# Complex Numbers 

Victor I. Piercey

September 9, 2009

## The Initial Problem

Consider the equation:

$$
x^{2}+1=0
$$

## Try to solve by extracting square roots:

This is a problem!

## The Initial Problem

Consider the equation:

$$
x^{2}+1=0
$$

Try to solve by extracting square roots:

This is a problem!

## The Initial Problem

Consider the equation:

$$
x^{2}+1=0
$$

Try to solve by extracting square roots:

$$
x^{2}=-1
$$

## The Initial Problem

Consider the equation:

$$
x^{2}+1=0
$$

Try to solve by extracting square roots:

$$
x^{2}=-1
$$

$$
x= \pm \sqrt{-1}
$$

## The Initial Problem

Consider the equation:

$$
x^{2}+1=0
$$

Try to solve by extracting square roots:

$$
\begin{gathered}
x^{2}=-1 \\
x= \pm \sqrt{-1}
\end{gathered}
$$

This is a problem!

## The Imaginary Unit i

There is no real number $x$ such that $x^{2}=-1$.

So mathematicians invented such a number and called it i. Hence $i^{2}=-1$

The number i is called the imaginary unit. We will build the complex number system from the imaginary unit.

## Other solutions to $x^{2}=-1$ ?

## The Imaginary Unit i

There is no real number $x$ such that $x^{2}=-1$.

So mathematicians invented such a number and called it i. Hence $\mathrm{i}^{2}=-1$.

The number i is called the imaginary unit. We will build the complex number system from the imaginary unit.

Other solutions to $x^{2}=-1$ ?

## The Imaginary Unit i

There is no real number $x$ such that $x^{2}=-1$.

So mathematicians invented such a number and called it i. Hence $\mathrm{i}^{2}=-1$.

The number i is called the imaginary unit. We will build the complex number system from the imaginary unit.

Other solutions to $x^{2}=-1$ ?

## The Imaginary Unit i

There is no real number $x$ such that $x^{2}=-1$.

So mathematicians invented such a number and called it i. Hence $\mathrm{i}^{2}=-1$.

The number i is called the imaginary unit. We will build the complex number system from the imaginary unit.

Other solutions to $x^{2}=-1$ ?

## Why Consider Complex Numbers?

Complex Numbers have a range of applications from electrical engineering to fluid flows.

Complex numbers also have a great deal of mathematical applications. For example, we will be able find solutions to any quadratic equations.

Later in the course we will learn the Fundamental Theorem of Algebra, which says that any polynomial equation has a complex solution.

There are other mathematical applications of complex numbers, including finding certain areas and Euler's formula.

## Why Consider Complex Numbers?

Complex Numbers have a range of applications from electrical engineering to fluid flows.

Complex numbers also have a great deal of mathematical applications. For example, we will be able find solutions to any quadratic equations.

> Later in the course we will learn the Fundamental Theorem of Algebra, which says that any polynomial equation has a complex solution

> There are other mathematical applications of complex numbers, including finding certain areas and Euler's formula.

## Why Consider Complex Numbers?

Complex Numbers have a range of applications from electrical engineering to fluid flows.

Complex numbers also have a great deal of mathematical applications. For example, we will be able find solutions to any quadratic equations.

Later in the course we will learn the Fundamental Theorem of Algebra, which says that any polynomial equation has a complex solution.

> There are other mathematical applications of complex numbers, including finding certain areas and Euler's formula.

## Why Consider Complex Numbers?

Complex Numbers have a range of applications from electrical engineering to fluid flows.

Complex numbers also have a great deal of mathematical applications. For example, we will be able find solutions to any quadratic equations.

Later in the course we will learn the Fundamental Theorem of Algebra, which says that any polynomial equation has a complex solution.

There are other mathematical applications of complex numbers, including finding certain areas and Euler's formula.

## Outline

(1) The Complex Number System
(2) Solving Quadratic Equations with Complex Numbers
(3) Arithmetic with Complex Numbers

## Imaginary Numbers

Consider the equation

$$
x^{2}+4=0
$$

Extract square roots:

$$
x^{2}=-4
$$



Let us use some rules of radicals:

$$
\sqrt{-4}=\sqrt{4 \times-1}=(\sqrt{4})(\sqrt{-1})=2 \mathrm{i}
$$

In general, it makes sense to have numbers bi for any real number
$b$. These are called imaginary numbers.

## Imaginary Numbers

Consider the equation

$$
x^{2}+4=0
$$

Extract square roots:

$$
x^{2}=-4
$$

Let us use some rules of radicals:

In general, it makes sense to have numbers bi for any real number
$b$. These are called imaginary numbers.

## Imaginary Numbers

Consider the equation

$$
x^{2}+4=0
$$

Extract square roots:

$$
x^{2}=-4
$$

$$
x= \pm \sqrt{-4}
$$

Let us use some rules of radicals:

In general, it makes sense to have numbers bi for any real number
$b$. These are called imaginary numbers.

## Imaginary Numbers

Consider the equation

$$
x^{2}+4=0
$$

Extract square roots:

$$
x^{2}=-4
$$

$$
x= \pm \sqrt{-4}
$$

Let us use some rules of radicals:

$$
\sqrt{-4}=\sqrt{4 \times-1}=(\sqrt{4})(\sqrt{-1})=2 \mathrm{i}
$$

In general, it makes sense to have numbers bi for any real number
b. These are called imaginary numbers.

## Imaginary Numbers

Consider the equation

$$
x^{2}+4=0
$$

Extract square roots:

$$
x^{2}=-4
$$

$$
x= \pm \sqrt{-4}
$$

Let us use some rules of radicals:

$$
\sqrt{-4}=\sqrt{4 \times-1}=(\sqrt{4})(\sqrt{-1})=2 \mathrm{i}
$$

In general, it makes sense to have numbers $b \mathrm{i}$ for any real number $b$. These are called imaginary numbers.

## Principal Square Roots

Recall that the radical symbol $\sqrt{ }$ means the positive square root when applied to a positive real number.

Similarly, if $a$ is a positive real number, the symbol $\sqrt{-a}$ will denote


This is called the principal square root.

For example, consider problem 41 on page 139. What is wrong with the following?


## Principal Square Roots

Recall that the radical symbol $\sqrt{ }$ means the positive square root when applied to a positive real number.

Similarly, if $a$ is a positive real number, the symbol $\sqrt{-a}$ will denote

$$
\sqrt{-a}=(\sqrt{a}) \mathrm{i} .
$$

This is called the principal square root.
For example, consider problem 41 on page 139. What is wrong with the following?


## Principal Square Roots

Recall that the radical symbol $\sqrt{ }$ means the positive square root when applied to a positive real number.

Similarly, if $a$ is a positive real number, the symbol $\sqrt{-a}$ will denote

$$
\sqrt{-a}=(\sqrt{a}) \mathrm{i}
$$

This is called the principal square root.

For example, consider problem 41 on page 139. What is wrong with the following?


## Principal Square Roots

Recall that the radical symbol $\sqrt{ }$ means the positive square root when applied to a positive real number.

Similarly, if $a$ is a positive real number, the symbol $\sqrt{-a}$ will denote

$$
\sqrt{-a}=(\sqrt{a}) \mathrm{i}
$$

This is called the principal square root.
For example, consider problem 41 on page 139. What is wrong with the following?

$$
\sqrt{-6} \times \sqrt{-6}=\sqrt{(-6) \times(-6)}=\sqrt{36}=6 .
$$

## A Quadratic Equation

## Let us solve the quadratic equation

$$
x^{2}+2 x+5=0
$$

We should use the quadratic formula:


This gives us

$$
x=-1 \pm 2 \mathrm{i} .
$$

So it makes sense to add real numbers to imaginary numbers and consider $a+b i$ for any real numbers $a$ and $b$.

## A Quadratic Equation

Let us solve the quadratic equation

$$
x^{2}+2 x+5=0
$$

We should use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

This gives us

$$
x=-1 \pm 2 \mathrm{i}
$$

So it makes sense to add real numbers to imaginary numbers and consider $a+b i$ for any real numbers $a$ and $b$.

## A Quadratic Equation

Let us solve the quadratic equation

$$
x^{2}+2 x+5=0
$$

We should use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This gives us

$$
x=-1 \pm 2 \mathrm{i}
$$

So it makes sense to add real numbers to imaginary numbers and consider $a+b i$ for any real numbers $a$ and $b$.

## A Quadratic Equation

Let us solve the quadratic equation

$$
x^{2}+2 x+5=0
$$

We should use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This gives us

$$
x=-1 \pm 2 \mathrm{i}
$$

So it makes sense to add real numbers to imaginary numbers and consider $a+b i$ for any real numbers $a$ and $b$.

## Complex Numbers

The set of all numbers of the form $a+b i$ where $a$ and $b$ are real is called the set of complex numbers, written $\mathbb{C}$.

- When a complex number is written $a+b i$ with $a$ and $b$ real, it is said to be in standard form
- For a complex number $a+b i$ written in standard form, $a$ is called the real part and $b$ is called the imaginary part.
- Are real numbers also complex?


## Complex Numbers

The set of all numbers of the form $a+b i$ where $a$ and $b$ are real is called the set of complex numbers, written $\mathbb{C}$.

- When a complex number is written $a+b i$ with $a$ and $b$ real, it is said to be in standard form.
- For a complex number $a+b i$ written in standard form, $a$ is called the real part and $b$ is called the imaginary part.
- Are real numbers also complex?


## Complex Numbers

The set of all numbers of the form $a+b i$ where $a$ and $b$ are real is called the set of complex numbers, written $\mathbb{C}$.

- When a complex number is written $a+b i$ with $a$ and $b$ real, it is said to be in standard form.
- For a complex number $a+b i$ written in standard form, $a$ is called the real part and $b$ is called the imaginary part.
- Are real numbers also complex?


## Complex Numbers

The set of all numbers of the form $a+b i$ where $a$ and $b$ are real is called the set of complex numbers, written $\mathbb{C}$.

- When a complex number is written $a+b i$ with $a$ and $b$ real, it is said to be in standard form.
- For a complex number $a+b$ i written in standard form, $a$ is called the real part and $b$ is called the imaginary part.
- Are real numbers also complex?


## Conjugates

For our equation $x^{2}+2 x+5=0$, we had two solutions:

$$
x_{1}=-1+2 \mathrm{i} \text { and } x_{2}=-1-2 \mathrm{i} .
$$

What are the real and imaginary parts? A pair of complex numbers such as this are called conjugates.

In general, two complex numbers $a+b i$ and $a-b i$ (in standard form) are called conjugates.

For example, what is the conjugate of $4-3 i$ ?

## Conjugates

For our equation $x^{2}+2 x+5=0$, we had two solutions:

$$
x_{1}=-1+2 \mathrm{i} \text { and } x_{2}=-1-2 \mathrm{i} .
$$

What are the real and imaginary parts? A pair of complex numbers such as this are called conjugates.

In general, two complex numbers $a+b i$ and $a-b i$ (in standard form) are called conjugates.

For example, what is the conjugate of $4-3 i$ ?

## Conjugates

For our equation $x^{2}+2 x+5=0$, we had two solutions:

$$
x_{1}=-1+2 \mathrm{i} \text { and } x_{2}=-1-2 \mathrm{i} .
$$

What are the real and imaginary parts? A pair of complex numbers such as this are called conjugates.

In general, two complex numbers $a+b i$ and $a-b i$ (in standard form) are called conjugates.

For example, what is the conjugate of $4-3 i$ ?

## Conjugates

For our equation $x^{2}+2 x+5=0$, we had two solutions:

$$
x_{1}=-1+2 \mathrm{i} \text { and } x_{2}=-1-2 \mathrm{i} .
$$

What are the real and imaginary parts? A pair of complex numbers such as this are called conjugates.

In general, two complex numbers $a+b i$ and $a-b i$ (in standard form) are called conjugates.

For example, what is the conjugate of $4-3 i$ ?

## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

What are $a, b$ and $c$ in this problem? This gives us:


## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

What are $a, b$ and $c$ in this problem? This gives us:


## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

What are $a, b$ and $c$ in this problem? This gives us:

## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

What are $a, b$ and $c$ in this problem? This gives us:

$$
x=\frac{3 \pm \sqrt{9-16}}{2}
$$

## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

What are $a, b$ and $c$ in this problem? This gives us:

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{9-16}}{2} \\
& =\frac{3 \pm \sqrt{-7}}{2}
\end{aligned}
$$

## Solving a Quadratic with Complex Solutions I

Let us solve the equation

$$
x^{2}-3 x+4=0
$$

Use the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

What are $a, b$ and $c$ in this problem? This gives us:

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{9-16}}{2} \\
& =\frac{3 \pm \sqrt{-7}}{2} \\
& =\frac{3 \pm \sqrt{7} \mathrm{i}}{2} .
\end{aligned}
$$

## Solving a Quadratic with Complex Solutions II

The solutions are

$$
x_{1}=\frac{3}{2}+\frac{\sqrt{7}}{2} \mathrm{i} \text { and } x_{2}=\frac{3}{2}-\frac{\sqrt{7}}{2} .
$$

Notice that the two solutions are conjugates!

## Solving a Quadratic with Complex Solutions II

The solutions are

$$
x_{1}=\frac{3}{2}+\frac{\sqrt{7}}{2} i \text { and } x_{2}=\frac{3}{2}-\frac{\sqrt{7}}{2} .
$$

Notice that the two solutions are conjugates!

## How Many Roots are there of 1 ?

Here are four related questions:
(1) How many square roots of 1 are there?
(2) How many cube roots of 1 are there?
(3) How many fourth roots of 1 are there?
(4) How many sixth roots of 1 are there?

## How Many Roots are there of 1 ?

Here are four related questions:
(1) How many square roots of 1 are there?
(2) How many cube roots of 1 are there?
(3) How many fourth roots of 1 are there?
(1) How many sixth roots of 1 are there?

## How Many Roots are there of 1 ?

Here are four related questions:
(1) How many square roots of 1 are there?
(2) How many cube roots of 1 are there?
(3) How many fourth roots of 1 are there?
(1) How many sixth roots of 1 are there?

## How Many Roots are there of 1 ?

Here are four related questions:
(1) How many square roots of 1 are there?
(2) How many cube roots of 1 are there?
(3) How many fourth roots of 1 are there?
(9) How many sixth roots of 1 are there?

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$,
fourth roots of 1 are solutions to $x^{4}-1=0$,
sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$,
fourth roots of 1 are solutions to $x^{4}-1=0$,
sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to
fourth roots of 1 are solutions to $x^{4}-1=0$,
sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$,
fourth roots of 1 are solutions to $x^{4}-1=0$,
sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$, fourth roots of 1 are solutions to
sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$, fourth roots of 1 are solutions to $x^{4}-1=0$, sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$, fourth roots of 1 are solutions to $x^{4}-1=0$, sixth roots of 1 are solutions to $x^{6}-1=0$.

## Roots of 1 as Solutions to Equations

The square roots of 1 are solutions to the equation $x^{2}=1$, which is equivalent to $x^{2}-1=0$.

By factoring, $x^{2}-1=(x-1)(x+1)$, so the square roots of 1 are the solutions $x=1$ and $x=-1$.

Similarly: cube roots of 1 are solutions to $x^{3}-1=0$, fourth roots of 1 are solutions to $x^{4}-1=0$, sixth roots of 1 are solutions to $x^{6}-1=0$.

## Exercise

Use the formulae on page 37 for factoring the difference of squares, difference of cubes and sum of cubes together with the quadratic formula to completely factor the left hand sides and solve the following equations:
(1) $x^{3}-1=0$
(2) $x^{4}-1=0$
(3) $x^{6}-1=0$.

## The solutions are:

(1) $x^{3}-1=0, x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$;


In general, for any positive whole number $n$, there are $n$ distinct $n^{\text {th }}$ roots of 1 .

The solutions are:
(1) $x^{3}-1=0, x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$;
(2) $x^{4}-1=0, x= \pm 1, \pm \mathrm{i}$; and


In general, for any positive whole number $n$, there are $n$ distinct $n^{\text {th }}$ roots of 1 .

The solutions are:
(1) $x^{3}-1=0, x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$;
(2) $x^{4}-1=0, x= \pm 1, \pm \mathrm{i}$; and
(3) $x^{6}-1=0, x= \pm 1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i},-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$.

In general, for any positive whole number $n$, there are $n$ distinct $n^{\text {th }}$ roots of 1 .

The solutions are:
(1) $x^{3}-1=0, x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$;
(2) $x^{4}-1=0, x= \pm 1, \pm \mathrm{i}$; and
(3) $x^{6}-1=0, x= \pm 1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i},-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$.

In general, for any positive whole number $n$, there are $n$ distinct $n^{\text {th }}$ roots of 1 .

The solutions are:
(1) $x^{3}-1=0, x=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i}$;
(2) $x^{4}-1=0, x= \pm 1, \pm i$; and

$$
\text { (3) } x^{6}-1=0, x= \pm 1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i},-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \mathrm{i} \text {. }
$$

In general, for any positive whole number $n$, there are $n$ distinct $n^{\text {th }}$ roots of 1 .

## Apples and Oranges

Suppose you have 2 apples and 5 oranges. Then somebody gives you 3 applies and 4 oranges. How many apples and how many oranges do you have?

Suppose you have 2 apples and 5 oranges. Now somebody steals 1 apple and 2 oranges. How many apples and oranges do you have left?

## Apples and Oranges

Suppose you have 2 apples and 5 oranges. Then somebody gives you 3 applies and 4 oranges. How many apples and how many oranges do you have?

Suppose you have 2 apples and 5 oranges. Now somebody steals 1 apple and 2 oranges. How many apples and oranges do you have left?

## Addition and Subtraction of Complex Numbers

Adding and subtracting complex numbers is like adding baskets of apples and oranges. Treat the real part like apples and the imaginary part like oranges.

Thus $(2+5 \mathrm{i})+(3+4 \mathrm{i})=5+9 \mathrm{i}$.

Additionally, $(2+5 \mathrm{i})-(1+2 \mathrm{i})=1+3 \mathrm{i}$

In general, to add or subtract complex numbers, you simply add or subtract the real and imaginary parts separately.

## Addition and Subtraction of Complex Numbers

Adding and subtracting complex numbers is like adding baskets of apples and oranges. Treat the real part like apples and the imaginary part like oranges.

Thus $(2+5 i)+(3+4 i)=5+9 i$.

Additionally, $(2+5 \mathrm{i})-(1+2 \mathrm{i})=1+3 \mathrm{i}$

In general, to add or subtract complex numbers, you simply add or subtract the real and imaginary parts separately.

## Addition and Subtraction of Complex Numbers

Adding and subtracting complex numbers is like adding baskets of apples and oranges. Treat the real part like apples and the imaginary part like oranges.

Thus $(2+5 i)+(3+4 i)=5+9 i$.

Additionally, $(2+5 \mathrm{i})-(1+2 \mathrm{i})=1+3 \mathrm{i}$.

In general, to add or subtract complex numbers, you simply add or subtract the real and imaginary narts senarately.

## Addition and Subtraction of Complex Numbers

Adding and subtracting complex numbers is like adding baskets of apples and oranges. Treat the real part like apples and the imaginary part like oranges.

Thus $(2+5 i)+(3+4 i)=5+9 i$.
Additionally, $(2+5 \mathrm{i})-(1+2 \mathrm{i})=1+3 \mathrm{i}$.
In general, to add or subtract complex numbers, you simply add or subtract the real and imaginary parts separately.

## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})+(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})+(-1+10 \mathrm{i})$.


## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})+(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})+(-1+10 \mathrm{i})$.
(3) $(6-7 \mathrm{i})-(2+2 \mathrm{i})$.


## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})+(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})+(-1+10 \mathrm{i})$.
(3) $(6-7 \mathrm{i})-(2+2 \mathrm{i})$.
( ( $(-4+\mathrm{i})-3 \mathrm{i}$.

## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})+(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})+(-1+10 \mathrm{i})$.
(3) $(6-7 i)-(2+2 i)$.
(9) $(-4+\mathrm{i})-3 \mathrm{i}$.

## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
(2+i)(3+2 i)=6+3 i+4 i+2 i^{2}
$$

$$
=6+7 \mathrm{i}+2 \mathrm{i}^{2}
$$



## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
(2+i)(3+2 i)=6+3 i+4 i+2 i^{2}
$$

$$
=6+7 i+2 i^{2}
$$

## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
(2+i)(3+2 i)=6+3 i+4 i+2 i^{2}
$$



## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
\begin{gathered}
(2+i)(3+2 i)=6+3 i+4 i+2 i^{2} \\
=6+7 i+2 i^{2}
\end{gathered}
$$



## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
\begin{gathered}
(2+i)(3+2 i)=6+3 i+4 i+2 \mathrm{i}^{2} \\
=6+7 i+2 \mathrm{i}^{2} \\
=6+7 \mathrm{i}-2
\end{gathered}
$$

## Distributive Property

To multiply two complex numbers, we use the distributive property (you may use FOIL) and the fact that $i^{2}=-1$.

For example, to multiply $2+\mathrm{i}$ by $3+2 \mathrm{i}$ :

$$
\begin{gathered}
(2+i)(3+2 i)=6+3 i+4 i+2 \mathrm{i}^{2} \\
=6+7 i+2 \mathrm{i}^{2} \\
=6+7 \mathrm{i}-2 \\
=4+7 \mathrm{i}
\end{gathered}
$$

## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 i)(-1+3 i)$.
(2) $(-1-4 \mathrm{i})(-1+10 \mathrm{i})$.


## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 i)(-1+3 i)$.
(2) $(-1-4 \mathrm{i})(-1+10 \mathrm{i})$.

3 $(6-7 \mathrm{i})(2+2 \mathrm{i})$.


## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})(-1+10 \mathrm{i})$.
(3) $(6-7 \mathrm{i})(2+2 \mathrm{i})$.
(1) $3 \mathrm{i}(-4+\mathrm{i})$

## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 i)(-1+3 i)$.
(2) $(-1-4 \mathrm{i})(-1+10 \mathrm{i})$.
(3) $(6-7 \mathrm{i})(2+2 \mathrm{i})$.
(9) $3 \mathrm{i}(-4+\mathrm{i})$

## Examples

Perform the indicated operations and write in standard form:
(1) $(2-7 \mathrm{i})(-1+3 \mathrm{i})$.
(2) $(-1-4 \mathrm{i})(-1+10 \mathrm{i})$.
(3) $(6-7 \mathrm{i})(2+2 \mathrm{i})$.
(9) $3 \mathrm{i}(-4+\mathrm{i})$
(6) $(1+\mathrm{i})^{2}$.

## Multiplying by the Conjugate

The product of a complex number and its conjugate is real. For example:


Do exercise 91 on page 140 if you want to convince yourself that this is true in general.

Note that this gives us a factorization for the sum of squares: $a^{2}+b^{2}=(a+b i)(a-b i)$

## Multiplying by the Conjugate

The product of a complex number and its conjugate is real. For example:

- $(1+2 \mathrm{i})(1-2 \mathrm{i})=1+2 \mathrm{i}-2 \mathrm{i}-4 \mathrm{i}^{2}=1+4=5$.
- $(3+4 i)(3-4 i)=9+12 i-12 i-16 i^{2}=25$.

Do exercise 91 on page 140 if you want to convince yourself that this is true in general.

Note that this gives us a factorization for the sum of squares: $a^{2}+b^{2}=(a+b i)(a-b i)$.

## Multiplying by the Conjugate

The product of a complex number and its conjugate is real. For example:

- $(1+2 \mathrm{i})(1-2 \mathrm{i})=1+2 \mathrm{i}-2 \mathrm{i}-4 \mathrm{i}^{2}=1+4=5$.
- $(3+4 i)(3-4 i)=9+12 i-12 i-16 i^{2}=25$.

Do exercise 91 on page 140 if you want to convince yourself that this is true in general.

Note that this gives us a factorization for the sum of squares: $a^{2}+b^{2}=(a+b i)(a-b i)$.

## Multiplying by the Conjugate

The product of a complex number and its conjugate is real. For example:

- $(1+2 \mathrm{i})(1-2 \mathrm{i})=1+2 \mathrm{i}-2 \mathrm{i}-4 \mathrm{i}^{2}=1+4=5$.
- $(3+4 i)(3-4 i)=9+12 i-12 i-16 i^{2}=25$.

Do exercise 91 on page 140 if you want to convince yourself that this is true in general.

Note that this gives us a factorization for the sum of squares: $a^{2}+b^{2}=(a+b i)(a-b i)$

## Multiplying by the Conjugate

The product of a complex number and its conjugate is real. For example:

- $(1+2 \mathrm{i})(1-2 \mathrm{i})=1+2 \mathrm{i}-2 \mathrm{i}-4 \mathrm{i}^{2}=1+4=5$.
- $(3+4 i)(3-4 i)=9+12 i-12 i-16 i^{2}=25$.

Do exercise 91 on page 140 if you want to convince yourself that this is true in general.

Note that this gives us a factorization for the sum of squares: $a^{2}+b^{2}=(a+b i)(a-b i)$.

## Assignment

Section 1.5, pages 139-140, problems 5-11(o), 17-23 (o), 2739 (o), 65-71(o). Due Friday, Sept. 11.

