
COMPONENT ORIENTED SCRIPTING IN GRASSHOPPER VB

RHINO GRASSHOPPER VISUAL BASIC WORKSHOP
Intermediate Landscape as Digital Media by David Mah at GSD, HAVARD, 2011.11.18
GH version 0.8.0052

by woojae sung . woojae.sung@yahoo.com . www.woojsung.com

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 1

IDEA

The goal of the definition is to simulate the way how water flows downwards on a hilly terrain. Let’s start by dividing the process into
three parts;

Part 1 - Define a drain slope vector at an arbitrary point, called ‘input point’ in our definition, on a give surface, then decide possible
position of an ‘output point’ on the surface. When we are given a vector at a specific time and position, by multiplying a factor, we
can predict what next position would be. In our case, we call the factor ‘distance_factor’ and this number will decide how precise the
process would be.

Part 2 - In Part 1, we got an ‘output point’ from an initial ‘input point’. If we use the ‘output point’ as another ‘input point’, we can get
another ‘output point’. By repeating this until we cannot get a valid ‘output point’, we can get a water flow curve from the series of
points.

Part 3 - By supplying multiple ‘input points’ to the process explained in the previous steps, we can simulate water flow from multiple
source on a given surface.

INPUT POINT

OUTPUT POINT

DRAIN VECTOR

NORMAL VECTOR

DISTANCE FACTOR

Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT

SURFACE VECTOR

IF AN OUTPUT POINT IS OUT OF THE
SURFACE, PULL IT BACK BY GETTING THE
CLOSEST POINT ON THE SURFACE

Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

OUTPUT POINT

THERE IS ONLY ONE CONDITION WHEN
THIS PROCESS STOPS; Z VALUE OF
INPUT AND OUTPUT POINTS ARE SAME

INPUT POINTS

Part 1 Part 2

Part 2 Part 3

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 2

INPUT POINT

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

RIGHT-HAND RULE
WWW.WIKIPEDIA.ORG

PART 1 FINDING AN ‘OUTPUT POINT’

INPUT POINT

SURFACE VECTOR
Z VECTOR

step 01
Get a normal vector at an arbitrary point (input point) on
a given surface. Get a Z vector at the point.

step 02
Get a cross product vector by
two vectors in the step 02.
Right hand rule shows that
the direction of a cross prod-
uct vector always wants to be
perpendicular to the direc-
tion of drain slope.

INPUT POINT

DRAIN VECTOR
(UNITIZED)

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

ROTATE “CROSS PRODUCT VECTOR” 90 DEGREES
AROUND “SURFACE VECTOR”

step 03
Rotate ‘cross product vector’ 90 degrees count clock wise
around ‘surface normal vector to get ‘drain slope vector’

INPUT POINT

DRAIN VECTOR
(MULTIPLIED BY DISTANCE FACTOR)

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT

OUTPUT POINT

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT

OUTPUT POINT

step 04
Multiply a certain number to the unitized ‘drain slope vec-
tor’ to get a output point. We call the number ‘distance_fac-
tor’ and it determines how accurate this process would be.

step 05
Because of the surface curvature, an ‘output point’ most
likely not on the surface.

INPUT POINT

OUTPUT POINT
(PROJECTED ONTO THE SURFACE,
BY CLOSEST POINT ON THE SURFACE)

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT
OUTPUT POINT

step 06
So we want to pull the point back onto the sur-
face by finding closest point from the point.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 3

PART 2 DEFINING A ‘FLOW LINE’

PART 3 APPLYING TO MULTIPLE WATER SOURCES

INPUT POINT

SURFACE VECTOR

IF AN OUTPUT POINT IS OUT OF THE
SURFACE, PULL IT BACK BY GETTING THE
CLOSEST POINT ON THE SURFACE

Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

step 01
Repeat the process by continuously replacing an ‘input point’ in
current iteration with an ‘output point’ in the previous one. If an
‘output point’ is out of the surface, we always can pull it back
onto the surface by finding the closest point on it.

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

OUTPUT POINT

THERE IS ONLY ONE CONDITION WHEN
THIS PROCESS STOPS; Z VALUE OF
INPUT AND OUTPUT POINTS ARE SAME

step 02
There is only one case when this chain reaction stops; when z
value of both an ‘input’ and ‘output’ point are same. This means
for whatever reason, an output point is not moving any further
from an input point.

step 01
We can get multiple flow lines by supplying series of input points
depending on one’s design intent.

INPUT POINTS

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 4

CODE REVIEW

scene setting
Set up the scene as illustrated below.

PART 1 FINDING AN ‘OUTPUT POINT’
Refer to ‘VB workshop part1.gh’ and ‘VB workshop.3dm’ attached.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 5

step 1 In this step we want to get a ‘normal vector’ and a ‘z vector’ on a ‘base surface’ at an ‘input point’. We start by defining an
empty 3d vector.

91 Dim normal_vector as Vector3d

When we declare something by ‘Dim A as B’, A is a name of the variable and B is a type of the variable such as point3d, inte-
ger, vector3d, surface, etc.. We call these ‘classes’ instead of ‘types’. So integer can be a class and surface can be another.

A class is, as you may feel, very abstract concept like dog, cat, or rhino(without indefinite article maybe?). For example, vec-
tor3d as a class doesn’t even have a real name and we don’t know anything about it; direction, magnitude, etc..

By giving it a name, ‘normal_vector’, we get a vector3d out of vector3d class. Now ‘normal_vector’ is an object. An object is
like a dog, a cat, or a rhino(with indefinite article maybe?). However it is still bodiless and doesn’t have any physical charac-
teristics. ‘normal_vector’ still can be any vector3d, as a dog can represent DiCaprio, my dog, or Pitt, your dog.

If you want to be more specific about your vecter3d, ‘normal_vector’, you can do that by defining an instance. ‘Dim A as
New B(C)’ is a typical way of defining an instance. A is a name of the instance, B is a name of the class, and C is specific
condition that gives physicality to A. For example, a ‘normal_vector’ in line 91 is an object in vector3d class, but we don’t
know where it is and how big it is, etc.. But if we define a ‘normal_vector’ by ‘Dim normal_vector as New Vector3d(pointA,
pointB)’, the vector comes alive in a space with physicalities such as a starting and ending point as well as length.

dog has four legs and
a tail, covered with fur,...

Class - Dog Object - A dog Instance - A blue dog

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 6

93 normal_vector = base_srf.NormalAt(u, v)

Now we want to get a ‘normal_vector’ on a ‘base_surface’ at a ‘input_point’. It is clear that a normal vector cannot even
exist without a surface. If so, there should be some kind of protocol that enable us to find a normal vector from a surface.

Of course there are. Every class, object, and instance has lower level services; ‘constructor, methods, and properties’.

‘Constructor’ is the way how we build new instances/objects out of classes. For example, when we draw a line by two
points, we can code it in this way; ‘Dim A as New Line(pointA, pointB)’.

While ‘constructor’ is more about defining an instance/object itself, ‘methods’ has to do with manipulating, evaluating or
analyzing the instance/object to get something else other than its inherited properties. For example, if you want to get a
surface normal vector at a certain point on a surface, you probably can find a ‘method’ that does this for you from a list of
‘methods’ in surface class.

‘Properties’ are inherited characteristics of an instance. Unlike ‘methods’, ‘properties’ can be retrieved free directly from an
instance/object. For example, unlike a surface normal vector at a specific point, area of the surface doesn’t change as long
as the surface stays same, and we always can ask the surface like “how big are you?”.

Good thing about these protocols are that you can always call them with a ‘dot’ connector. Whenever you want to ask an
instance/object, simply type in a dot right next to its name then you will see promptly whatever would be available at that
moment. So, in our case, since we have no idea how to find a ‘method’ that extracts a ‘normal_vector’ from a surface, we
can just type in ‘base_srf’ and add ‘.’ right next to it. Then you will see a list of possible ‘methods’. In this case, we want to
select ‘NormalAt’ from the drop down list.

If you are not sure what do you need, or simply want to browse what is available, you can find useful reference/bible here
at the Rhino Common SDK(Software Development Kit) in this page, http://www.rhino3d.com/5/rhinocommon/index.html.
There you might want to browse in to Rhino.Geometry Namespace, where all of accessible rhino classes are listed up for
you. There you can get this;

Surface.NormalAt (u As Double, v As Double) As Vector3d

‘NormalAt’ method, as you see it, needs two variables; u as double, and v as double. u and v or (u,v) is a local coordinate
systme that represents a location of a point on a surface. Because we don’t know yet how and where we can get both u and
v, let’s just put ‘u’ and ‘v’ as variables.

87 Dim u, v As Double

Although we don’t know anything about them, one thing for sure is that they are double. And also they want to be declared
before they are called in in order to avoid an error. Declare ‘u’ and ‘v’ as double in line 87.

INPUT POINT

SURFACE VECTOR
Z VECTOR

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 7

89 base_srf.ClosestPoint(input_pt, u, v)

Now we want to get (u,v) coordinate of the ‘input_point’ on the ‘base_surface’. We all know from our experiences in Grass-
hopper that the easiest way to convert a global coordinate, (x,y,z), into local one, (u,v) is to use ‘finding the closest point on
a surface’ method. This is sort of pre-defined/built-in function in Grasshopper that returns you (u,v) coordinate when you
supply a surface and a point. Since this method will clearly be part of surface class, browse in to surface class and there you
will find the below in method tab.

Surface.ClosestPoint (testPoint As Point3d, ByRef u As Double, ByRef v As Double)

This method requires a testPoint from which it calculates the closest point, and then pass the local coordinate of the closest
point by two output references, u and v. When you decipher a code in the SDK, ByRef usually means something you get not
something you supply.

INPUT POINT

SURFACE VECTOR
Z VECTOR

POINT
LOCAL COORDINATE SYSTEM
(U,V)ORIGIN

LOCAL COORDINATE SYSTEM
ON SURFACE
(0,0)

POINT
GLOBAL COORDINATE SYSTEM
(X,Y,Z)

ORIGIN
GLOBAL COORDINATE SYSTEM
(0,0,0)

POINT
LOCAL COORDINATE SYSTEM
(U,V)ORIGIN

LOCAL COORDINATE SYSTEM
ON SURFACE
(0,0)

POINT
GLOBAL COORDINATE SYSTEM
(X,Y,Z)

ORIGIN
GLOBAL COORDINATE SYSTEM
(0,0,0)

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 8

step 2 In this step, we want get a ‘drain_vector’ by a ‘normal_vector’ and a ‘z_vector’ at the ‘input_point’.

95	 Dim	drain_vector	As	vector3d	=	vector3d.CrossProduct(normal_vector,	vector3d.ZAxis)

We have two vectors springing from the ‘input_point’; a ‘normal_vector’ from the previous step and a ‘z_vector’. From
the illustration above, I believe that you can predict the direction of water flow very easily. Yes, the ‘drain_vector’ is always
perpendicular to the ‘cross product vector’ of two input vectors. In other words, we can rotate the ‘cross product vector’
90 degrees CCW around ‘normal_vector’ to get the ‘drain_vector’. We can compute the cross product of these vectors with
vector3d.crossproduct method. Unlike ‘NormalAt’ or ‘ClosestPoint’ methods in the previous steps, this particular methods
cannot be subordinate to any instance or object, because this method wants to calculate two inputs vectors in the same
level. In this case, we can start with generic term, ‘Vector3d’ instead of any instance/object name.

Vector3d.CrossProduct (a As Vector3d, b As Vector3d) As Vector3d

This method requires two vectors as inputs, and the method itself becomes another vector3d instance. Although the ‘cross-
product vector’ is not a ‘drain_vector’, we can assign this vector to a ‘drain_vector’ for now.

97	 drain_vector.Unitize

In line 97, we unitize the vector, so we can have better control on its length. Otherwise, sometimes it will cause an unexpect-
ed error because of uncertainty in vector length.

99	 drain_vector.Transform(Transform.Rotation(Math.PI	*	0.5,	normal_vector,	input_pt))		

In line 99, we want to rotate the vector 90 degrees counter clock wise around a ‘normal_vector’ to get a ‘drain_vector’. We
can use vector3d.transform method.

Vector3d.Transform	(transformation	As	Transform)

This method requires ‘transform’ (transform is a class) as a variable.

Transform.Rotation	(angleRadians	As	Double,	rotationAxis	As	Vector3d,	rotationCenter	As	Point3d)	As	Transform

Transform class has a rotation method, and it requires three variables. Now we get a ‘drain_vector’!

INPUT POINT

DRAIN VECTOR
(UNITIZED)

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

ROTATE “CROSS PRODUCT VECTOR” 90 DEGREES
AROUND “SURFACE VECTOR”

INPUT POINT

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

RIGHT-HAND RULE
WWW.WIKIPEDIA.ORG

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 9

INPUT POINT

OUTPUT POINT
(PROJECTED ONTO THE SURFACE,
BY CLOSEST POINT ON THE SURFACE)

SURFACE VECTOR
Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT
OUTPUT POINT

INPUT POINT

OUTPUT POINT

DRAIN VECTOR

NORMAL VECTOR

DISTANCE FACTOR

Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

step 3 In this step, we will get an ‘output_point’ by multiplying a number, ‘distance_factor’, to the ‘drain vec-
tor’.

101	 Dim	moved_pt	As	point3d	=	input_pt	+	distance_factor	*	drain_vector

Line 101 is straight forward. This is to move an ‘input_point’ by amplifying the ‘drain_vector’ with
‘distance_factor’. We save this to a temporary space called ‘moved_point’.

103	 base_srf.ClosestPoint(moved_pt,	u,	v)

Then we pull this temporary point back to the surface. Surface.closestpoint method gives (u,v) coordi-
nates of the ‘moved_point’.

105	 Dim	output_pt	As	Point3d	=	base_srf.PointAt(u,	v)	
107	 A	=	output_pt	

Then by supplying (u,v) values to surface.pointat method, we get an ‘output_point’. Then, export the
point through an output tab, A.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 10

PART 2 DEFINING A ‘FLOW LINE’
Refer to ‘VB workshop part2.gh’ and ‘VB workshop.3dm’ attached.

INPUT POINT

SURFACE VECTOR

IF AN OUTPUT POINT IS OUT OF THE
SURFACE, PULL IT BACK BY GETTING THE
CLOSEST POINT ON THE SURFACE

Z VECTOR

CROSS PRODUCT VECTOR
(UNITIZED)

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

INPUT POINT
/OUTPUT POINT

OUTPUT POINT

THERE IS ONLY ONE CONDITION WHEN
THIS PROCESS STOPS; Z VALUE OF
INPUT AND OUTPUT POINTS ARE SAME

function name
OUTPUTPOINT

input
INPUT POINT

INPUT POINT. Z VALUE
>

OUTPUT POINT. Z VALUE

output
OUTPUT POINT

YES

NO

PROCESS END

step 1 In the part 1, we defined a simple system that returns an output by a certain logic. And now we want to convert this process
into a modular system that keeps repeating its cycle until it satisfies a certain condition. For example, a recursive function; an output
of current iteration becomes an input for the next iteration.

Copy all the code from the step 1, from line 85 to 109. Then paste it to a place for custom script like below.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 11

After copy and paste, we might need to change some part of the code.

Private Sub RunScript(..., ..., ..., ByRef A As Object)
119	 Private	Function	outputpoint(...,	...,	...,	ByRef	output_pt	As	Object)	As	Boolean

Above red is the first line of the code that you’ve just paste. And we will change the code like in blue.

Private means this portion of code doesn’t share any name with the rest of code. You also can make it public if you want.
However we don’t want any naming conflictions, so we keep it private.

Runscript is a name of this portion of code. We change the name to something meaningful, ‘outputpoint’.

We change Sub to Function. Both of them refer to segments of code that are separate from main code. The difference
between the two is ‘sub’ doesn’t return a value, while ‘function’ does. And we want this function, ‘outputpoint’, to store a
boolean value for validity check. Confused? I found this link very useful for reference. http://www.homeandlearn.co.uk/NET/
vbNet.html

139	 If	output_pt.Z	>=	input_pt.Z	Then
141 outputpoint = False
143 Else
145	 						outputpoint	=	True
147	 End	If

This portion of code is to check if we want to repeat the process again or stop.
As we can see from the diagram on the right hand side, we want to quit finding
‘output_point’ process when input and output points are on the same elevation.
So when this happens, we want to tell the main part of the code to stop this sub
process. And we obviously need a messenger that delivers the message. That is
why we wanted to make this portion of code to be ‘function’ instead of ‘sub’. So
depending on the validity, it assigns ‘True’ or ‘False’ to the function, so the main
part of the code can decide if it wants to keep going or not.

function name
OUTPUTPOINT

input
INPUT POINT

INPUT POINT. Z VALUE
>

OUTPUT POINT. Z VALUE

output
OUTPUT POINT

YES

NO

PROCESS END

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 12

If	(conditional	statement)	Then
 (do this)
Else
 (do that)
End	If

This is how ‘if statements’, one of conditional logic of VB works. For more information on VB, you can visit http://www.
homeandlearn.co.uk/NET/vbNet.html

step 2 In step 1, we defined a funtion ‘outputpoint’. In step 2, we call the function and run it until the function returns ‘false’.

95	 Do
109	 Loop	While	outputpoint(base_srf,	pt,	distance_factor,	output_pt)	=	True

First off, we want to repeat the sub portion of the code, function or ‘outputpoint’ as long as its value is ‘True’.

Do
(do this)
Loop	While	(conditional	statement)	

This is how ‘Do ~ Loop’, one of loop logics in VB, works. Note that ‘while ()’ part can be either after ‘Do’ or after ‘Loop’.
And also note that the way how we call the function ‘outputpoint’. It is pretty much same as the way we use methods in the
previous steps.

97 outputpoint(base_srf, pt, distance_factor, output_pt)

In line 97, finally we call the function. We have to supply this function with 4 parameters; first three as inputs and the last
one as an output. It is exactly the same as the way we did in Grasshopper canvas.

We put ‘base_surface’ and ‘distance_factor’ as they are since they are pretty
solid during the process unless we want to change them for some reasons.
However, due to its nature as a recursive process, points tend to change fre-
quently as it repeat process over the time. So we can start with two temporary
spaces for both input and output points.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 13

87 Dim pt As point3d = input_pt
93 Dim output_pt As point3d
89 Dim output_pts As New List(Of Point3d)
91 output_pts.Add(pt)

In line 87, we declare a temporary space ‘pt’ for an input point, and then assign the ‘input_point’ to ‘pt’. Also in line 93,
we declare an empty point3d for output point, ‘output_point’. And in line 89, we declare a space to store a list of points,
‘output_points’. Then in line 91, we might want to add the initial input point ‘pt’ to the output point list, so at the end of the
process, polyline curve can start from the ‘input_point’.

95	 Do
97 outputpoint(base_srf, pt, distance_factor, output_pt)
99 output_pts.add(output_pt)
101	 						pt	=	output_pt
103	 						If	output_pts.Count	>	100	Then
105	 											Exit	Do
107	 						End	If
109	 Loop	While	outputpoint(base_srf,	pt,	distance_factor,	output_pt)	=	True

Back to the ‘Do ~ Loop’ part, in line 99, we add the first output of function ‘outputpoint’. And in the next line, we switch
output point of the current iteration with ‘pt’, a temporary location for an input point.

From line 103 to 107, we check if total number of points in the output point list, ‘output_pts’, is more than 100. Otherwise,
without this, your code might crash because of unexpected heavy load.

111 Dim output_crv As New PolylineCurve(output_pts)
113 A = output_crv

Get a polyline curve from the ‘output_points’ list, and export the curve to A.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 14

PART 3 APPLYING TO MULTIPLE WATER SOURCES
Refer to ‘VB workshop part3.gh’ and ‘VB workshop.3dm’ attached.

INPUT POINTSIn the part 3, we apply the previously defined component to multiple points.

COMPONENT ORIENTED DESIGN IN GRASSHOPPER VB - http://woojsung.com 15

step 1 Now we want to repeat the process for every input point.

87 Dim output_crvs As New List(Of PolylineCurve)

Because, at the end of the process, we might want to get multiple polyline curves, we start off by declaring a place to store
polyline curve list.

89	 For	Each	pt	As	point3d	In	input_pt

115	 						output_crvs.Add(output_crv)
117	 Next

This is another form of loop logic in VB, and unlike ‘do ~ Loop’, ‘for	~	next’ is unconditional. It simply do whatever it wants to
do until there is no point left in the point list. In line 115, add ‘output_curve’ to the output curve list.

