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Complexity in Ecological Systems 

Ecology has been eminently a descriptive science despite some pio­
neering work by theoreticians such as Lotka, Volterra, Nicholson, and 
others. Description is a first step toward understanding a system. How­
ever, such a first step needs to be accompanied by the development of 
a theoretical framework in order to achieve real insight and, whenever 
possible, predictive power. Ecologists are increasingly facing the chal­
lenge of predicting the consequences of human-induced changes in the 
biosphere. For example, we need to better understand how biodiversity 
declines as more habitat is destroyed, or how harvested populations are 
driven to extinction as harvesting rates are increased. Toward that end, 
it is necessary to integrate field and experimental ecology with theory 
(Odum, 1977). This integration is much more common in the physi­
cal sciences, where theory and experimental data have always marched 
together (May, 2004). 
This book describes a theoretical view of ecosystems based on how 

they self-organize to produce complex patterns. It focuses on very 
simple models that, despite their simplicity, encapsulate fundamental 
properties of how ecosystems work. They are based on the nonlinear 
interactions observed in nature and predict the existence of thresholds 
and discontinuities that can challenge the usual linear way of thinking. 
These models have shown the possibility of ecosystem self-organization 
at several scales. Simple nonlinear rules are able to generate complex 
patterns. This view contrasts with traditional approaches to ecological 
complexity based on extrinsic explanations. Thus, population cycles 
were said to be complex because multiple variables and external influ­
ences such as the climate are involved; spatial patterns in the distribu­
tion of a species were said to be nonhomogeneous because the spatial 
distribution of nutrients or perturbations is also heterogeneous; com­
munities were said to be complex because there are hundreds of species 
interacting in a somewhat random way. This book presents theoretical 
evidence of the potential of nonlinear ecological interactions to gener­
ate nonrandom, self-organized patterns at all levels. In time, nonlinear 
density-dependence can generate complex dynamics such as determin­
istic chaos (chapter 2); in space, the combination of local nonlinear 
growth and short-range dispersal can generate a myriad of spatiotem­
poral patterns (chapter 3); at the community level, simple buildup 
mechanisms such as the preferential attachment of species to gener­
alists can generate complex, invariant ecological networks (chapter 6). 
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By reviewing general properties of ecological systems, we empha­
size processes that are equivalent to physical systems. General pre­
dictions can be made about ecosystem dynamics and their response to 
human-induced perturbations. Although there are several excellent 
books on parts of this plethora of processes (population ecology, spa­
tial ecology, community ecology), none integrates them into a single 
framework. What is to be gained from this exercise is a comprehensive 
view of how simple processes act to build the patterns we observe in 
ecology at different levels and how predictions based on linear think­
ing may be misleading. Another characteristic of this book is to reveal 
such common mechanisms by using a suite of tools from physics and 
mathematics. These tools are used to emphasize their connection to 
ecological systems. They help in relating ecological systems to other 
physical systems. 

THE NEWTONIAN PARADIGM IN PHYSICS 

The Hardy-Weinberg law in population genetics can be thought of 
as an equivalent evolutionary version of Newton’s first law stating that 
gene frequencies in a population remain fixed in absence of any force 
applied to them (e.g., migration and selection) (May, 2004). Despite 
this analogy, however, most ecologists would probably agree that there 
is little relation between the complexity of natural ecosystems and the 
simplicity displayed by any example derived from Newtonian physics. 
The standard physical systems we are familiar with involve either a 
single or a small number of particles. Of course understanding such 
“simple” systems might not be so simple, especially when dealing with 
the sophisticated mathematical framework required. But beyond the 
difficulties of the microscopic dynamics of atoms and elementary ob­
jects, macroscopic systems composed by a few or even many units (such 
as the solar system) are essentially well understood in terms of funda­
mental laws. 
Several basic examples provide a perfect illustration for these laws. 

A perfect pendulum, for example, is a deterministic system described 
by only two variables: its position and its velocity (fig. 1.1). It can be 
shown that two deterministic equations describe its motion, defining 
how the position (angle φ) and the velocity v change through time 
(Arnold, 1978; Strogatz, 1994): 

dφ = v (1.1)
dt 

dv g= −µv − sin φ (1.2)
dt L 

2 



December 21, 2005 13:41 sole-main Sheet number 21 Page number 3

C OM P L E X I T Y  I N  E C O L O G I C A L  S Y S T EM S  

0 1000 2000 3000 
–0.4 

–0.2 

0 

0.2 

0.4 

0.6 
A

ng
le

, v
el

oc
ity

 

–0.4 –0.2 0 0.2 0.4 

–0.4 

–0.3 

–0.2 

–0.1 

0 

0.1 

0.2 

0.3 

V
el

oc
ity

 

B C 

A 

Initial 
condition 

Equilibrium point 

v 

φ m 

g 

L 

Time Angle 

FIGURE 1.1. (A) One of the simplest examples of predictable dynamics: the pen­
dulum. Here a ball of a given mass moves in a deterministic fashion and its state 
is fully characterized by only two variables: its position φ and its velocity v. Their 
evolution (for a given set of parameters) is shown in (B): Damped oscillations drive 
the system toward its equilibrium state. In (C) the same trajectories are represented 
by using the phase space (φ, v). 

The motion takes place under the action of the gravitatory field g 
acting upon a mass m and a friction force proportional to the pendu­
lum’s speed. Consistent with our experience, the system will approach 
a state of repose in which φ ∗ = 0 and v ∗ = 0. This dynamical evolution 
is displayed in figure 1.1b. Both the position (continuous line) and the 
velocity (dashed line) present dampened oscillations. Such an equilib­
rium state will be obtained starting from any possible initial condition, 
and we call it the global “attractor.” It can be visualized by using an 
appropriate phase space �, here defined by the two variables required, 
that is, � = (φ, v). As shown in figure 1.1c, the orbits displayed by the 
pendulum converge to a single point attractor (0, 0) ∈ �. 
Not surprisingly, the mathematical framework required in order to 

describe the motion of such a regular system is simple. And since sim­
plicity in the underlying model and simple motion seem naturally re­
lated, one might conclude that: (a) simple dynamic patterns will be 
describable by means of simple mathematical models, and conversely 
(b) simple mathematical models will display simple, predictable dynam­
ics. Although the first is typically true, the second turned out to be false 
(chapter 2). 
For a long time, predictability has been the hallmark of the Newto­

nian success: the new visit of a given comet can be predicted with the 

3 



December 21, 2005 13:41 sole-main Sheet number 22 Page number 4

CH A P T E R  ON E  

highest accuracy and no one is surprised by such achievement. The 
success of classical mechanics has been a reference point for many sci­
entists. Is there any hope of formulating such types of general laws for 
ecosystems? Probably not. One obstacle for a physics-oriented theo­
retical ecology is the fact that physical and biological systems strongly 
differ in some essential ways. Biological structures involve features 
such as functionality that have no equivalent within physics (Hopfield, 
1994). Biological entities (at least at some scales) involve reproduction 
and evolution, and although some physical systems can “replicate,” the 
implications of such event in terms of information are completely dif­
ferent. And of course there is a strong historical component to be added 
to the whole picture: species evolve, they change their interactions, and 
eventually the whole ecosystem changes. Ecosystems as such cannot be 
considered units of selection, but one may well ask if universal laws are 
shaping their structure at least on some scales. 
The challenge posed by the previous issue is enormous, and one 

might ask first if physics can be an appropriate area to compare with 
ecological science. One possible answer is that most methods used 
in statistical physics are actually generic for any system composed by 
many parts. At its most extreme, econophysics offers a clever example 
(Mantegna and Stanley, 2000). Here the elementary units are so-called 
agents. These agents are humans, computer programs, or a mixture 
of both. Humans introduce an enormous level of potential complexity, 
and it makes no sense to write down the “microscopic” equations for 
them. In other words, the accurate description that would please a 
reductionist approach is simply forbidden. However, by assuming that 
these entities are not so complex in making their decisions, it is possible 
to understand, on a quantitative basis, many fundamental processes 
that define a market. Perhaps not surprisingly, several components of 
the key types of interactions that emerge in the economy are common 
to ecological dynamics. Actually, these similarities have been explicitly 
introduced within the framework of so-called computational ecologies, 
where networks of computers and agents display dynamic patterns not 
different from those recognizable as competition, cooperation, or sym­
biosis (Kephart et al., 1989). 

Hierarchies and Levels of Description 

Ecosystems can be understood and analyzed at very different, nested 
scales (fig. 1.2). At the most fundamental level, single species (or de­
scriptors of some of their relevant features) define the smaller scale. 
Beyond this basic units, we have a level of description in which in­
teractions with other species must be considered. At this level, new 
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FIGURE 1.2. Levels of organization in complex ecosystems. A nested hierarchy of 
complexity levels can be defined, from single species to biogeographic patterns. 
Different properties and different problems can be identified at several scales, and 
some large-scale patterns cannot be reduced to the inferior levels of the hierarchy. 

phenomena such as population cycles (chapter 2) can only be under­
stood after coupling among species has been introduced. Evolutionary 
paths also need to consider the biotic environment, and some theories 
of evolutionary ecology, such as the Red Queen hypothesis (chapter 7), 
emerge as the natural explanatory framework. Under this scenario, 
new phenomena, such as the appearance of parasites and epidemics 
have to be taken into account. Beyond this point, the next step in the 
hierarchy involves the community level, in which the networks of inter­
actions between species provide a unifying picture. At the community 
level, different regularities can be observed suggesting the presence of 
universal principles of community organization (chapter 6), but histori­
cal events implicit in the assembly process have to be taken into account. 
How external and internal changes propagate through the web of in­
teractions among species and affect its stability is one key example of 
how ecological complexity is influenced by structural properties. At 
the higher level, the spatial context, the variability associated to local 
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climate influences, and the global patterns of biotic organization de­
fine the top of our hierarchy. Our planet has experienced numerous 
large-scale changes through time, and the biosphere has been a leading 
actor. Through the history of life on Earth, extinction and diversifica­
tion have been interacting and the first cannot be understood without 
the second (chapter 7). 
But it would be misleading to think about the previous nested struc­

ture as a fully hierarchical one. Besides, the understanding of the upper 
parts of the hierarchy are somewhat, but not totally, decoupled of the 
lower members. The influences between each component are likely to 
be bidirectional. Climatic changes influence biotas, but the response of 
them to such change can further increase the trends (chapter 7). Habi­
tat fragmentation (chapter 5) is a leading cause of biodiversity loss, 
although its effects must be understood in terms of their impact on 
the web of interacting species. Evolutionary responses are shaped by 
climate, but some overall patterns of ecosystem organization seem to 
largely stem from fundamental principles of community organization. 
Although ecosystems are biological entities and as such include in 

their description concepts such as selection, adaptation, or information 
on a large scale, they are under the same physical laws as any other 
system. They also involve memory, information, and nonlinearity as 
essential features, and their interactions often behave in all-or-nothing 
ways, thus leaving little chance for the underlying details to effectively 
matter (chapter 4). 

DYNAMICS AND THERMODYNAMICS 

In a search for general, physics-inspired laws of ecological organiza­
tion, the first stop is thermodynamics and statisticalmechanics (Ulanow­
icz, 1997). Since ecosystems must fulfill the three laws of thermodynam­
ics, perhaps some of the patterns observed in complex biotas are a con­
sequence of such laws. Energy is a quantity common to all processes. It 
flows, is stored, and is transformed. When dealing with energy flows, 
the components and the boundaries of the system must be properly 
specified (Odum, 1983). One standard, classical approach is to make 
use of energy-flow diagrams (Odum, 1983; Ulanowicz, 1997). Based on 
early developments in general systems theory (von Bertalanffy, 1951, 
1968), energy diagrams provide holistic descriptions of the ecosystem 
where all parts, including the environment, are considered (fig. 1.3). 
Many physical systems are made up of multiple components (in in­

teraction or in isolation). The simplest example is provided by an ideal 
gas, where a huge number of atoms (or molecules) occupy a given, fixed 
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FIGURE 1.3. Energy diagram displaying the main processes involved in production, 
consumption, gas exchanges, and recycling in a typical aquatic ecosystem (redrawn 
from Odum, 1983). Here a very simple producer-consumer (C-R) model is shown. 
The arrows indicate energy flows. C refers to photosynthetic production and R to 
respiration of the consumer parts of the system. 

volume of space. These molecules do not interact (or they interact very 
weakly) and thus can be considered independent of each other. This 
assumption, together with conservation in the number of particles and 
their energy, allows the construction of a well-defined body of theory 
in which we can extrapolate from single units to the whole. In other 
words: the average behavior of single particles provides full insight 
into the global behavior. For a standard physical system composed by 
N particles of mass mi, an energy function can be defined as follows: 

1 
N 

2E(ri, . . . , rN ; v1, . . . , vN ) = mivi +U(rij) (1.3)
2 

i=1 

where the first part in the sum correspond to kinetic energies Ti = 
mivi 

2/2 and the second to potential energies, which in general will de­
pend on the relative distance among particles, rij = |ri − rj|, through 
some functional dependence. When this term can be ignored or is too 
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small compared with kinetic energy, we have a system that is basically 
described in terms of separated, representative items. However, once 
the interactions become relevant (and we talk about strongly interact­
ing systems), collective phenomena start to modify expectations based 
on understanding single units. In particular, and this is an especially 
relevant point that will be discussed through the book, sudden changes 
will occur under small changes of the system’s parameters. A given pa­
rameter such as temperature, precipitation rate, or infection rate can 
increase or decrease without having a detectable effect on a system’s 
properties and suddenly a totally new qualitative property might ap­
pear. Within the ecological context, this corresponds to the so-called 
catastrophic shifts (chapter 2). Typically, these shifts end up in a new 
state with little resemblance to the original one, and very often there is 
no way back unless significant parameter changes occur. Irreversibility 
thus appears to be a rather common feature of ecological complexity. 
Such a property does not match comfortably within standard thermo­
dynamics, where reversibility is a natural constraint. This problem will 
be discussed in some detail in chapter 4 in relation to the emergence of 
scaling laws and phase transitions in ecological systems. 

Order and Disorder 

Since purely thermodynamical arguments might fail to help under­
stand the origins of ecological patterns, we should turn our attention 
toward a more dynamical view. Several questions emerge when dealing 
with ecological dynamics. What is the nature of the processes under­
lying the observed patterns? Is it possible to capture their main ingre­
dients within simple mathematical equations? Are they predictable? 
Answering these questions forces us to look into the spectrum of ex­
pected patterns generated from deterministic and stochastic processes. 
At one extreme in the spectrum of possible dynamical patterns we 

have randomness. Here events take place in a stochastic manner, and 
the appropriate description of the system must be cast in terms of prob­
abilistic measures. Chance is here the main actor, and the coin toss the 
appropriate icon. Tossing a coin involves a simple mechanism but some­
how it deals with a very large number of degrees of freedom. The same 
situation applies for a pinball machine: although it should be possible 
in principle to know how the dynamics will develop in time, it is practi­
cally impossible to do so. A coin toss, in spite of its simple definition, 
pervades the unpredictable character of random systems involving an 
infinite number of degrees of freedom. 
At the other extreme in the spectrum, deterministic, simple dynami­

cal systems offer (in principle) the other side of the coin. A deterministic 
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system would provide a perfect predictability: once the initial condi­
tion is known, the future is available. This is the case of the example 
discussed at the beginning of this chapter. 
But of course, things aren’t necessarily so easy. A perfect illustration 

is offered by nonlinear discrete maps (to be explored in chapter 2). 
Consider a population of size xn at a given year n (here n = 1, 2, . . .). As 
will be shown in chapter 2, this time-discrete approach to population 
dynamics is appropriate for a number of ecological systems, such as 
insect populations with non-overlapping generations. The population 
at year n + 1 will be obtained from the population at the previous year 
through some mathematical function. One of the simplest models is 
given by the following map: 

xn+1 = µxn(1 − xn) (1.4) 

Equation (4) is called the logistic map and exhibits very complex dy­
namics in spite of its obvious simplicity. Since this complexity and its 
consequences will be of relevance in the next chapter, here we only 
highlight the random character of some specific properties of a large 
class of simple, deterministic dynamic systems. In particular, one class 
of dynamics that can be displayed by the previous model involves the 
generation of a sequence of values {xi} that never repeats itself. An ex­
ample is shown in figure 1.4 for µ = 4. The black dots represent the 
actual states, and the dotted line helps illustrate how the consecutive 
values are connected. By looking at the black dots, it is difficult to ap­
preciate any regular pattern (although some correlations seem to be 
present). 
Let us consider a given situation where we only have access to a 

coarse-grained description of the system’s state. To be more precise, 
let us consider a binary space state obtained from a so-called Markov 
partition, where each value xi has an associated bit Si: 

0 : 0 ≤ xi < 1/2 
Si = (1.5)

1 : 1/2 ≤ xi ≤ 1 

This mapping creates a string of ones and zeros that only retain a very 
rough part of the underlying dynamics. The surprise comes when the 
structure of this string of bits is analyzed: although the original dynam­
ical system is completely deterministic, the binary sequence generated 
from the Markov partition is not distinguishable from a coin-toss pro­
cess. Randomness is obtained from determinism. 
The previous result illustrates the fact that the boundaries between 

determinism and randomness are not so well defined as one would 
first suspect. This emergence of complex dynamics will interact, within 
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FIGURE 1.4. Order and chaos. The logistic map displays, for µ = 4, very complex 
dynamics, here indicated as a sequence of black circles (A). If a binary partition is 
used in order to generate a sequence of ones and zeros, a stochastic sequence is 
obtained, which can be summarized in a transition diagram (B). In this picture p 
and q are probabilities, which for the logistic map give p = q = 1/2, as for a fair coin 
toss. 

the ecological context, with other fundamental factors such as spatial 
degrees of freedom and evolutionary dynamics. As we will see, the 
results are often unexpected. 

EMERGENT PROPERTIES 

One key ingredient to be introduced in this book is the presence of 
emergent phenomena. Often, when looking at the macroscopic fea­
tures of a given system, scientists have tried to find the origin of these 
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properties by looking at the structure of their component parts. Such 
a view roughly defined the reductionist approach (Wilson, 1998). But 
the fact that the properties of the individual units cannot always ex­
plain the whole has been known from the earliest times of science. In 
this context, it is often said that the whole is more than the sum of the 
parts, meaning that the global behavior exhibited by a given system will 
display different features from those associated to its individual com­
ponents. A more appropriate statement would be that “the whole is 
something else than the sum of its parts” since in most cases completely 
different properties arise from the interactions among components. As 
an example, the properties of water that make this molecule so unique 
for life cannot be explained in terms of the separate properties of hydro­
gen and oxygen, even though we can understand them in detail from 
quantum mechanical principles. The same limitations apply to biology: 
Some properties such as memory in the brain cannot be reduced to the 
understanding of single neurons (Solé and Goodwin, 2001). Life itself 
is a good example: nucleic acids, proteins, or lipids are not “alive” by 
themselves. It is the cooperation among different sets that actually cre­
ates a self-sustained, evolvable pattern called life. Over the last decades 
of the twentieth century the shortcomings of the reductionist approach 
had become increasingly apparent, and at some point a new type of 
view, known as integrative biology began to emerge. 
Is reductionism the appropriate way of exploring complex systems? 

This is a debated issue. Within physics, extreme reductionists are not 
difficult to find. Advocates of reductionism, such as E. O. Wilson, have 
pointed out that modern science has been successful largely because of 
the analytic approach to reality (Wilson, 1998). But this view is being 
abandoned and replaced by a more global view of reality that takes 
into account the emergence of new properties. Let us consider one 
example. 
Imagine a system composed by a set of n interacting species S1, . . . , Sn 

whose populations are indicated as x1, . . . , xn. The interactions are 
schematically described in figure 1.5a for n = 6. The diagram indi­
cates that each species requires the help of another one for its growth 
to occur: species S2 needs S1, species S3 needs S2, et cetera. This 
model was introduced within the context of prebiotic evolution: molec­
ular species would cooperate to enhance their success by means of this 
so-called hypercycle (Eigen and Schuster, 1979). Species abundances 
can reach steady states, oscillate, or behave in very complex, unpre­
dictable ways. The cooperation requires the presence of all compo­
nents: the lack of a single species destroys the hypercycle. 
In spite of its simplicity, the hypercycle displays an enormous set of 

dynamical patterns, and its relevance goes far beyond molecular repli­
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FIGURE 1.5. Emergence of long-range order in a set of cooperating species. In (A) 
the basic scheme of species interactions is shown. Here the reproduction of each 
species requires the help of another one. Such a dependence is closed, forming a 
catalytic cycle (the so-called hypercycle). When these populations interact within a 
spatially explicit, local context, complex structures, such as spiral waves (B) emerge. 
Here the population size of the first species S1(x, y) is shown. 

cators (Maynard Smith and Szathmáry, 1995; Cronhjort and Blomberg, 
1997). Consider now a simple extension of the previous model. The 
units (molecules or organisms) move now in a two-dimensional spa­
tial domain where initially we place random amounts of individuals of 
each species at each site. The domain can be a discrete square lattice of 
patches where each patch is linked to its four nearest ones. Movement 
takes place locally, and interactions (as they occur in reality) are also lo­
calized in space. Cooperation thus takes place in a well-defined spatial 
context where units diffuse toward the nearest locations, and interac­
tions are limited to available molecules in a neighborhood. The surprise 
comes from simulating the previous model (Boerlijst and Hogeweg, 
1991; Chacon and Nuño, 1995; Cronhjort, 1995) on a lattice. An ex­
ample of this is shown in figure 1.5b, where the local concentration of 
the first species is shown for different points on a 50 × 50 lattice. In 
spite of the fact that interactions only occur inside a given patch and 
that molecules or individuals can only move step by step between near­
est lattice sites, a large-scale structure has been formed. The size of this 
structure has a length that is similar to the whole spatial domain and 
thus its origins cannot be explained from the local nature of the inter­
actions. The spiral wave is a common motif of patterns emerging in 
models of interacting populations (chapter 3) as a result of a collective 
synchronization phenomenon. 
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Spiral waves emerge from a large number of nonlinear models with 
local interactions. The origin of the spatial structure can be properly 
explained once the transfer of information introduced by diffusion is 
taken into account. In other words, once local interactions among near­
est sites are considered. These spiral waves cannot be reduced to the 
knowledge of the interactions among components and represent an 
emergent phenomenon with little relation to the species-specific fea­
tures of individuals. Only interaction and diffusion rates are required 
in order to obtain a complete picture of the emerging structure. The 
impact of these structures on evolutionary responses has been explored 
by a number of authors (Boerlijst and Hogeweg, 1991; Boerlijst et al., 
1993). Spiral waves in the invasion of parasites, and in a more general 
context spatially extended patterns, pervade ecological complexity and 
affect how ecosystems react against external stresses (chapters 3 and 5). 
Biodiversity patterns are also mediated by the fact that interactions are 
spatially localized. To a large extent, the limitations imposed by spatial 
interactions have a creative impact on ecological structures, allowing 
many different strategies to emerge (chapter 6). 

ECOSYSTEMS AS COMPLEX ADAPTIVE SYSTEMS 

Many macroscopic features of complex ecosystems emerge from 
interactions among their components. These patterns may, in turn, 
influence the further development of the interactions. As indicated by 
Simon Levin, ecosystems actually belong to a class of far-from­
equilibrium systems known as complex adaptive systems (CAS). This 
type of system is characterized by several properties (Arthur et al., 1997; 
Levin, 1998), none totally independent among them. These include, 
together with far from equilibrium dynamics: 

1. Localized interactions:	 Units in CAS typically interact with a 
limited set of neighbors. The constraints imposed by local in­
teractions are responsible for the emergence of a large number 
of characteristic features, such as spatial patterns and coexistence 
among competing species (chapters 2 and 3). 

2. Absence of well-defined top-down control: Complex patterns are 
obtained from local interactions and they largely influence the 
subsequent evolution of the system dynamics. Although top-down 
control appears to be present in ecosystem organization (chapter 
6), it is seldom a strict one, often counterbalanced by bottom-up 
forces. 
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3. Heterogeneity in network	 organization: Complex ecosystems 
have a network structure that pervades their behavior and re­
sponse against perturbations (chapter 6). Such networks have a 
complex structure with a nested hierarchy of interactions. Evolu­
tion and adaptation are strongly influenced by these networks. 

4. Adaptation: Ecological systems display adaptation at different lev­
els. Species adapt to given external conditions (such as tempera­
ture fluctuations) and properly respond to them. At a larger scale, 
food webs may adapt to a particular regime of perturbations. 

5. Evolvability, that is, the presence of mechanisms allowing new fea­
tures to emerge: This is an intrinsic feature of many complex sys­
tems, from cellular to economic webs. The capacity to respond to 
changing conditions on an evolutionary time scale is obvious from 
microevolution to macroevolution (chapter 7). 

Ultimately, the structure and universal properties of ecosystems are 
linked to evolutionary forces operating at different scales. But these 
forces operate within an ecological context and thus both terms can­
not be separated. What are the components of evolution that shape 
ecological patterns? 

Evolution and the Ecological Theater 

Ecosystems are the result of historical processes. The building of 
an ecosystem involves, on short time scales, path-dependent processes 
defining ecological succession. On larger time scales, species themselves 
change and coevolutionary dynamics arise. Succession is illustrated by 
the progressive colonization of an abandoned field, eventually ending 
up in the building of a mature forest. Since succession is historical, dif­
ferent communities are obtained starting from a given regional species 
pool. Contingency thus plays a role. But what is the impact of path de­
pendence on the overall ecosystem’s structure? The analysis of mature 
communities reveals that, beyond the specific composition of the final 
community, the same macroscopic traits of community organization are 
universal. Examples are provided by the network structure of the food 
and mutualistic webs or the patterns of species abundance (chapter 6). 
Such universality reminds us of a different perspective of evolution­

ary change emphasizing the role of fundamental constraints (Kauff­
man, 1993; Goodwin, 1994; Solé and Goodwin, 2001). These theories 
suggest that basic, universal laws of organization shape the large-scale 
architecture of biological systems. Some of these basic laws and prin­
ciples are presented in chapters 2 and 4. They result from a limited 
spectrum of dynamical patterns, the presence of inherent multiplica­

14 



December 21, 2005 13:41 sole-main Sheet number 33 Page number 15

C OM P L E X I T Y  I N  E C O L O G I C A L  S Y S T EM S  

tive processes (a species with a higher population is more likely to leave 
more offspring, see chapter 7), and to conflicts arising from competi­
tive forces. The latter is the case in the levels of diversity allowed in a 
given habitat and how species turnover proceeds: There is a conflict 
between forces increasing diversity (immigration and speciation) and 
those reducing it (due to interactions). Such a conflict (chapter 4) can 
explain the emergence of universal patterns of community organization 
(chapters 6 and 7). As it occurs in some physical systems, conflicting 
constraints often end up in a very small repertoire of patterns of orga­
nization, which we recognize as universals. 
The previous observations actually connect with the suggestion that 

natural structures result from a process of tinkering (Jacob, 1977; Solé 
et al., 2002b). The possible and the actual would differ strongly due 
to constraints intrinsic to the universe of potential structures. In this 
context, the dynamics and evolution of complex ecosystems would be 
shaped not only by selection and history but also by fundamental laws 
and intrinsic constraints. 
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