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Components of Disparity Vergence Eye Movements:
Application of Independent Component Analysis

John L. Semmlow*, Fellow, IEEEand Weihong Yuan

Abstract—The “dual mode” theory for the control of disparity
vergence eye movements states that two control components, a pre-
programmed “transient” component and a feedback-controlled
“sustained” component, mediate the motor response. Although
prior experimental work has isolated and studied the transient
component, little is known of the sustained component’s contri-
bution to the dynamic vergence response. The timing between
the two components and their relative magnitudes are of interest
as they relate to the strategies used by the brain to coordinate
and control the two components. Modeling studies provide an
estimate of component magnitudes, but cannot uniquely identify
component timing nor can the provide detailed information on
component dynamics. Here, an eigenvector analysis is applied
to a multivariate data set consisting of multiple responses to a
step stimulus to confirm the presence of two major components
in the vergence response. Next, a new application of independent
component analysis is used to estimate the activation patterns
of the two components. Results from five subjects show that the
sustained component is activated concurrently with the transient
component, dominates the later portion of the response, and
maintains final position.

Index Terms—Disparity vergence response, eye movements, in-
dependent component analysis, principal component analysis, ver-
gence components.

I. INTRODUCTION

V ERGENCE movements, the inward or outward turning
of the eyes, develop in response to several visual and

psychological clues associated with depth and the major drive is
provided by target vergence angle and the associated disparity
[1], [2]. Disparity vergence was traditionally thought to be
the result of a single control process [3], [4], one which uses
feedback to produce the very small error in fixation which
follows a vergence response (of the order of minutes of arc [5]).
However, considerable experimental evidence amassed in our
laboratory [6]–[10] and elsewhere [11] indicates that responses
to simple step changes in target vergence are mediated by at least
two control processes: a preprogrammed component giving
rise to a fast “transient” motor response, and a “sustained”
feedback component which more slowly brings the eyes to
the final, highly accurate vergence position. The motivation
for this multicomponent strategy is the need to generate rapid,
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precise eye movements using computational elements (i.e.,
neurons) that have substantial processing delays. The basic
strategy used by vergence neural processes to coordinate the
transient and sustained components is unknown.

To study these control components, it would be helpful to find
some way to isolate them, as has been done with other vergence
components.1 Studies that employ careful model simulation of
vergence responses can be used to estimate hidden features such
as the underlying components, but this approach requires a fair
number of assumptions including the relative timing of the two
components [13]. (These studies could only provide a range of
possible delay times between the onset of the transient and sus-
tained component [13].)

Here, we introduce a new approach to evaluating the con-
tribution of vergence control components to a combined re-
sponse. While the technique will be applied to vergence motor
responses, it is applicable to any time response that may be con-
trolled by multiple components provided multiple observations
can be obtained. The technique is based on independent com-
ponent analysis (ICA) [14]–[17] applied to ensemble response
data. In its usual applications, ICA requires several different
signals representing various linear combinations of the sources.
These signals are acquired from measurements taken at different
physical locations. In this application of ICA, each of a number
of vergence responses produced by the same stimulus is treated
as a separate signal. The underlying components are the tran-
sient and sustained components that are combined in a normal
response. ICA requires that the components be independent and
small errors are introduced by the loss of independence between
the neural sources due to stimulus-induced synchronization. A
corrective algorithm has been developed and is described in
Sections II and III. Simulations of a two-component model
of disparity vergence [10], [13] will be used to evaluate the
corrective algorithm and the ability of ICA to identify the
underlying components.

Various methods exist to estimate the number of independent
components. Here, we use the traditional “Scree” plot which
graphs eigenvalue against component number. Typically, such
plots show a steep initial fall in eigenvalue after which the curve
flattens. The data dimension is chosen as the number just before
the curve flattens [18].

II. M ETHODS

A. Instrumentation

The ICA technique used here requires a number of repeti-
tive responses (observations) for the behavior being analyzed.

1Blur-driven vergence was first isolated by Johannas Müller in 1842 [12].
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Simulations indicated that 25 individual responses were suffi-
cient to determine accurate estimates of the two components
(under certain constraints detailed below). Here, we will use
from 30–45 individual responses to vergence step stimuli. A
typical example of an ensemble of disparity vergence responses
is shown in Fig. 1. Similar data were acquired on five subjects
all of which had normal uncorrected binocular vision and could
perform the experiments without difficulty.

The stimulus apparatus and data acquisition has been de-
scribed in detail elsewhere [6]–[10], [13]. The stimulus target
consisted of two short (2) vertical lines viewed as a stereo-
scopic which were manipulated to produce a 4step change in
vergence position. While the amplitude was predictable, stim-
ulus onset was randomized to discourage prediction. Only con-
vergence (inward moving) responses were used in this anal-
ysis. At least 80 responses were usually acquired to insure the
required number of artifact-free responses. Common artifacts
that necessitated rejection of a response included large or badly
timed saccades and occasional blinks. Binocular eye position
was recorded by means of a Skalor infrared eye movement mon-
itor (Model 6500). Calibration on done on each response, and
responses were sampled at 200 Hz., well above the Nyquist fre-
quency for vergence eye movements.

B. Independent Component Analysis

ICA is an analytical method that can isolate individual
components from a linear mixture provided the components
are nongaussian and sufficiently independent [14]–[17]. The
basic principles behind ICA are well described in number of
references [14]–[17] and a readable, comprehensive treatment
can be found in reference [14]. The ICA model is a generative
model: it attempts to explain how the sources (in this case
the components) are mixed to generate the observed signals
based on a linear mixing model [14]–[17]

where includes response vectors ( is the number of
signals in most applications, but the number of individual
responses in our application), andincludes source vectors
( is the number of sources, or components in our application).
The noise vector represents the disturbances in the form of
additive noise independent of the source vector. The goal of
ICA is to identify the linear mixing matrix . Inverting the
mixing matrix produces an “unmixing” matrix, ,
that can be used to estimate the unobservable source vector

( ). Determining the mixing matrix is accomplished
by linear transformations of the data set (i.e., rotations and
scalings) with the goal of optimizing some objective function
related to statistical independence, such as a measure of
nongaussianity. There are a number of different approaches for
estimating , differing primarily in the objective function that
is optimized and the optimization method [14].

The critical assumptions in ICA are that the variables are
statistically independent, have nongaussian distributions, and
are linearly mixed. Application of ICA requires verification
of the existence of the sources and that they mix linearly.

Fig. 1. An ensemble of 40 disparity vergence responses to a step change in
stimulus. Substantial movement-to-movement variability is seen. Subject: C01.

Vergence responses are certainly nongaussian, and while no
biological process is likely to be truly linear, extensive eye
movement data indicate that separate neural signals, such as
those from version and vergence neural centers do combine
more-or-less linearly. While the sources are thought to be
produced by different neural centers, the initial portions of
these components may not be completely independent due
to stimulus-induced synchronization; that is, activation by a
common stimulus could induce a temporary correlation between
their responses. As these responses continue, this “stimulus
effect” diminishes so that the components become independent
during the latter portion of the response. To avoid this stimulus
induced synchronization, the evaluation of the mixing matrix,

, was performed only on the latter portion of the responses.
The unmixing matrix, , obtained from the partial responses
was then applied to the entire response (including the initial
portion) to estimate the underlying motor components,. In
some cases, this produced an error in the initial portion of the
response which could be corrected by an additional rotation
as described in Section III-B.

Several popular ICA algorithms are available from the Web
as MATLAB script files. In this study, we investigated two
such algorithms: the “FastICA” algorithm developed by the ICA
Group at the Helsinki University2 and the “Jade” algorithm for
real-valued signals developed by J.-F. Cardoso3 Although the
two algorithms performed nearly the same on both simulated
and experimental data, the “FastICA” algorithm was selected
as it was found to converge somewhat more reliably than
the Jade algorithm. Both algorithms were implemented under
Windows-based Matlab, and performed the analysis in only a
few seconds on a 500-MHz PC.

To apply ICA to ensemble vergence response data, each re-
sponse is treated as an observed signal. The responses consisted
of 2 s of dynamic vergence following a 4step stimulus. (Ver-
gence is taken as the difference in the position of the two eyes
and is computed from the individual eye movement recordings.)

2http://www.cis.hut.fi/projects/ica/fastica/fp.html.
3http://sig.enst.fr~cardoso/stuff.html.
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An ensemble of 40 individual responses is shown in Fig. 1. Sim-
ulations showed that the algorithms produced more accurate re-
sults if the data sets were symmetrical, so each response was
modified by adding the inverted response to the end of the ac-
tual response to make the ensemble data symmetric. While this
operation does not add any new information to the data set, it
does change its statistical properties. Specifically, a modified,
symmetrical data set showed a greater difference in the ratios be-
tween the first three eigenvalues as compared with the original
data set. After analysis, the inverted responses were discarded.

Results presented below show that the vergence responses
contain only two major components, so the ICA algorithm was
set to isolate two sources. When the number of sources is less
than the number of observations, as is the case here, the FastICA
algorithm uses a preapplication of principal component analysis
(PCA) to reduce the dimensionality of the data set [14]. Due
to inherent ambiguities, ICA cannot determine the scale of the
components. The initial preresponse period can be used to es-
tablish a zero reference for the components. To determine the
amplitude, we note that the sum of the two components should
equal the average vergence response. Hence, the amplitude of
the individual components was adjusted until their sum equaled
the average response. Since there were only two components
with quite different time characteristics, the amplitude scaling
was uniquely determined by matching the average response.
Amplitude scaling was implemented using the MATLAB basic
optimization routine.4

C. ICA Evaluation, Compensation and Model Simulations

Model simulations were used to verify that this application
of ICA was able to identify the underlying control compo-
nents. Simulations were also used to develop and evaluate
the algorithm to correct for errors related to stimulus-induced
loss of independence as described below. The model used for
simulations was the well-established Dual-Component model
developed in our laboratory. Details of the model’s structure,
parameters and behavior are well described elsewhere [10],
[13], [19]. The advantage of this model-based evaluation is that
the underlying control components are directly available as
model outputs. Ensemble averages were determined for each
component after the component was filtered by the oculomotor
plant. Usually 40 model responses were simulated.

Component variability was simulated by randomly varying
seven model parameters associated with the two component
processes. Specifically, variability in the transient component
was simulated by randomly varying onset time, the pulse
width, and the amplitude of the transient pulse. Variation in
the sustained component was produced by randomly varying
the onset time, the dynamics (a slew rate parameter), and the
amplitude. In addition, the major time constant of the motor
plant was varied within known physiological ranges [20]. The
range over which these various parameters should be randomly
varied was empirically determined to provide an approximate
match to the variability seen in experimental data. Fig. 2(a)
shows a typical ensemble of simulated disparity vergence
responses. Fig. 2(b) (dashed line) shows the ensemble standard

4The routine “fins,” recently renamed “fminsearch” uses the Nelder–Mead
simplex, or direct search, method.

(a)

(b)

Fig. 2. (a) An ensemble of 40 simulated disparity vergence responses to a step
change in stimulus produced by the model in Fig. 2. (b) Ensemble standard
deviations derived from experimental and simulated response ensembles. Solid
lines: Ensemble standard deviation from the responses of subjects C01 and L01.
Dashed line: Ensemble standard deviation of simulated data.

deviation computed from the simulated responses of Fig. 2(a)
along with the ensemble standard deviation computed from
experimental response ensembles of two subjects (solid lines).
Although the general structure of the ensemble standard devia-
tion of real data is more complicated than that produced by the
model, Fig. 2(b) shows that the variability of the simulated data
is roughly similar to that of the real data and the magnitude
of this variability (as represented by the standard deviations)
falls between that of the two subjects. The simulations will
be used only to evaluate the ICA analysis procedures, so an
approximate match between simulated and experimental data
is sufficient. Since the delay between the onset of the transient
and sustained component was not known, simulations were
done with nominal delays between 0.0 and 200 ms.

D. Principal Component Evaluation of the Number of
Independent Components

Several criteria exist for selecting the number of significant
components in a multivariate data set. The technique used here
examines the data set eigenvalues searching for a knee or break-
point in a plot of eigenvalue against number of components
(the so-called “Scree” plot [18]). The eigenvalues were deter-
mined using the MATLAB “princmp” routine which is based
on singular value decomposition. Fig. 3 (upper left) shows the
Scree plot obtained from the simulated responses of Fig. 2(a).
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Fig. 3. Scree plots, plots of the eigenvalues found for the data set against
eigenvalue number, for the five subjects (labeled) and simulated data (upper
left). The simulated data is known to contain only two components and the
curve flattens for eigenvalue numbers three and higher. The plots from the
subject data are qualitatively similar indicating the subject data also contains
two components.

The curve descends steeply then flattens for eigenvalue numbers
greater than three. This would indicate that the data set contains
only two uncorrelated sources, as is known to be the case with
this simulated data.

III. RESULTS

A. Number of Components

Fig. 3 plots the Scree plots for the five subjects studied as well
as that of the simulated data. Note that all subjects show Scree
plots that are qualitatively similar to the Scree plot of the sim-
ulated data: the curves tend to flatten above the second eigen-
value. This indicates that the subject data also consisted of two
primarily components.

B. Simulation Results

Unlike experimental conditions where only the combined
response can be measured, simulations can provide the under-
lying components directly. Fig. 4(a) shows the average transient
and sustained component (components labeled) along with the
overall average response (dashed lines) which is simply the sum
of the two components. Note that the contribution of the two
components to the combined response is not the same as the

(a)

(b)

(c)

Fig. 4. Components found by ICA in simulated data (solid lines). The dashed
lines are ensemble averages of the two simulated motor components. The
overall response average is also shown (thin dotted line). (a) The sustained
component follows the activation of the transient component by 50 ms in
this simulation. A close match is found between the component averages
and the components identified by ICA. (b) When the sustained and transient
components were activated simultaneously (or less than approximately 30 ms
apart), a small error is seen in the initial portion of the component estimations.
(c) Application of an additional post rotation and scaling to the initial portion
of the response essentially eliminates this error. Note that this corrective
algorithm was not required in the analysis of actual vergence data shown in
Fig. 5 even if the two components had the same onset time. Delay= (a) 50 and
(b) 0.0 ms; (c) 0.0 ms corrected.

neural signals themselves, but rather reflects these neural sig-
nals after they are filtered by the oculomotor plant. In Fig. 4(a)
the average delay between the transient and sustained com-
ponent was 50 ms and the components identified by the ICA
analysis closely match the actual average component gener-
ated by the model. When the two components were activated
simultaneously (or for separations less that approximately 30
ms), small errors were noted in the estimates of the initial
segments, Fig. 4(b), although the later segments are estimated
correctly. The source of this small error is attributed to the loss
of independence between the components due to their simul-
taneous activation by the stimulus, and an additional rotation
and scaling was used to correct this initial error. Specifically,
the initial segment of the components was orthogonally rotated
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Fig. 5. Components of disparity vergence found by ICA in five subjects along with the response average (dashed line). No compensation was required forthese
data.

until both components were nonnegative. Following rotation,
the components were re-scaled to the match the later com-
ponent segments which were unaltered by the compensation
process. Fig. 4(c) shows that this correction algorithm resulted
in a very close match between simulated and estimated com-
ponent responses. We note that this correction algorithm was
never required for real data; that is, the sustained component
evaluated from actual subject data never showed the negative
values seen in Fig. 4(b). This indicates that there is greater
independence between two components in the real situation
than in simulated data. We speculate that this independence is
likely the result of a greater number of fluctuating variables in
the real physiological system than represented in the model.

C. Experimental Results

Fig. 5 shows the component contributions found from the
ensemble disparity vergence response data of our five subjects.
Also shown are the average responses computed from the
ensemble data (dashed line). The dynamics of the average

response (dashed line) varies considerably across the five
subjects, yet the underlying components are qualitatively
similar: a transient component is found in the initial portion of
the response that decays to near zero after 600–800 ms; and
a sustained component becomes active at approximately the
same time and dominates the latter portion of the response. In
most subjects, the sustained component shows a fairly rapid
rise in the first 500–800 ms followed by a gradual rise to the
final value during the subsequent 1.5 s.

IV. DISCUSSION ANDCONCLUSION

ICA can be applied to ensemble data to extract the underlying
components from a combined response, but some caution must
be observed. In our application, a correction to the initial seg-
ment of the components was required to compensate for stim-
ulus induced loss of independence in simulated data, although
this correction was not needed for subject data. It is also impor-
tant to use data that are relatively free of artifact as only a few
responses with large artifacts can adversely affect the analysis.
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A major limitation of the method is that it can only be ap-
plied to an ensemble of responses, and it provides estimates only
of component averages. This precludes its application to those
problems were only a single, or a small number of responses
can be obtained. A problem related to the averaging nature of
the technique can occur if the variability in the onset delay (i.e.,
the response latency) is large in comparison to the response dy-
namics. A wide variation in a component’s onset time will tend
to reduce the dynamics of the ensemble average,5 resulting in an
inaccurate estimate, particularly of the faster component (in our
case, the transient component). Simulations in which the vari-
ability in the latency was large in comparison to the response
dynamics (25% of the approximate time constant) showed that
the transient component was underestimated by 20% with a cor-
responding overestimation of the sustained component. Hence,
for responses that have large latency variations compared with
their dynamics, such as saccadic eye movements, the variability
will have to be reduced either by shifting the data into better
alignment or carefully editing the data to eliminate responses
with widely varying onset latencies.

The primary finding of our ICA-based analysis is the identi-
fication of a sustained and transient component and exposition
of their related dynamics. The component dynamics were qual-
itatively similar in all five subjects: the components were ac-
tivated at approximately the same time (although one subject,
W04, showed a slight delay in sustained component onset); and
the sustained component dominated the latter portion of the re-
sponse as the transient component decayed to zero. A previous
model-based analysis also showed that two components, similar
to those found by ICA, could accurately represent the vergence
response. ICA provides confirmation of this previous finding,
but it provides stronger evidence because it requires far fewer
assumptions about the processes that generate the data. As with
all complex analyses, both model-based and ICA, decompo-
sition techniques are predicated on certain assumptions. Both
techniques assume the existence of two primary components6

and both assume these components are linearly mixed. In addi-
tion, both approaches require component independence, and
the problems and related compensatory techniques associated
with ICA have been discussed. In addition to these basic
assumptions, the model-based approach requires a number of
additional assumptions regarding component timing and the
dynamic characteristics of the neural processes that generate the
two components. Although the model-based analysis requires
a far larger set of assumptions, it does have the advantage
that it can be applied to a single response as opposed to the
response ensembles required by ICA.

The ICA algorithm used here assumes the noise contribution
is small, yet some noise is present as can be seen in Fig. 1.
This noise is likely to be due to measurement artifact or small
embedded saccades (so-called microsaccades) and appears as
high-frequency noise. This noise should not be confused with

5The variable onset time results in a “smearing” of the responses in the aver-
aging process.

6Our eigenvalue analysis, based on a yet another approach, PCA, does provide
independent support for this assumption.

response variability which manifests as modifications in the
overall response trajectory. The algorithms used here appear to
be robust to the noise levels in our eye movement recordings,
although it is also possible that this noise may affect some
small details of the isolated components.

As an analysis procedure, ICA is relatively new and the
techniquesarechangingalmostdaily. It is likely that theadvances
will extend the method to be more generally applicable, require
fewer number of observations, and be more tolerance of noise.
However, in its current state of development, ICA can be
profitably applied to a large number of biological behaviors.
Future applications in our laboratory will study the changes in
components associated with fatigue, adaptation, and the use
of prediction.
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