Complex Numbers Revision Sheet Question 4 of Paper 1

Introduction

Complex numbers are numbers that have a real part and an imaginary part.
The real part will be a number such as 3 .
The imaginary part is represented by the letter i .
$3+i$
Examples -

$-4+3 i$	Real part -4 , imaginary part $3 i$
$3+2 i$	Real part +3 , imaginary part $2 i$
$-2-2 i$	Real part -2 , imaginary part $-2 i$

In the exam you will normally see a letter (usually \mathbf{z} or \mathbf{w}) representing the complex number. The first thing we do when answering a question is replace these letters with the associated complex numbers. This will be your first step in answering questions.

Examples -

$\mathbf{z}=-4+3 i \quad$ This just means that wherever you see \mathbf{z} in the
$\mathbf{w}=-2-2 i$
question put in the complex number $-4+3 i$
This just means that wherever you see \boldsymbol{w} in the question put in the complex number $-2-2 i$

IT IS VERY IMPORTANT THAT THE FIRST THING YOU DO IN EACH QUESTION IS WRITE OUT THE QUESTION AGAIN REPLACING ANY LETTERS SUCH AS Z OR W WITH COMPLEX NUMBERS. THIS WILL HELP YOU FIGURE OUT WHAT YOU ARE BEING ASKED.

We use the letter \mathbf{i} to represent the imaginary number $\sqrt{-1}$
$i=\sqrt{-1}$
$\sqrt{-1}$ does not exist, no number squared gives -1 that is why we say that it is imaginary
$i^{2}=-1$

$$
i^{2}=\sqrt{-1} \sqrt{-1}=-1
$$

We never have an i^{2} in an answer. We always replace it with -1 .

Basic Operations - Simplify

Adding and Subtracting complex numbers -

We add or subtract the real numbers to the real numbers and the imaginary numbers to the imaginary numbers. We CANNOT add or subtract a real number and an imaginary number.

Example - \quad Simplify $\quad 4+3 i+6+2 i$
$4+6+3 i+2 i$
$10+5 \mathrm{i}$
Real numbers together, i 's together
Add real to real $(6+4)$, i 's to i 's $(3 i+2 i)$
Example - \quad Simplify $\quad 6-4 i+5+2 i$
$6+5-4 \mathrm{i}+2 \mathrm{i}$
$11-2 \mathrm{i}$
Real numbers together, i 's together Add real to real $(6+5)$, i 's to i 's $(-4 i+2 i)$

Example - $\quad z_{1}=5+2 i \quad z_{2}=3+6 i \quad$ find $z_{1}+z_{2}$ and $z_{1}-z_{2}$

$$
\begin{aligned}
z_{1}+z_{2} & =5+2 \mathrm{i}+3+6 \mathrm{i} & & \text { Replace } z_{1} \text { and } z_{2} \text { with the complex numbers } \\
& =5+3+2 \mathrm{i}+6 \mathrm{i} & & \text { Real numbers together, } i \text { 's together } \\
& =8+8 \mathrm{i} & & \text { Add real to real }(5+3) \text {, } i \text { 's to } i \text { 's }(2 i+6 i)
\end{aligned}
$$

$$
z_{1}-z_{2}=(5+2 \mathrm{i})-(3+6 \mathrm{i}) \quad \text { Replace } z_{1} \text { and } z_{2} \text { with the complex numbers }
$$

$$
=5+2 \mathrm{i}-3-6 \mathrm{i}
$$

$$
=5-3+2 \mathrm{i}-6 \mathrm{i}
$$

$$
=2-4 \mathrm{i}
$$

Remove brackets, careful with signs
Real numbers together, i 's together
Add real to real (5-3), i's to i's (2i-6i)

Removing brackets

We can multiply a number outside our complex numbers by removing brackets and multiplying.

Example - $\quad z_{1}=5+2 i \quad z_{2}=3+6 i$

$$
\begin{aligned}
2 z_{1} & =2(5+2 i) \\
& =10+4 i \\
3 z_{2} & =3(3+6 i) \\
& =9+18 i
\end{aligned}
$$

$$
\begin{aligned}
4 z_{1}-2 z_{2} & =4(5+2 i)-2(3+6 i) & & \text { Write out the question replacing } z_{1} \\
& =20+8 i-6-12 i & & \text { and } z_{2} \text { with the complex numbers } \\
& =20-6+8 i-12 i & & \\
& =14-4 i & & \text { Simplify }
\end{aligned}
$$

Multiplying complex numbers -

Multiplying with complex numbers is very similar to multiplying in algebra by splitting the first bracket.
One important thing to remember is that $i^{2}=-1$
Example -
$w_{1}=5+2 i$
$w_{2}=3-5 i$
Find $w_{1} w_{2}$
Find $i w_{1}$

$$
\begin{aligned}
w_{1} w_{2} & =(5+2 i)(3-5 i) \\
& =5(3-5 i)+2 i(3-5 i) \\
& =15-25 i+6 i-10 i^{2} \\
& =15-19 i-10(-1) \\
& =15-19 i+10 \\
& =5-19 i
\end{aligned}
$$

$$
i w_{1}=i(5+2 i)
$$

$$
=5 i+2 i^{2}
$$

$$
=5 i+2(-1)
$$

$$
=5 i-2
$$

$$
=-2+5 i
$$

Replace w_{1} and w_{2} with the associated complex numbers
Open the first bracket as in algebra
Remove brackets by multiplying
$-25 i+6 i=-19 i, \quad-10 i^{2}=-10(-1)$
Simplify
Simplify
Here they ask us to multiply i by w_{1}
so replace w_{1} with complex number $5+2 i$
Remove brackets by multiplying
$2 i^{2}=2(-1)$
Simplify
Rearrange putting real number first

Division of Complex Numbers - The Conjugate

Before we can divide complex numbers we need to know what the conjugate of a complex is.
To find the conjugate of a complex number we just change the sign of the i part.
The conjugate of z is written \bar{z}.

Examples -

$$
\begin{array}{llll}
z=4+2 i & \text { then } & \bar{z}=4-2 i & \text { change sign of } i \text { part } \\
w=-3+2 i & \text { then } & \bar{w}=-3-2 i & \text { change sign of } i \text { part } \\
w=5-6 i & \text { then } & \bar{w}=5+6 i & \text { change sign of } i \text { part }
\end{array}
$$

Division

To divide by a complex number we multiply above and below by the CONJUGATE of the bottom number (the number you are dividing by). This gets rid of the i value from the bottom. We should never have an i value on the bottom of an answer. Remember anytime you see DIVISION in a question you must perform this operation.

Example - $\quad \mathbf{z}=4-\mathbf{3 i}$ and $\mathbf{w}=3+2 \mathrm{i} \quad$ Express $\frac{z}{w}$ in the from $a+b i$

$$
\begin{aligned}
& \frac{z}{w}=\frac{4-3 i}{3+2 i} \quad \text { Replace } z \text { and } w \text { with complex numbers } \\
& \frac{4-3 i}{3+2 i} \times \frac{3-2 i}{3-2 i} \quad \text { Multiply above and below by } \mathbf{3}-\mathbf{2 i} \\
& =\frac{(4-3 i)(3-2 i)}{(3+2 i)(3-2 i)} \quad \text { Top by the top, bottom by the bottom } \\
& =\frac{4(3-2 i)-3 i(3-2 i)}{3(3-2 i)+2 i(3-2 i)} \quad \text { Open up the first brackets as in algebra } \\
& =\frac{12-8 i-9 i+6 i^{2}}{9-6 i+6 i-4 i} \quad \text { Remove brackets by multiplying } \\
& =\frac{12-17 i+6(-1)}{9-4(-1)} \quad \text { Simplify: } \quad \text { Remember } i^{2}=-1 \\
& =\frac{12-17 i-6}{9+4} \quad \text { Simplify } \\
& =\frac{6-17 i}{13} \quad \text { Simplify } \\
& =\frac{6}{13}-\frac{17}{13} i \quad \text { Split into real and imaginary parts } \\
& =a+b i \quad \frac{z}{w} \text { is now in the form } a+b i \text { as required }
\end{aligned}
$$

Real with Real, i's with i's Equality of Complex Numbers

If two complex numbers are equal then the real parts on the left of the ' $=$ ' will be equal to the real parts on the right of the ' $=$ ' and the imaginary parts will be equal to the imaginary parts. Remember a real part is any number OR letter that isn't attached to an i. Quite often you will need to use a lot of the skills you learned previously to simplify an equation with which you can let real = real and i's = i's.

Example -
$3 x+i y=6+8 i$
find x and y
$3 \mathrm{x}=6 \quad$ and $\quad \mathrm{iy}=8 \mathrm{i} \quad$ real $=$ real and imaginary $=$ imaginary
$x=\frac{6}{3}=2$ and $y=8 \quad$ solve equations

Example - $\quad(x+3)+i(y-1)=6+2 i \quad$ find x and y

$(\mathrm{x}+3)=6 \quad$ and $\quad \mathrm{i}(\mathrm{y}-1)=2 \mathrm{i} \quad$ real $=$ real and imaginary $=$ imaginary
$x+3=6$
and $\quad y-1=2$
$x=6-3$
$\mathrm{x}=3$
and $y=2+1$
solve equations

Sometimes after we let the real = real and imaginary = imaginary we are left with a simultaneous equation before we can solve.

Example - $\quad(\mathbf{4 a}-\mathbf{2})+(\mathbf{a}-\mathbf{4}) \mathbf{i}=(\mathbf{4}-\mathbf{2 b})+2 b i \quad$ find a and b
$(4 a-2)=(4-2 b)$
and $\quad(a-4) i=2 b i$
real $=$ real and $i \prime s=i \prime s$
$4 a-2=4-2 b$
$4 a+2 b=4+2$
and
and $\quad \mathbf{a}-\mathbf{2 b}=\mathbf{4} \quad$ a's and b 's to the left, numbers to the right
$4 a+2 b=6$
Equation 1
$4 a+2 b=6$

$\mathbf{a}-\mathbf{2 b}=\mathbf{4}$
$5 a \quad=10$

$a=\frac{10}{5}=2$

Equation 1

Equation 2
cancel the $2 b$'s, $4 a+a=5 a, 6+4=10$
Divide across by 5 to get $a=2$

We must put in $a=2$ into either equation to get the b value
$4 a+2 b=6$
$4(2)+2 b=6$
$8+2 b=6$
$2 b=6-8$
$2 b=-2$
$b=\frac{-2}{2}=-1$

Equation 1

Replace the a value for $a=2$
Simplify
b 's to one side, numbers to the other
divide across by 2
therefore $a=2$ and $b=-1$

Modulus -

The modulus of a complex number is its length and is found through a formula we MUST learn. The modulus of z is written $|\mathrm{z}|$

FORMULA -

if $z=\mathbf{a}+\mathbf{b i}$ then
$|\mathbf{z}|=|\mathbf{a}+\mathbf{b i}|=\sqrt{a^{2}+b^{2}}$
Example -

$$
z=8+6 i
$$

find $|z|$

$|\mathbf{z}|=|\mathbf{8}+\mathbf{6 i}|=\sqrt{8^{2}+6^{2}}=\sqrt{64+36}=\sqrt{100}=10 \quad$ sub in values and solve
Example -

$$
\mathrm{z}=-5-3 \mathrm{i}
$$

find $|z|$
$|\mathbf{z}|=|-5-3 \mathrm{i}|=\sqrt{-5^{2}+-3^{2}}=\sqrt{25+9}=\sqrt{36}=6 \quad$ sub in values and solve
It is important to note that $\left|z_{1}+z_{2}\right|$ is not the same as $\left|z_{1}\right|+\left|z_{2}\right|$
Example - $\quad z_{1}=\mathbf{3 + 4 i}$ and $z_{2}=\mathbf{1 2 - 5 i}$

$$
\text { Investigate if }\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|
$$

$$
\begin{aligned}
\left|z_{1}+z_{2}\right| & =|3+4 \mathrm{i}+12-5 \mathrm{i}| \\
& =|3+12+4 \mathrm{i}-5 \mathrm{i}| \\
& =|15-\mathrm{i}| \\
& =\sqrt{15^{2}+(-1)^{2}} \\
& =\sqrt{225+1} \\
& =\sqrt{226}=\mathbf{1 5 . 0 3} \\
\left|z_{1}\right|+\left|z_{2}\right| & =|3+4 \mathrm{i}|+|12-5 \mathrm{i}| \\
& =\sqrt{3^{2}+4^{2}}+\sqrt{12^{2}+(-5)^{2}} \\
& =\sqrt{9+16}+\sqrt{144+25} \\
& =\sqrt{25}+\sqrt{169} \\
& =5+13=\mathbf{1 8}
\end{aligned}
$$

$\mathbf{1 5 . 0 3} \neq 18 \quad$ therefore $\left|z_{1}+z_{2}\right| \neq\left|z_{1}\right|+\left|z_{2}\right|$

Roots -

If we get a quadratic equation in the complex numbers section it may involve the use of the formula to solve:

$$
\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Normally we can never have a minus number under the root part but with complex numbers we will be able to change the root of a minus number into an i.

Example - \quad Solve $z^{2}-8 z+25 \quad$ Notice that they use z 's instead of x 's
$z^{2}-8 z+25 \quad$ Cannot be factorised so use FORMULA
$a=1 \quad b=-8 \quad c=25 \quad$ Values of a, b and c for formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ Formula
$x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(25)}}{2(1)} \quad$ Fill in values for a, b and c.
$x=\frac{8 \pm \sqrt{64-100}}{2} \quad$ Simplify
$x=\frac{8 \pm \sqrt{-36}}{2} \quad$ Simplify
$x=\frac{8 \pm \sqrt{36} \sqrt{-1}}{2} \quad$ Split $\sqrt{-36}$ into $\sqrt{36} \sqrt{-1}$
$x=\frac{8 \pm 6 \sqrt{-1}}{2} \quad \sqrt{36}=6$
$x=\frac{8 \pm 6 i}{2} \quad$ Turn $\sqrt{-1}$ into i
$x=4 \pm 3 i \quad$ Divide across by 2
$z=4+3 i \quad$ and $\quad z=4-3 i \quad$ The roots of the equation

Notice that roots occur in CONJUGATE pairs.
$4+3 i$ is the conjugate of $4-3 i$
However not all ROOT questions involve using the formula.
Sometimes you will be given one of the roots and asked to find the other root or asked to find the value of a certain letter.
Remember that if you know one of the roots then the other root is its CONJUGATE.
If something is a root of an equation then it satisfies that equation. That means you put it in for z and the equation will be true.

Turn over the page for examples of other types of ROOT questions.

Given a root find the letter......

Example - $\quad 5-3 i$ is a root of the equation $z^{2}-10 z+k=0$ find the value of \mathbf{k}
$z^{2}-10 z+k=0$
$(5-3 i)^{2}-10(5-3 i)+k=0$
$5(5-3 i)-3 i(5-3 i)-10(5-3 i)+k=0$
$25-15 i-15 i+9 i^{2}-50+30 i+k=0$
$-25+9 i^{2}+k=0$
$-25+9(-1)+k=0$
$-25-9+k=0$
$-34+k=0$
$k=34$

Write out the equation
Fill in for z (the root is $z=5-3 i$)
Open up $(5-3 i)^{2}$
Remove brackets by multiplying
Simplify
Turn $\sqrt{-1}$ into i
Simplify
Simplify
k 's to one side, numbers to the other

If we had put $\mathbf{5}+\mathbf{3 i}$ in as z we would get the same answer as it is the other root. (Conjugate)

Given a root, what is the other root and find the values of two letters.

Example - $\quad 2-\boldsymbol{i}$ is a root of the equation $z^{2}+p z+q=0$
Find \mathbf{p} and \mathbf{q}
If $2-\mathrm{i}$ is a root then so is $2+\mathrm{i}$
Conjugate
Remember in ALGEBRA that if $x=3$ was a root then $x-3$ was a factor
The roots are $\quad \mathrm{z}=2-\mathrm{i}$ and $\mathrm{z}=2+\mathrm{i}$
Therefore the factors are $\mathrm{z}-2+\mathrm{i}$ and $\mathrm{z}-2-\mathrm{i}$
Remember also in algebra that $(x-3)(x+4)=x^{2}+x-12$
Multiplying factors gives you a quadratic.
Multiplying the factors we get

$$
\begin{aligned}
(\mathrm{z}-2+\mathrm{i})(\mathrm{z}-2-\mathrm{i}) & =\mathrm{z}(\mathrm{z}-2-\mathrm{i})-2(\mathrm{z}-2-\mathrm{i})+\mathrm{i}(\mathrm{z}-2-\mathrm{i}) & & \text { Split first bracket } \\
& =z^{2}-2 z-z i-2 z+4+2 i+i z-2 i-i^{2} & & \text { Multiply into brackets } \\
& =z^{2}-4 z+4-i^{2} & & \text { all the } i \text { 's cancel } \\
& =z^{2}-4 z+4-(-1) & & i^{2}=-1 \\
& =z^{2}-4 z+4+1 & & \\
& =z^{2}-4 z+5 & & \text { Quadratic Equation }
\end{aligned}
$$

Compare this to original quadratic equation.

$$
z^{2}-4 z+5=z^{2}+p z+q
$$

Therefore $\quad p=-4$ and $q=5 \quad$ Values for p and q

Argand Diagrams -

We can represent complex numbers on a graph using a real Re and imaginary Im axis similar to the x and y axis.

Complex numbers can be plotted quite simply.
$2+3 i \quad$ is represented by the point $\quad(2,3 i)$
$-4+2 i \quad$ is represented by the point $\quad(-4,2 i)$
$1-5 i \quad$ is represented by the point $\quad(1,-5 \mathrm{i})$
$-3-i \quad$ is represented by the point $\quad(-3,-1 i)$
$4 i \quad$ is represented by the point $\quad(0,4 i)$
$3 \quad$ is represented by the point $\quad(3,0 i)$

With this topic you can be asked to do some basic operations on complex numbers BEFORE you can plot the points.

Example - $\quad z_{1}=2-i \quad z_{2}=1+3 i$

Plot the points

1

$$
\begin{aligned}
z_{1} z_{2}= & (2-i)(1+3 i) \\
= & 2(1+3 i)-i(1+3 i) \\
= & 2+6 i-i-3 i^{2} \\
= & 2+5 i-3(-1) \\
= & 2+5 i+3 \\
= & 5+5 i \\
& (\mathbf{5}, \mathbf{5 i})
\end{aligned}
$$

2

$$
\begin{aligned}
i z_{1} & =i(2-i) \\
& =2 i-i^{2} \\
& =2-(-1) \\
& =2+1 \\
& =3
\end{aligned}
$$

(3, 0i)

$$
3 \quad \begin{aligned}
z_{1}-2 \overline{z_{2}} & =(2-i)-2(1-3 i) \\
= & 2-i-2+6 i \\
& =5 i \\
& (\mathbf{0}, \mathbf{5 i})
\end{aligned}
$$

$$
z_{1} z_{2} \quad i z_{1} \quad z_{1}-2 \overline{z_{2}}
$$

Replace $z_{1} z_{2}$ with complex numbers Open first bracket
Remove brackets by multiplying
Turn $\sqrt{-1}$ into i
Simplify
Simplify
Plot this Point on diagram
replace z_{1} with complex number
Remove brackets by multiplying
Turn $\sqrt{-1}$ into i
Simplify
Simplify Notice no i part
Plot this Point on diagram
Replace z_{1} and $\overline{z_{2}}$ (the conjugate of z_{2})
if $z_{2}=1+3 i$ then $\overline{z_{2}}=1-3 i$
Remove brackets by multiplying
Simplify Notice no real part
Plot this Point on diagram

