equal to
(A) 24
(B) 32
(C*) 48
(D) None
[Hint: $z=-\omega$ or $-\omega^{2}$, also $\left(z^{3}+\frac{1}{z^{3}}\right)^{2}=4$ etc (8 such pairs out of 24)

$$
\Rightarrow \quad 32+16=48 \quad]
$$

[12 ${ }^{\text {th }}$ Test (26-12-2004)]
Q. 4 If $\alpha \& \beta$ are imaginary cube roots of unity then $\alpha^{n}+\beta^{n}$ is equal to :
(A*) $2 \cos \frac{2 n \pi}{3}$
(B) $\cos \frac{2 n \pi}{3}$
(C) $2 \mathrm{i} \sin \frac{2 \mathrm{n} \pi}{3}$
(D) $i \sin \frac{2 n \pi}{3}$
[Hint: $\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=2 \operatorname{Re}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{\mathrm{n}}=2 \cos \frac{2 \mathrm{n} \pi}{3}$ Ans.]
Q. $16 \mathrm{P}\left(\mathrm{z}_{1}\right), \mathrm{Q}\left(\mathrm{z}_{2}\right), \mathrm{R}\left(\mathrm{z}_{3}\right)$ and $\mathrm{S}\left(\mathrm{z}_{4}\right)$ are four complex numbers representing the vertices of a rhombus which is not a square taken in order on the complex plane, then which one of the following hold(s) good?
(A*) $\frac{z_{1}-z_{4}}{z_{2}-z_{3}}$ is purely real
(B) amp $\frac{\mathrm{z}_{1}-\mathrm{z}_{4}}{\mathrm{z}_{2}-\mathrm{z}_{4}} \neq \operatorname{amp} \frac{\mathrm{z}_{2}-\mathrm{z}_{4}}{\mathrm{z}_{3}-\mathrm{z}_{4}}$
(C*) $\frac{\mathrm{z}_{1}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{4}}$ is purely imaginary
(D*) $\left|z_{1}-z_{3}\right| \neq\left|z_{2}-z_{4}\right|$
[Hint: Obviously diagonals of rhombus are not equal
$\Rightarrow \quad \mathrm{D}$ is correct
$\therefore \quad \theta=\alpha \Rightarrow \quad$ B is correct $] \quad\left[12^{\text {th }}(27-11-2005)\right]$

Q. 17 If $1, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \ldots \ldots ., \mathrm{z}_{\mathrm{n}-1}$ be the $\mathrm{n}^{\text {th }}$ roots of unity and ω be a non real complex cube root of unity then the product $\prod_{\mathrm{r}=1}^{\mathrm{n}-1}\left(\omega-\mathrm{z}_{\mathrm{r}}\right)$ can be equal to
(A*) 0
(B*) 1
(C) -1
(D*) $1+\omega$
[Hint: $\quad x^{n}-1=(x-1)\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots \ldots\left(x-z_{n-1}\right)$

$$
\begin{aligned}
& \frac{x^{n}-1}{x-1}=\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots \ldots\left(x-z_{n-1}\right) \quad \text { put } x=\omega \\
& \prod_{r=1}^{n-1}\left(\omega-z_{r}\right)=\frac{\omega^{n}-1}{\omega-1}=\left[\begin{array}{ll}
0 & \text { if } n \text { is a multiple of } 3 \\
1 & \text { if } n \text { is of the form of } 3 k+1, k \in I \\
1+\omega & \text { if } \\
n \text { is of the form of } 3 k+2, k \in I
\end{array}\right]
\end{aligned}
$$

Q. 6 The number of solutions of the equation $\mathrm{z}^{2}+\mathrm{z}=0$ where z is a complex number, is:
(A) 4
(B) 3
(C*) 2
(D) 1
[Hint: $\mathrm{z}(\mathrm{z}+1)=0 \Rightarrow \mathrm{z}=0$ or $\mathrm{z}=-1 \Rightarrow(\mathrm{C})]$
Q. 20 If q_{1}, q_{2}, q_{3} are the roots of the equation, $x^{3}+64=0$, then the value of the determinant $\left|\begin{array}{lll}q_{1} & q_{2} & q_{3} \\ q_{2} & q_{3} & q_{1} \\ q_{3} & q_{1} & q_{2}\end{array}\right|$ is
(A) 1
(B) 4
(C) 10
(D*) zero
[Hint: $\mathrm{q}_{1}=-4, \mathrm{q}_{2}=-4 \omega, \mathrm{q}_{3}=-4 \omega^{2}$]

Dpp-2

Q. 10 The complex number $\mathrm{z}=\mathrm{x}+i \mathrm{y}$ which satisfy the equation $\left|\frac{\mathrm{z}-5 i}{\mathrm{z}+5 i}\right|=1$ lie on :
(A*) the x -axis
(B) the straight line $\mathrm{y}=5$
(C) a circle passing through the origin
(D) the y-axis
[Hint: perpendicular bisector of the line segment joining $(0,5)$ and $(0,-5)$ i.e. x-axis]

Dpp-3

Q. 5 Let z_{1}, z_{2}, z_{3} be three distinct complex numbers satisfying $\left|z_{1}-1\right|=\left|z_{2}-1\right|=\left|z_{3}-1\right|$. If $z_{1}+z_{2}+z_{3}=3$ then z_{1}, z_{2}, z_{3} must represent the vertices of :
(A*) an equilateral triangle
(B) an isosceles triangle which is not equilateral
(C) a right triangle
(D) nothing definite can be said.
[Hint: $(1,0)$ is equidistant from $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3} \Rightarrow(1,0)$ is circumcentre, also $\frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}=1$

$$
\Rightarrow \quad(1,0) \text { is also the centroid } \Rightarrow \mathrm{A}]
$$

[to be changed]
Q. 18 If the equation, $\mathrm{z}^{3}+(3+i) \mathrm{z}^{2}-3 \mathrm{z}-(\mathrm{m}+i)=0$ where $\mathrm{m} \in \mathrm{R}$ has at least one real root then m can have the value equal to
(A) 1 or 3
(B) 2 or 5
(C) 3 or 5
(D*) 1 or 5
[Sol. If α is a real root then

$$
\begin{array}{ll}
\alpha^{3}+(3+i) \alpha^{2}-3 \alpha-(\mathrm{m}+i)=0 \\
\therefore & \alpha^{3}+3 \alpha^{2}-3 \alpha-\mathrm{m}=0 \\
\text { and } & \alpha^{2}-1=0 \Rightarrow \quad \alpha=1 \text { or }-1 \\
\text { if } & \alpha=1 \Rightarrow \quad \mathrm{~m}=1 \\
& \alpha=-1 \quad \Rightarrow \quad \mathrm{~m}=5 \Rightarrow
\end{array}
$$

Dpp-4

Q. $19 \sqrt{-1-\sqrt{-1-\sqrt{-1 \ldots \ldots . . \infty}}}$ is equal to :
(A*) ω or ω^{2}
(B) $-\omega$ or $-\omega^{2}$
(C) $1+\mathrm{i}$ or $1-\mathrm{i}$
(D) $-1+\mathrm{i}$ or $-1-\mathrm{i}$
where ω is the imaginary cube root of unity and $i=\sqrt{-1}$
[Hint: $\mathrm{z}=\sqrt{-1-\mathrm{z}} \Rightarrow \mathrm{z}^{2}+\mathrm{z}+1=0 \Rightarrow \mathrm{z}=\omega$ or ω^{2}]
Q. 1 If ω be a complex $n^{\text {th }}$ root of unity, then $\sum_{r=1}^{\mathrm{n}}(\mathrm{ar}+\mathrm{b}) \omega^{\mathrm{r}-1}$ is equal to:
(A) $\frac{\mathrm{n}(\mathrm{n}+1) \mathrm{a}}{2}$
(B) $\frac{\mathrm{nb}}{1-\mathrm{n}}$
$\left(\mathrm{C}^{*}\right) \frac{\mathrm{na}}{\omega-1}$
(D) none
[Hint: $\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{ar}+\mathrm{b}) \omega^{\mathrm{r}-1}=(\mathrm{a}+\mathrm{b})+(2 \mathrm{a}+\mathrm{b}) \omega+(3 \mathrm{a}+\mathrm{b}) \omega^{2}+\ldots \ldots \ldots \ldots .+(n a+b) \omega^{\mathrm{n}-1}$

$$
=\mathrm{b}(\underbrace{1+\omega+\omega^{2}+\ldots \ldots \ldots+\omega^{\mathrm{n-1}}}_{\text {zero }})+\mathrm{a}\left(1+2 \omega+3 \omega^{2}+\ldots \ldots \ldots . \mathrm{n} \omega^{\mathrm{n}-1}\right)
$$

Now

$$
\mathrm{S}=1+2 \omega+3 \omega^{2}+\ldots \ldots n \omega^{\mathrm{n}-1}
$$

$$
S \omega=+\omega+2 \omega^{2}+\ldots \ldots \ldots \ldots \ldots \ldots+(n-1) \omega^{n-1}+n \omega^{n}
$$

$$
\begin{aligned}
S(1-\omega) & =\underbrace{1+\omega+\omega^{2}+\ldots \ldots \ldots \omega^{n-1}}_{\text {zero }}-n \omega^{n}=-n \quad\left(\text { as } \omega^{n}=1\right) \\
S & =\frac{\mathrm{n}}{\omega-1} \Rightarrow E=\frac{\text { na }}{\omega-1} \Rightarrow C \quad
\end{aligned}
$$

Dpp-5

Q. 11 If $\mathrm{A}_{\mathrm{r}}(\mathrm{r}=1,2,3, \ldots . ., \mathrm{n})$ are the vertices of a regular polygon inscribed in a circle of radius R , then $\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)^{2}+\left(\mathrm{A}_{1} \mathrm{~A}_{3}\right)^{2}+\left(\mathrm{A}_{1} \mathrm{~A}_{4}\right)^{2}+\ldots \ldots .+\left(\mathrm{A}_{1} \mathrm{~A}_{\mathrm{n}}\right)^{2}=$
(A) $\frac{n R^{2}}{2}$
(B*) $2 \mathrm{nR}^{2}$
(C) $4 \mathrm{R}^{2} \cot \frac{\pi}{2 \mathrm{n}}$
(D) $(2 n-1) R^{2}$
[Hint: $\quad \mathrm{A}_{1} \mathrm{~A}_{2}=2 \mathrm{R} \sin \frac{\theta}{2} \quad\left(\theta=\frac{2 \pi}{\mathrm{n}}\right)$

$$
\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)^{2}=4 \mathrm{R}^{2} \sin ^{2} \frac{\theta}{2}=2 \mathrm{R}^{2}(1-\cos \theta)
$$

Hence
L. H. S. $=2$ R $^{2}[(1-\cos \theta)+(1-\cos 2 \theta)+\ldots \ldots .+(1-\cos (n-1) \theta)+(1-\cos n \theta)]$
$=2 R^{2}[n-(\cos \theta+\cos 2 \theta+\ldots \ldots .+\cos n \theta]$
$=2 n R^{2}$ (As $\cos \theta+\cos 2 \theta+\ldots . .+\cos n \theta$ vanishes if $\theta=\frac{2 \pi}{n}$] Hence
L. H. S. $=2$ R $^{2}[(1-\cos \theta)+(1-\cos 2 \theta)+\ldots \ldots .+(1-\cos (n-1) \theta)+(1-\cos n \theta)]$
$=2 R^{2}[\mathrm{n}-(\cos \theta+\cos 2 \theta+\ldots \ldots+\cos n \theta]$
$=2 n R^{2}\left(\right.$ As $\cos \theta+\cos 2 \theta+\ldots \ldots .+\cos n \theta$ vanishes if $\theta=\frac{2 \pi}{n}$]
Q. 14 If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ are the vertices of a square in that order, then which of the following do(es) not hold good?
(A) $\frac{z_{1}-z_{2}}{z_{3}-z_{2}}$ is purely imaginary
(B) $\frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is purely imaginary
(C*) $\frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is purely imaginary
(D) none of these
[Hint: AB is \perp to $\mathrm{BC} \Rightarrow \frac{\mathrm{Z}_{1}-\mathrm{z}_{2}}{\mathrm{Z}_{3}-\mathrm{z}_{2}}$ is pure imaginary
AC is \perp to $\mathrm{BD} \Rightarrow \frac{\mathrm{z}_{1}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{4}}$ is pure imaginary
AB is II to $\mathrm{CD} \Rightarrow \frac{\mathrm{Z}_{1}-\mathrm{Z}_{2}}{\mathrm{Z}_{3}-\mathrm{Z}_{4}}$ is purely real $\Rightarrow \mathrm{C}$ is incorrect

]
Q. 15 Given α, β respectively the fifth and the fourth non-real roots of unity, then the value of

$$
(1+\alpha)(1+\beta)\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\beta^{3}\right)\left(1+\alpha^{4}\right) \text { is }
$$

(A*) 0
(B) $\left(1+\alpha+\alpha^{2}\right)\left(1-\beta^{2}\right)$
(C) $(1+\alpha)\left(1+\beta+\beta^{2}\right)$
(D) 1
[Sol. As α is the fifth non-real root of unity

$$
\begin{aligned}
\therefore \quad & \alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1=0 \\
& \beta \text { is the fourth non real root of unity }
\end{aligned}
$$

$\therefore \quad \beta^{3}+\beta^{2}+\beta+1=0$
Consider $(1+\alpha)\left(1+\alpha^{2}\right)\left(1+\alpha^{4}\right)(1+\beta)\left(1+\beta^{2}\right)\left(1+\beta^{3}\right)$

$$
\left.=\left(1+\alpha+\alpha^{2}+\alpha^{3}\right)\left(1+\alpha^{4}\right)\left(1+\beta+\beta^{2}+\beta^{3}\right)\left(1+\beta^{3}\right)=0 \quad \text { Ans } \quad\right]
$$

Dpp-4

[Hint:16 $\frac{\mathrm{OB}}{\mathrm{OQ}}=\frac{\mathrm{OA}}{\mathrm{OM}}=\mathrm{OA}(\therefore \mathrm{OM}=1)$

$$
\mathrm{OQ}=\frac{\mathrm{OB}}{\mathrm{OA}} \text { or } \quad|\mathrm{z}|=\frac{\left|\mathrm{z}_{2}\right|}{\left|\mathrm{z}_{1}\right|}
$$

Also amp $\frac{\overrightarrow{\mathrm{OB}}}{\overrightarrow{\mathrm{OA}}}=\operatorname{amp~} \overrightarrow{\mathrm{OB}}-\operatorname{amp} \overrightarrow{\mathrm{OA}}$

$$
\text { or } \quad \angle \mathrm{BOM}-\angle \mathrm{AOM}=\angle \mathrm{BOM}-\angle \mathrm{BOQ} \quad(\angle \mathrm{AOM}=\angle \mathrm{BOQ}=\theta)
$$

Q. 19 If ω is an imaginary cube root of unity, then the value of,
$(\mathrm{p}+\mathrm{q})^{3}+\left(\mathrm{p} \omega+\mathrm{q} \omega^{2}\right)^{3}+\left(\mathrm{p} \omega^{2}+\mathrm{q} \omega\right)^{3}$ is :
(A) $\mathrm{p}^{3}+\mathrm{q}^{3}$
(B*) $3\left(\mathrm{p}^{3}+\mathrm{q}^{3}\right)$
(C) $3\left(\mathrm{p}^{3}+\mathrm{q}^{3}\right)-\mathrm{pq}(\mathrm{p}+\mathrm{q})$
(D) $3\left(\mathrm{p}^{3}+\mathrm{q}^{3}\right)+\mathrm{pq}(\mathrm{p}+\mathrm{q})$
[Sol. $X=p+q ; Y=p \omega+q \omega^{2} \quad \& \quad Z=p \omega^{2}+q \omega \Rightarrow X+Y+Z=0$
$\Rightarrow X^{3}+Y^{3}+Z^{3}=3 X Y Z$
$\left.=3(\mathrm{p}+\mathrm{q})\left(\mathrm{p} \omega+\mathrm{q} \omega^{2}\right)\left(\mathrm{p} \omega^{2}+\mathrm{q} \omega\right)=3(\mathrm{p}+\mathrm{q})\left(\mathrm{p}^{2}-\mathrm{pq}+\mathrm{q}^{2}\right)=3\left(\mathrm{p}^{3}+\mathrm{q}^{3}\right)\right]$

Dpp-6

Q. 1 The expression $\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{8}=$
(A) 1
(B*) -1
(C) i
(D) -i
[Hint: Put $\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}=z$ hence LHS $=\left(\frac{1+z}{1+\frac{1}{z}}\right)^{8}=z^{8}=\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^{8}$

$$
=\left(\cos \frac{3 \pi}{8}+\mathrm{i} \sin \frac{3 \pi}{8}\right)^{8}=\cos 3 \pi=-1
$$

Q. 4 If the equation of the perpendicular bisector of the line joining two complex numbers $\mathrm{P}\left(\mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{z}_{2}\right)$ are the complex plane is $\bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}+\mathrm{r}=0$ then α and r are respectively are
(A) $z_{2}-z_{1}$ and $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
(B) $z_{1}-z_{2}$ and $\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$
(C) $\overline{\mathrm{z}}_{2}-\overline{\mathrm{z}}_{1}$ and $\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}$
(D*) $\mathrm{z}_{2}-\mathrm{z}_{1}$ and $\left|\mathrm{z}_{1}\right|^{2}-\left|\mathrm{z}_{2}\right|^{2}$
[Sol. $\quad\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)=\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)$
[12 ${ }^{\text {th }}$ Test 16-1-2005]

$$
-\mathrm{z} \overline{\mathrm{z}}_{1}-\mathrm{z}_{1} \overline{\mathrm{z}}+\mathrm{z}_{1} \overline{\mathrm{z}}_{1}=-\mathrm{z} \overline{\mathrm{z}}_{2}-\mathrm{z}_{2} \overline{\mathrm{z}}+\mathrm{z}_{2} \overline{\mathrm{z}}_{2}
$$

$$
\mathrm{z}\left(\overline{\mathrm{z}}_{2}-\overline{\mathrm{z}}_{1}\right)+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \overline{\mathrm{z}}+\left|\mathrm{z}_{1}\right|^{2}-\left|\mathrm{z}_{2}\right|^{2}=0
$$

or $\quad \bar{\alpha} z+\alpha \bar{z}+r=0 \Rightarrow \alpha=z_{2}-z_{1}$ and $r=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$
Q. 6 If $|z+4| \leq 3, z \in C$, then the greatest and least value of $|z+1|$ are :
(A) $(7,1)$
(B) $(6,1)$
$\left(\mathrm{C}^{*}\right)(6,0)$
(D) none
[Hint: $(Z+1)=|(Z+4)+(-3)| \leq \mid Z+4) \mid+3$;
hence $|Z+1| \leq|Z+4|+|-3|=6$
$\therefore \quad|Z+1| \geq 0 \quad]$
[Alternative: note that $|\mathrm{Z}+1|$ denotes the distance of Z from $(-1,0)$

