Complex Numbers Revision Sheet -Question 4 of Paper 1

Introduction

Complex numbers are numbers that have a real part and an imaginary part.

The real part will be a number such as 3. The imaginary part is represented by the letter i.

3 + i

Examples –

-4+3i	Real part – 4, imaginary part 3i
3 + 2i	Real part + 3, imaginary part 2i
-2-2i	<i>Real part</i> -2 , <i>imaginary part</i> $-2i$

In the exam you will normally see a letter (usually z or w) representing the complex number. The first thing we do when answering a question is replace these letters with the associated complex numbers. This will be your first step in answering questions.

Examples -

$\mathbf{z} = -4 + 3i$	This just means that wherever you see z in the
	question put in the complex number $-4+3i$
$\mathbf{w} = -2 - 2i$	This just means that wherever you see w in the
	question put in the complex number $-2-2i$

IT IS VERY IMPORTANT THAT THE FIRST THING YOU DO IN EACH QUESTION IS WRITE OUT THE QUESTION AGAIN REPLACING ANY LETTERS SUCH AS Z OR W WITH COMPLEX NUMBERS. THIS WILL HELP YOU FIGURE OUT WHAT YOU ARE BEING ASKED.

We use the letter **i** to represent the imaginary number $\sqrt{-1}$

$i = \sqrt{-1}$	$\sqrt{-1}$ does not exist, no number squared gives – 1
	that is why we say that it is imaginary
$i^2 = -1$	$i^2 = \sqrt{-1}\sqrt{-1} = -1$

We never have an i^2 in an answer. We always replace it with -1.

Basic Operations - Simplify

Adding and Subtracting complex numbers -

We add or subtract the real numbers to the real numbers and the imaginary numbers to the imaginary numbers. We CANNOT add or subtract a real number and an imaginary number.

Example -	Simplify	4 + 3i + 6 + 2i
$\begin{array}{l} 4+6+3i+2i\\ 10+5i \end{array}$		Real numbers together, i's together Add real to real $(6 + 4)$, i's to i's $(3i + 2i)$
Example -	Simplify	6 - 4i + 5 + 2i
$\begin{array}{l} 6+5 - 4i + 2i \\ 11-2i \end{array}$		Real numbers together, i's together Add real to real $(6 + 5)$, i's to i's $(-4i + 2i)$
Example -	$z_1 = 5 + 2i$	$z_2 = 3 + 6i$ find $z_1 + z_2$ and $z_1 - z_2$
$z_1 + z_2 = 5 + 2i + 3$ = 5 + 3 + 2 = 8 + 8i	3 + 6i i + 6i	Replace z_1 and z_2 with the complex numbers Real numbers together, i's together Add real to real $(5 + 3)$, i's to i's $(2i + 6i)$
$z_1 - z_2 = (5 + 2i) - 3i = 5 + 2i - 3i = 5 - 3i + 2i = 2i - 4i$	- (3 + 6i) 3 - 6i i - 6i	Replace z_1 and z_2 with the complex numbers Remove brackets, careful with signs Real numbers together, i's together Add real to real (5 - 3) i's to i's (2i - 6i)

Removing brackets

We can multiply a number outside our complex numbers by removing brackets and multiplying.

Example -	$z_1 = 5 + 2i$	$z_2 = 3 + 6i$
$2z_1 = 2(5+2i) \\ = 10+4i$		Multiply 2 by z_1 and simplify
$3z_2 = 3(3+6i)$ = 9+18i		Multiply 3 by z_2 and simplify
$4z_1 - 2z_2 = 4(5 + 2i)$ = 20 + 8i - = 20 - 6 +	(-6-12i) - 2(3+6i) (-6-12i) - 8i - 12i	Write out the question replacing z_1 and z_2 with the complex numbers
=14-4i		Simplify

Multiplying complex numbers -

Multiplying with complex numbers is very similar to multiplying in algebra by splitting the first bracket.

One important thing to remember is that $i^2 = -1$

Example -	$w_1 = 5 + 2i$	$w_2 = 3 - 5i \qquad \text{Find} w_1 w_2$ Find $i w_1$
$w_1 w_2 = (5+2i)(3-5i)$		Replace w_1 and w_2 with the associated complex numbers
=5(3-5i)+2i(3-5i)		Open the first bracket as in algebra
$= 15 - 25i + 6i - 10i^{2}$ $= 15 - 19i - 10(-1)$		Remove brackets by multiplying $-25i + 6i = -19i$, $-10i^2 = -10(-1)$
=15-19i+10 = 5-19i		Simplify Simplify
$iw_1 = i(5+2i)$		Here they ask us to multiply i by w_1 so replace w_1 with complex number $5 + 2i$
$=5i+2i^{2}$		Remove brackets by multiplying
=5i+2(-1)		$2i^2 = 2(-1)$
=5i-2		Simplify
= -2 + 5i		Rearrange putting real number first

Division of Complex Numbers - The Conjugate

Before we can divide complex numbers we need to know what the **conjugate** of a complex is.

To find the **conjugate** of a complex number we just change the sign of the i part. The conjugate of z is written \overline{z} .

Examples -

z = 4 + 2i	then	z = 4 - 2i	change sign of i part
w = -3 + 2i	then	$\overline{w} = -3 - 2i$	change sign of i part
w = 5 - 6i	then	$\overline{w} = 5 + 6i$	change sign of i part

Division

To divide by a complex number we multiply above and below by the CONJUGATE of the bottom number (the number you are dividing by). This gets rid of the i value from the bottom. We should never have an i value on the bottom of an answer. Remember anytime you see DIVISION in a question you must perform this operation.

Example -	z = 4 - 3i and $w = 3 + 2i$	Express $\frac{z}{w}$ in the from $a + bi$
	$\frac{z}{w} = \frac{4-3i}{3+2i}$	Replace z and w with complex numbers
$\frac{4}{3}$	$\frac{-3i}{+2i} \times \frac{3-2i}{3-2i}$	<i>Multiply above and below</i> by $3 - 2i$
$=\frac{(4)}{(3)}$	$\frac{-3i(3-2i)}{+2i(3-2i)}$	Top by the top, bottom by the bottom
$=\frac{4(3)}{3(3)}$	$\frac{3-2i) - 3i(3-2i)}{3-2i) + 2i(3-2i)}$	Open up the first brackets as in algebra
$=\frac{12}{9}$	$\frac{-8i-9i+6i^2}{-6i+6i-4i}$	Remove brackets by multiplying
$=\frac{12}{12}$	$\frac{-17i + 6(-1)}{9 - 4(-1)}$	Simplify: Remember $i^2 = -1$
= 12	$\frac{-17i-6}{9+4}$	Simplify
$=\frac{6}{1}$	$\frac{-17i}{13}$	Simplify
$=\frac{6}{13}$	$-\frac{17}{13}i$	Split into real and imaginary parts
= <i>a</i> +	- bi	$\frac{z}{w}$ is now in the form $a + bi$ as required

Real with Real, i's with i's -Equality of Complex Numbers

If two complex numbers are equal then the real parts on the left of the '=' will be equal to the real parts on the right of the '=' and the imaginary parts will be equal to the imaginary parts. Remember a real part is any number **OR** letter that isn't attached to an i. Quite often you will need to use a lot of the skills you learned previously to simplify an equation with which you can let real = real and i's = i's.

Example -		3x +	$\mathbf{iy} = 6 + \mathbf{8i}$	find x and y
$3x = 6$ $x = \frac{6}{3} = 2$	and and	iy = 8i y = 8	real = real and imo solve equations	aginary = imaginary
Example -		(x+)	3) + i(y - 1) = 6 + 2i	find x and y
(x + 3) = 6	and	i(y-1) = 2i	real = real	and imaginary = imagina

(x+3) = 6	and	i(y-1) = 2i	real = real and imaginary = imaginary
x + 3 = 6	and	y - 1 = 2	
x = 6 - 3	and	y = 2 + 1	solve equations
x = 3	and	x = 3	

Sometimes after we let the real = real and imaginary = imaginary we are left with a simultaneous equation before we can solve.

Example -(4a-2) + (a-4)i = (4-2b) + 2bifind a and b (a - 4)i = 2bi(4a - 2) = (4 - 2b)and real = real and i's = i's4a - 2 = 4 - 2ba - 4 = 2band 4a + 2b = 4 + 2and a - 2b = 4a's and b's to the left, numbers to the right 4a + 2b = 6Equation 2 we are left with 2 simultaneous equations **Equation** 1

$4\mathbf{a} + 2\mathbf{b} = 6$	Equation 1
a - 2b = 4	Equation 2
5a = 10	cancel the 2b's, $4a + a = 5a$, $6 + 4 = 10$
$a = \frac{10}{5} = 2$	Divide across by 5 to get $a = 2$

We must put in a = 2 into either equation to get the b value

4a+2b=6	Equation 1
4(2) + 2b = 6	Replace the a value for $a = 2$
8 + 2b = 6	Simplify
2b = 6 - 8	b's to one side, numbers to the other
2b = -2	divide across by 2
$b = \frac{-2}{2} = -1$	therefore $a = 2$ and $b = -1$

Modulus -

The modulus of a complex number is its **length** and is found through a formula we **MUST** learn. The modulus of z is written |z|

FORMULA –	if $\mathbf{z} = \mathbf{a} + \mathbf{b}\mathbf{i}$ then $ \mathbf{z} = \mathbf{a} + \mathbf{b}\mathbf{i} = \sqrt{a^2 + b^2}$		
Example -	z = 8 + 6i	find z	
$ \mathbf{z} = 8 + \mathbf{6i} = \sqrt{8^2 + 6^2} =$	$\sqrt{64+36} = \sqrt{100} = 10$	sub in values and solve	
Example -	z = -5 - 3i	find z	
$ \mathbf{z} = -5 - 3\mathbf{i} = \sqrt{-5^2 + -3^2}$	$\frac{1}{2} = \sqrt{25+9} = \sqrt{36} = 6$	sub in values and solve	

It is important to note that $|z_1 + z_2|$ is not the same as $|z_1| + |z_2|$

Example - $z_1 = 3 + 4i$ and $z_2 = 12 - 5i$ Investigate if $|z_1 + z_2| = |z_1| + |z_2|$ $|z_1 + z_2| = |3 + 4i + 12 - 5i|$ = |3 + 12 + 4i - 5i| = |15 - i| $= \sqrt{15^2 + (-1)^2}$ $= \sqrt{225 + 1}$ $= \sqrt{226} = 15.03$ $|z_1| + |z_2| = |3 + 4i| + |12 - 5i|$ $= \sqrt{3^2 + 4^2} + \sqrt{12^2 + (-5)^2}$ $= \sqrt{9 + 16} + \sqrt{144 + 25}$ $= \sqrt{25} + \sqrt{169}$ = 5 + 13 = 18

15.03 \neq **18 therefore** $|z_1 + z_2| \neq |z_1| + |z_2|$

Roots -

Example -

If we get a quadratic equation in the complex numbers section it may involve the use of the formula to solve:

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Normally we can never have a minus number under the root part but with complex numbers we will be able to change the root of a minus number into an i.

Notice that they use z's instead of x's

 $z^2 - 8z + 25$ Cannot be factorised so use FORMULA a = 1 b = -8 c = 25Values of a, b and c for formula. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(25)}}{2(1)}$ $x = \frac{8 \pm \sqrt{64 - 100}}{2}$ Formula Fill in values for a, b and c. Simplify $x = \frac{8 \pm \sqrt{-36}}{2}$ Simplify $x = \frac{8 \pm \sqrt{36}\sqrt{-1}}{2}$ Split $\sqrt{-36}$ into $\sqrt{36}\sqrt{-1}$ $x = \frac{8 \pm 6\sqrt{-1}}{2}$ $\sqrt{36} = 6$ $x = \frac{8 \pm 6i}{2}$ Turn $\sqrt{-1}$ into i $x = 4 \pm 3i$ Divide across by 2 z = 4 + 3i and z = 4 - 3iThe roots of the equation

Solve $z^2 - 8z + 25$

Notice that roots occur in CONJUGATE pairs. 4+3i is the conjugate of 4-3i

However not all **ROOT** questions involve using the formula.

Sometimes you will be given one of the roots and asked to find the other root or asked to find the value of a certain letter.

Remember that if you know one of the roots then the other root is its CONJUGATE. If something is a root of an equation then it satisfies that equation. That means you put it in for z and the equation will be true.

Turn over the page for examples of other types of ROOT questions.

Given a root find the letter.....

Example - 5 – 3i is a root of the equation $z^2 - 10z + k = 0$ find the value of k

$z^2 - 10z + k = 0$	Write out the equation
$(5-3i)^2 - 10(5-3i) + k = 0$	Fill in for z (the root is $z = 5 - 3i$)
5(5-3i) - 3i(5-3i) - 10(5-3i) + k = 0	$Open up (5-3i)^2$
$25 - 15i - 15i + 9i^2 - 50 + 30i + k = 0$	Remove brackets by multiplying
$-25+9i^2+k=0$	Simplify
-25 + 9(-1) + k = 0	Turn $\sqrt{-1}$ into i
-25 - 9 + k = 0	Simplify
-34 + k = 0	Simplify
k = 34	k's to one side, numbers to the other

If we had put 5 + 3i in as z we would get the same answer as it is the other root. (Conjugate)

Given a root, what is the other root and find the values of two letters......

Example - $2 - i$ is a root of the equation $z^2 + pz + q = 0$	Find p and q			
If $2 - i$ is a root then so is $2 + i$	Conjugate			
Remember in ALGEBRA that if $x = 3$ was a root then $x - 3$ was a factor				
The roots are $z = 2 - i$ and $z = 2 + i$ Therefore the factors are $z - 2 + i$ and $z - 2 - i$				
Remember also in algebra that $(x-3)(x+4) = x^2 + x - 12$ Multiplying factors gives you a quadratic.				
Multiplying the factors we get				
(z-2+i)(z-2-i) = z(z-2-i) - 2(z-2-i) + i(z-2-i) Split f = $z^2 - 2z - zi - 2z + 4 + 2i + iz - 2i - i^2$ Multip = $z^2 - 4z + 4 - i^2$ all the = $z^2 - 4z + 4 - (-1)$ $i^2 = -1$ = $z^2 - 4z + 4 + 1$ = $z^2 - 4z + 5$ Quadi	irst bracket oly into brackets e i's cancel -1 ratic Equation			
Compare this to original quadratic equation. $z^2 - 4z + 5 = z^2 + pz + q$				
Therefore $p = -4$ and $q = 5$ Value.	s for p and q			

Argand Diagrams -

We can represent complex numbers on a graph using a real **Re** and imaginary **Im** axis similar to the x and y axis.

Complex numbers can be plotted quite simply.

2 + 3i	is represented by the point	(2,3i)
-4 + 2i	is represented by the point	(-4, 2i)
1 - 5i	is represented by the point	(1,-5i)
-3-i	is represented by the point	(-3, -1i)
4i	is represented by the point	(0,4i)
3	is represented by the point	(3,0i)

With this topic you can be asked to do some basic operations on complex numbers BEFORE you can plot the points.

Example -	$z_1 = 2 - i$	$z_2 = 1 + 3i$	
Plot the points	<i>Z</i> ₁ <i>Z</i> ₂	iz_1 $z_1 - 2\overline{z_2}$	
1 $z_1 z_2 = ($	(2-i)(1+3i)	Replace $z_1 z_2$ with complex numbers	
= 2(1+3i) - i(1+3i)		Open first bracket	
$= 2 + 6i - i - 3i^2$		Remove brackets by multiplying	
= 2 + 5i - 3(-1)		Turn $\sqrt{-1}$ into i	
=2+5i+3		Simplify	
= 5 + 5i		Simplify	
((5, 5i)	Plot this Point on diagram	
2 $iz_1 = i$	i(2-i)	replace z_1 with complex number	
= 2	$2i - i^2$	Remove brackets by multiplying	
=2	2 - (-1)	Turn $\sqrt{-1}$ into i	
=2	2+1	Simplify	
= 3	3	Simplify Notice no i part	
(.	3 , 0i)	Plot this Point on diagram	
$3 \qquad z_1 - 2\overline{z_2} = ($	(2-i) - 2(1-3i)	Replace z_1 and $\overline{z_2}$ (the conjugate of z_2)	
		<i>if</i> $z_2 = 1 + 3i$ then $\overline{z_2} = 1 - 3i$	
= 2	2 - i - 2 + 6i	Remove brackets by multiplying	
= 5	5i	Simplify Notice no real part	
(0, 5i)	Plot this Point on diagram	