Composite Solutions for Returning Strength to Damaged Assets

By Peter Johnson Belzona Polymerics

World Leader in Composite Repair Solution

developed by working closely with major Oil and Gas companies since the 1970s.

Belzona Materials:

Resist aggressive chemicals and corrosion, slow down erosion

Provide complete protection in high temperature and high pressure environments

Success demonstrated by prequalification testing and case studies

Global Presence - Local Service

More than 140 Distributors operating in over 120 countries

Composite Solutions for Returning Strength to Damaged Assets

Composite Cold Bonding
 Composite Wrapping

Used for; Tanks, Vessels, Pipes...

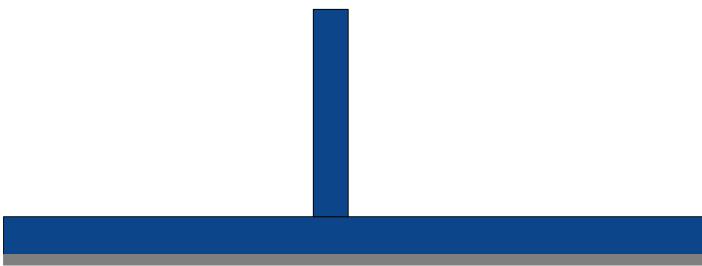
Suffering from; corrosion, wall thinning, leaking...

without Hot welding

Composite Cold Bonding and Structural Repair

For Pipework, Vessels, Tanks, Decks, Towers, Supports, Internal parts, etc...

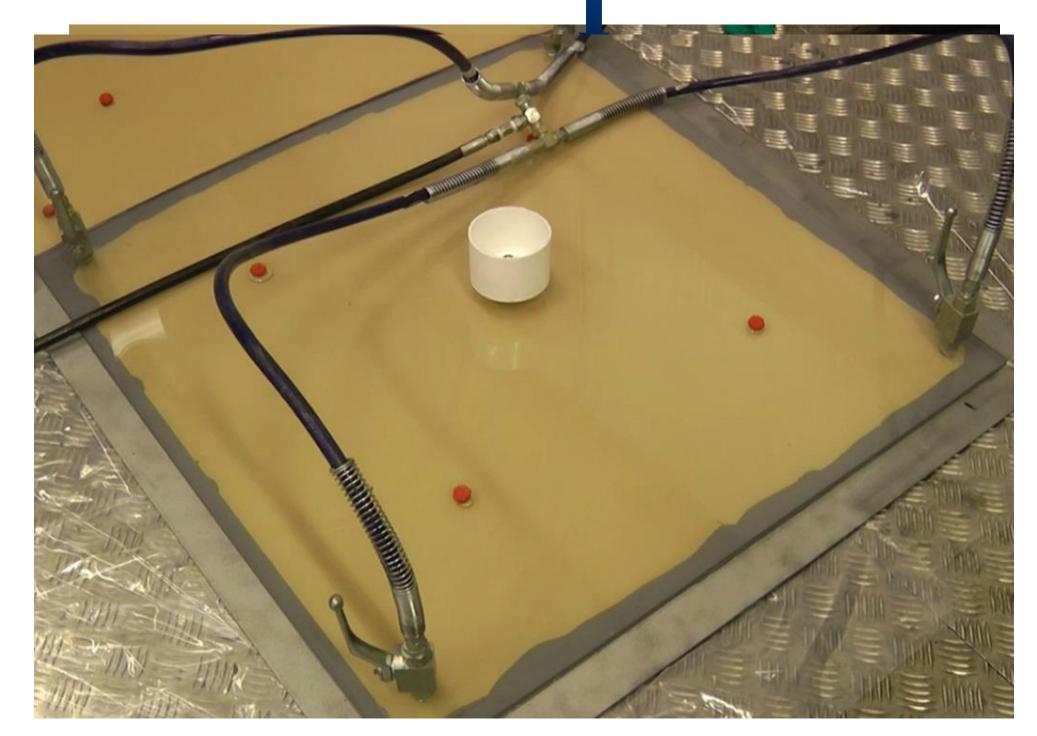
Composite Cold Bonding - Advantages

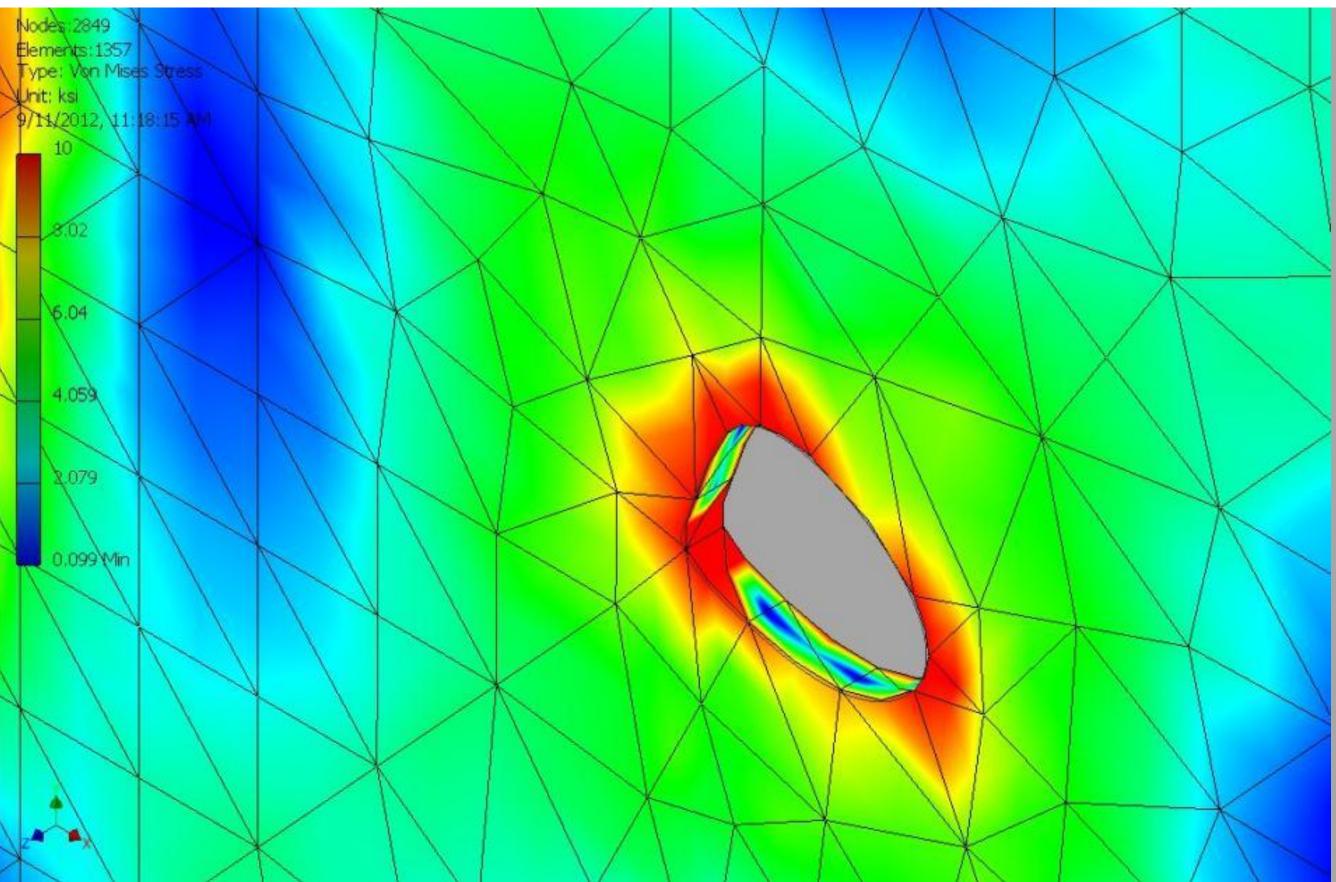

- No Hot Welding
- Save Shutdown Cost/Time
- Simple / Quick Repair Time
- Strength can be calculated based on Test
 Data and Material properties
- No Corrosion After Repair
- No Heat Distortion to the base metal

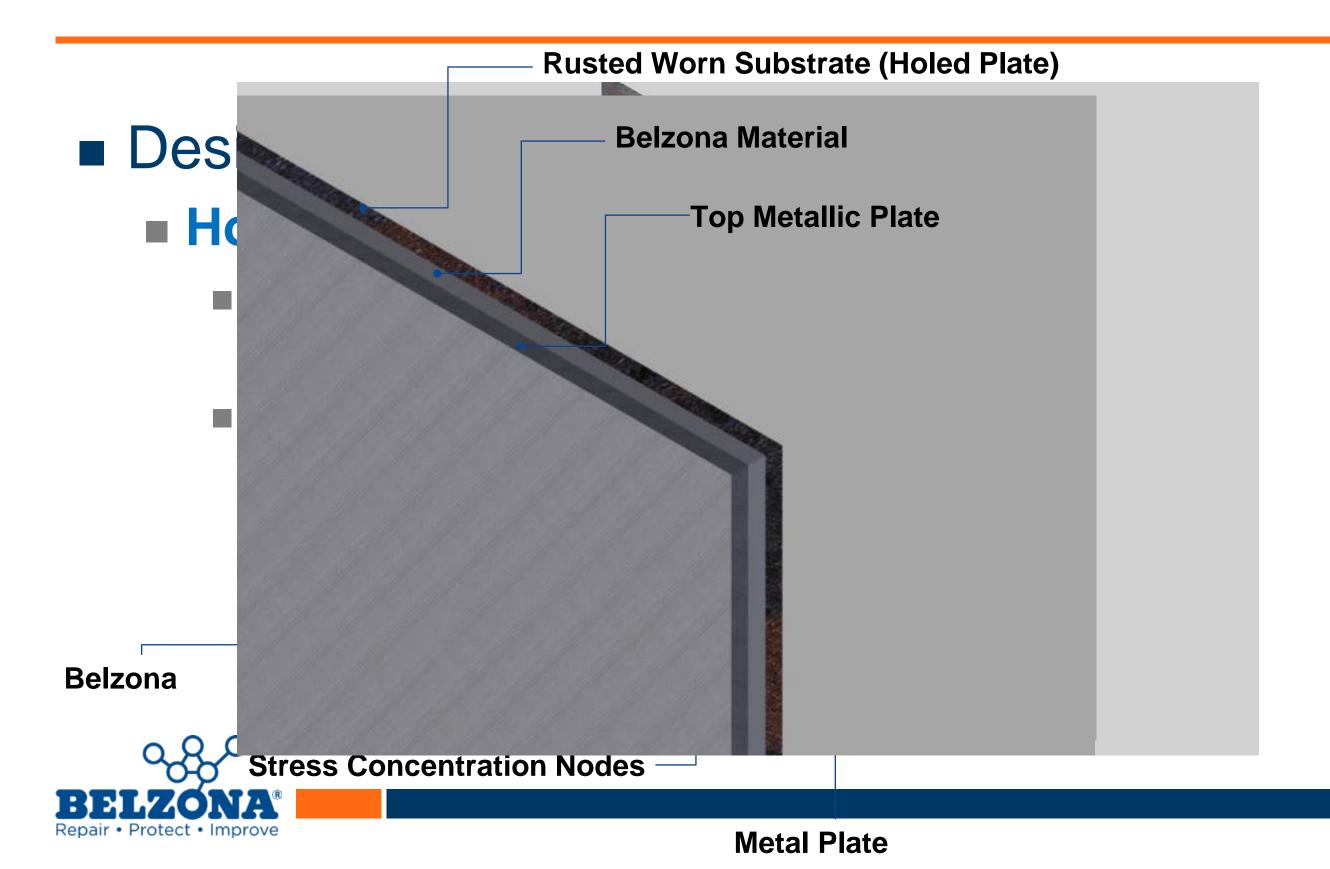
Cold Bonding

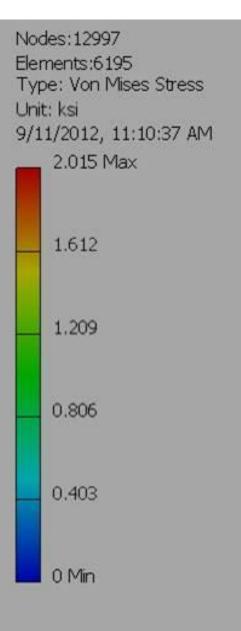
Paste Method

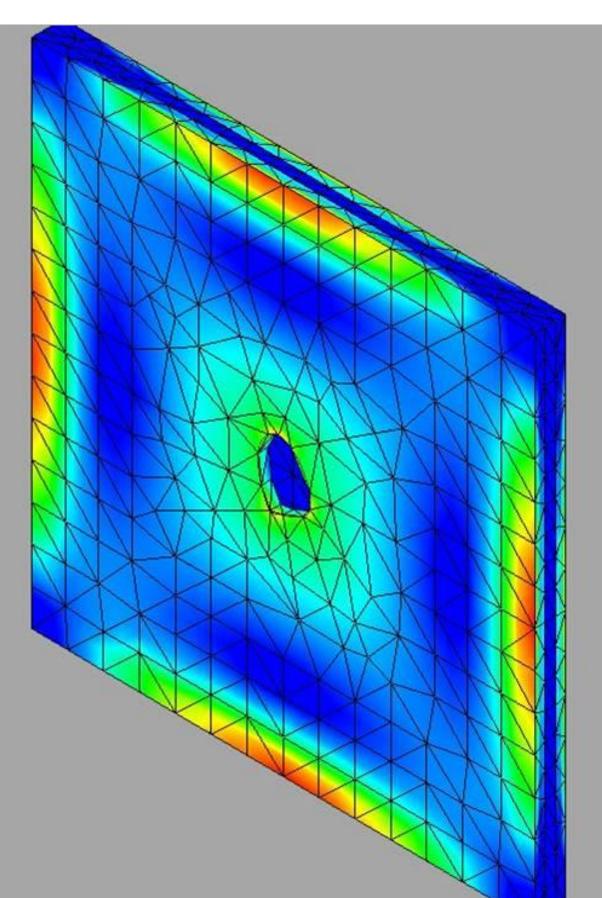
Think of it as a "Composite sandwich"


Example: bonding deck/ tank external fittings


Cold Bonding


Injection method


Demonstration with Perspex to show material distribution



Opus, Bonding Separator Internals

2003, Fittings bonded with no risk of metal distortion

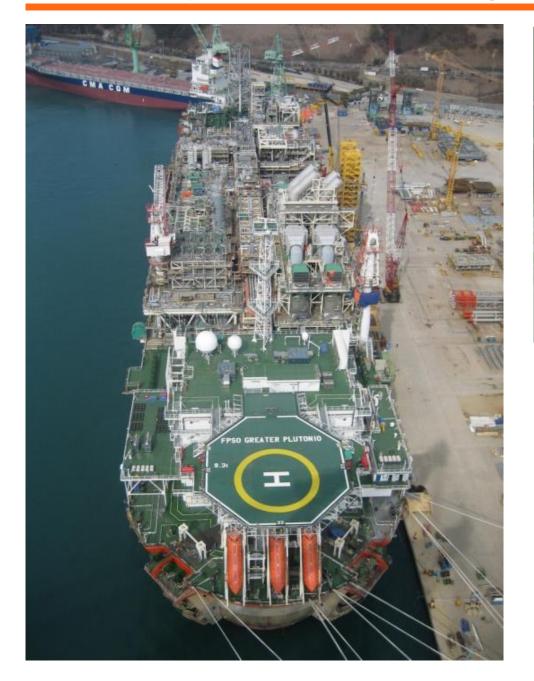
Excellent adhesion and compressive strength

2

Opus, Bonding Separator Internals

2003, Fittings bonded with no risk of metal distortion

Refinery Sprinkler System Bonding


Mobil, Altona Refinery, Australia

Deck Bonding

Cable tray supports bonding for BP Greater Plutonio

Belzona was chosen due superior characteristics and vendor support

Gas Separation Plant, Thailand - Jan 2013

Gas Separation Plant, Thailand - Jan 2013

Condition of Corrosion Under Support – After Wet Blasting Severe metal loss revealed

Gas Separation Plant, Thailand - Jan 2013

Belzona 1111 Supermetal was used for bonding metal plates provided by customer Plate size was 350 mm.x 250 mm. Bonding thickness was 2 mm.

Apply Belzona 1111 on the metal plate

Gas Separation Plant, Thailand - Jan 2013

Belzona 1111 Supermetal was used for bonding metal plates provided by Customer Plate size was 350 mm.x 250 mm. Bonding thickness was 2 mm. Pipe section was lifted up, bonded with metal plate securing with strap.

BELZONA® Repair • Protect • Improve Bond metal plate with corroded pipe

Gas Separation Plant, Thailand - Jan 2013

Belzona 1111 Supermetal was used for bonding metal plates provided by Customer Plate size was 350 mm.x 250 mm. Bonding thickness was 2 mm. Pipe section was lifted up, bonded with metal plate securing with strap.

Bond metal plate with corroded pipe

Independent Testing

Cranfield Impact Centre Limited

- Tested Several Properties
 - Bending Moment 7418 Lb (3364 Kg) To Break
 - Impact Loading 500 Joules Impact (No Damage)
 - Drag Loading 1 Tonne Drag (No Damage)
 - Lap Shear 4945 Lb (2243 Kg) To Break

Plate Bonding on Buchan Alpha

Based on excellent results Belzona was chosen as the solution and is on-going throughout North sea

				-
	0		mport Centre Limited	
-	Carmine	inerite its	input Centre Linnoed	
				Wharity End, Cranifeld Bedford MR43 O/R U.K. Tet +44 (0)1234 751361
				Fizi: +44 (0)1234 750144 email: cic@cranfield.ac.uk
				web site: www.dol.co.uk
-			REPORT	
			to	
-			WS ATKINS	
			CONSULTANTS LTD	
-				
			Testing of Bonded	
			Composite Panels	
			November 2001	
р	roject Co-ordinator		P. Popely	
s	enior Engineer		R. Taggerty	
	est Engineer	12	R. Butler	
	IC Contract No	1	5206	
	in contrast NO			

Deck Bonding

CNR, Ninian Central Platform at the North Sea

Application

Deck Bonding

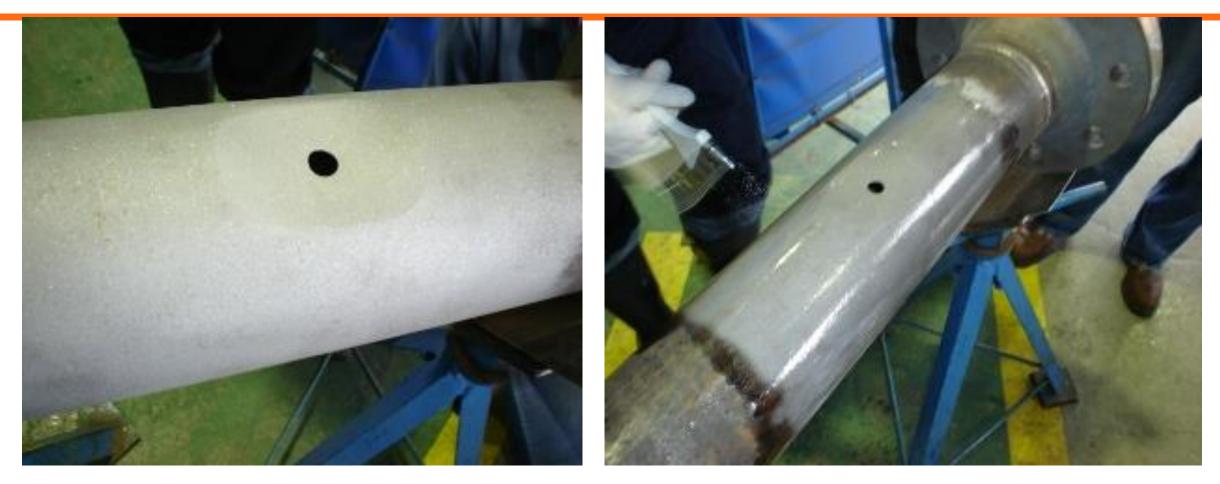
CNR, Ninian Central Platform at the North Sea

Inspection one year later

Independent Testing

Lehigh Testing Laboratories, Inc.

- Three different pipes pressure tested
- Pipe 1 3" DIA / SCH 80 / 12" Nipples
- Pipe 2 3" DIA / SCH 80 / Pipe Caps
- Pipe 3 Welded construction pipe
- All pipes have: 1/2" hole and repaired with 1/4" plate


Results

- Pipe 1 3050 psi (214 Kg/cm²) to failure
- Pipe 2 3100 psi (217 Kg/cm²) to failure
- Pipe 3 3400 psi (239 Kg/cm²) to failure

308 WPS1	FBASIN RCAD • P.O. BOX 903 • NEW CASTLE, DE 19720 (302) 328-0500 • FAX (302) 328-0417
	TEST REPORT
BELZONA INC	DATE: June 25, 2002
ATTN: RICARDO CABRERA 2000 NW 88 COURT	PO No: PER LETTER
MTAMI, FL 33172	LEHIGH No: A-13-20ADDENDUM
	PAGE: 1 of 1
CAMPLE DESIGNATION: (1) SAM	PLF: BUZONA 1111 (SUPER METAL) REPAIR #2
SAMPLE DESIGNATION: (1) SAM	PERCENTRA TITI (SUPER METAL) REPAIR #2
PRESSURE TEST OF THREE PIP	25 ASSEMBLIES WITH EPOXY REPAIR
Three (3) carbon steel pipe assemblies	s were fabricated using the following components:
 3" diameter, schodt 	ulc 80, 12" long pipe nipples
 3" diameter, schede welded construction 	
	into the pipe and then repaired using Belzona 1111 product, air was applied by a Belzona representative.
All three assemblies were pressure tos via a pin-hole leak at the edge of the n listed below:	sted to failure. Each assembly failed in the epoxy repair metal patch-plate and opoxy. The pressure at failure is
	bly Pressure at Failure (psf) 3.050
Assemt	
1	3,100
1	
1	3,100
1	3,100
1	3,100 3,400
1	3,100

Offshore Oil&Gas Operator, Thailand - 2005

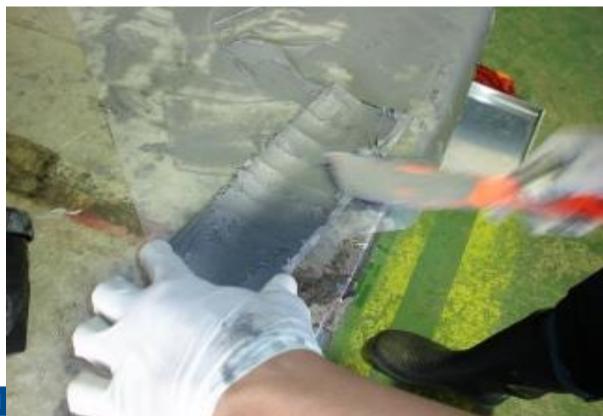
- Prepare another <u>2 x pipe spools</u>, specification as follows:
- 4-inch pipe, API 5L Gr. B, Sch. XS (8.56 mm)
- Pressure-Temp Rating = 1,350 psig at -20 to 100 F.
- Drill small hole (approx. <u>10 mm Dia</u>.) and grinding of metal wall to imitate the leak and corrosion.

Offshore Oil&Gas Operator, Thailand - 2005

- Follow the same procedures for <u>Abrasive Blasting</u> and Cleaning Surface with <u>Belzona 9111</u> (N.F. Cleaner/ Degreaser).
- Followed by application of **Belzona 1111**.

•

Offshore Oil&Gas Operator, Thailand - 2005



• Belzona 1111 was mixed and applied to the defect area

Offshore Oil&Gas Operator, Thailand - 2005

Plate bonding spool:

- 6-inch pipe sleeve, same wall thickness at 1/4 of circumferential was blasted and cleaned prior to Belzona 1111 application.
- Belzona 1111 was then spread over pipe surface and internal area of plate sleeve.

Offshore Oil&Gas Operator, Thailand - 2005

- Plate bonding spool:
- Edges chamfered to ensure Belzona 1111 spread with 45 degree at base of pipe.

Repair • Protect • Improve

Offshore Oil&Gas Operator, Thailand - 2005

Hydrostatic Test

Adhesive failure between plate and product

Pressure retention 200 bar

Composite Wrapping

Belzona SuperWrap

ISO24817 / ASME PCC2 Compliant Repair For Pipeworks , Vessels

Composite Wrapping - Advantages

Belzona SuperWrap

- No Hot Welding
- Save Shutdown Cost/Time
- Simple / Quick Repair Time
- Reinstate the Pipe Strength compliant with ISO/ASME Standard
- No Corrosion After Repair
- No Heat Distortion to the base metal

Belzona SuperWrap

Composite material repairs return strength to a weakened substrate by providing adhesion and hoop strength.

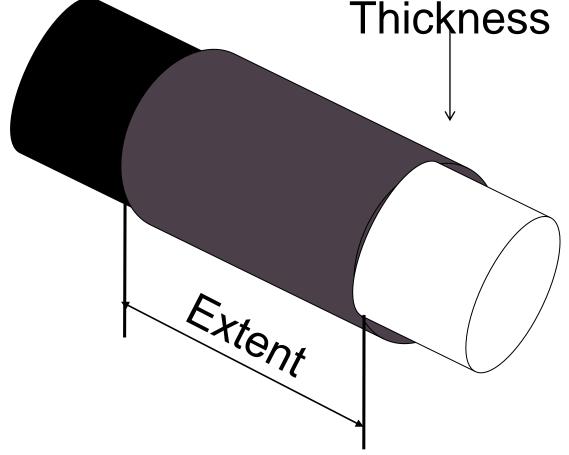
- Adhesion is affected by surface profile and area.
- Adhesion can be increased by
 - Selecting materials with high mechanical adhesion
 - Increasing surface area

- Hoop strength is affected by the composite cohesive strength
- How can hoop strength be increased?

□No voids or creases

□Proper wetting/consolidation

Stronger fiber


Belzona SuperWrap

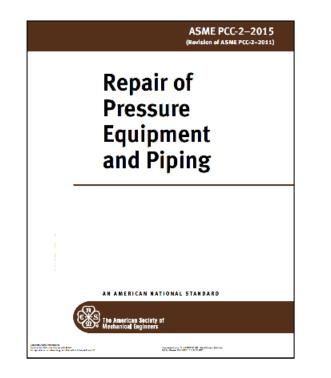
Compliant Solution

- Composite repair is pre-qualified against industry recognized standards
- Solution is mathematically engineered and applied by factorytrained personnel

Two critical variables to design for a composite repair are:

ThicknessAxial Extent

Belzona SuperWrap


Governing documentation for nonmetallic composite solutions covering

- Required performance properties for the composite materials to be qualified
- Requirements for the design of the composite repair
- Training requirements for application, supervision, and designing of the composite repair system
- Requirements for successful execution including ASR, method statements, QA/QC documentation

Belzona SuperWrap

ASME PCC 2

"Repair of Pressure Equipment and Piping: Nonmetallic Composite Repair Systems for Piping and Pipework"

Repair • Protect • Improve

ISO 24817

ISO/TS 24817	ECHNICAL PECIFICATION
Finit editori 2006-12-15	
airs for d design,	troleum, petrochemical a dustries — Composite rep pework — Qualification ar stallation, testing and ins
er natural — Réparationa Informété aux exigences	obies du pétrole, de la pátrochimie el du pa natériau composite pour canalizations — Ci serformance el conception. Astalation, eso
Reference number (SO/TS 24817 20068)	

"Requirements and recommendations for the qualification and design, installation, testing and inspection of composite pipe repairs"

What is Compliance?

- Compliance is achieved when a standard is met
 - ISO/24817(2015),
 - ASME PCC-2 Section 4.1
 - Belzona's compliant piping repair system is SuperWrap
- There are many non compliant repair systems that can also be used for pipe repair

How Does a Wrap Comply?

- Prequalification testing carried out in accordance with ISO/24817 and ASME PCC-2
- Correct failure mode
- Validated training to ensure application standards
- Designs carried out in accordance with standards

Introducing a Compliant Solution

Surface Preparation

- 1. Surface preparation prior to installation of the repair must be the same as that used for pre-qualifying the repair system.
- 2. Belzona SW II has been pre-qualified onto carbon and stainless steel substrates.

SSPC-SP 10 – ISO 8501-1 Sa 2 ½ -NACE No. 2 NEAR WHITE METAL

Minimum average substrate profile of 75 micron (3 mil)

SSPC-SP 11 POWER TOOL CLEANING TO BARE METAL

Minimum average substrate profile of 25 micron (1 mil)

Introducing a Compliant Solution

Belzona SuperWrap Resin

Resin Selection - 100% solids epoxy based

- Outstanding mechanical adhesion
- Low tendency to creep
- No shrinkage when curing
- High HDT values
- High heat resistance
- Extremely durable

Repair • Protect • Improve

Resin Type	Application Temperature Level (°C)	Maximum Service Temperature (°C)
Cool Climates	Above 5	80
Tropical Climates	Above 20	85
High Operating Temps	5 - 40	150
ELZONA		

SuperWrap II Resins

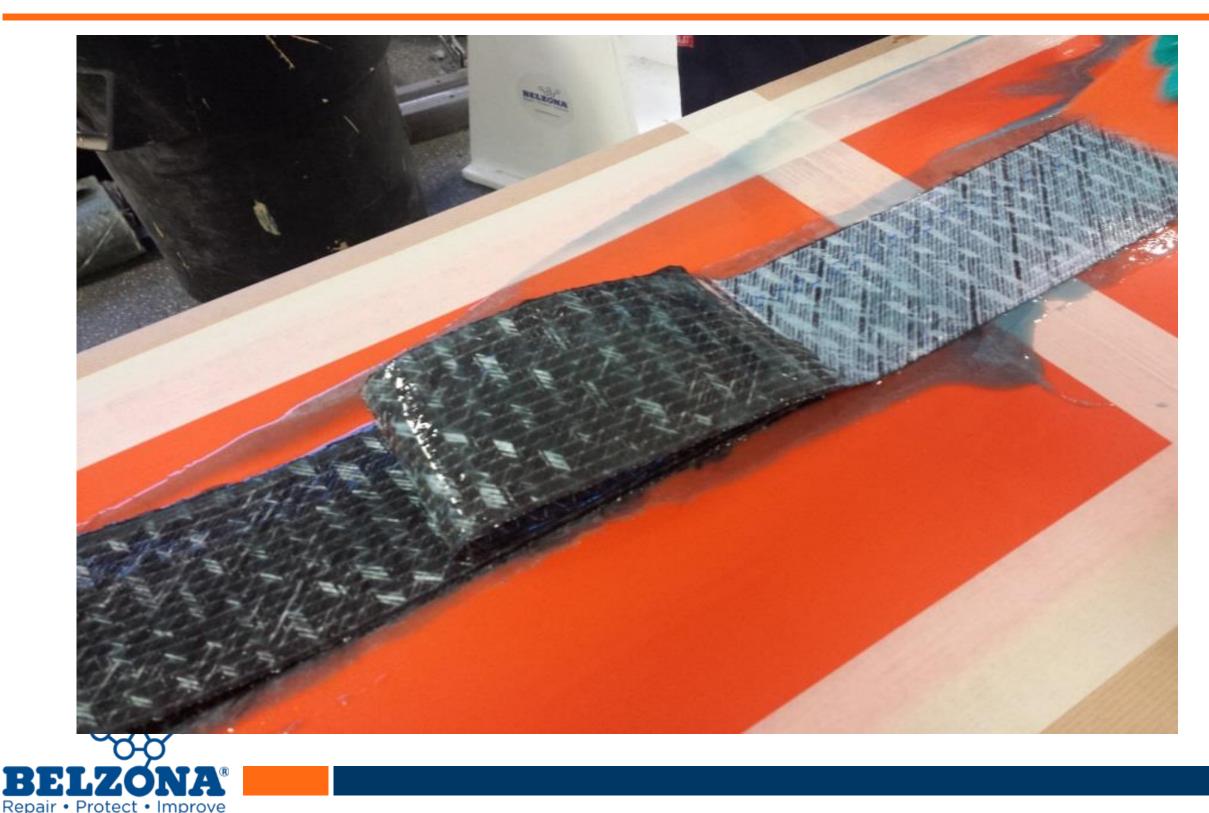
SuperWrap II Resin Options

Repair • Protect • Improve

Belzona 1981

- Fast curing resin designed for application in cold environments
- Application temperature 5 20 °C

Belzona 1982


- Long working life resin designed for application in warmer environments
- Application temperature 20 40 °C

Belzona 1983

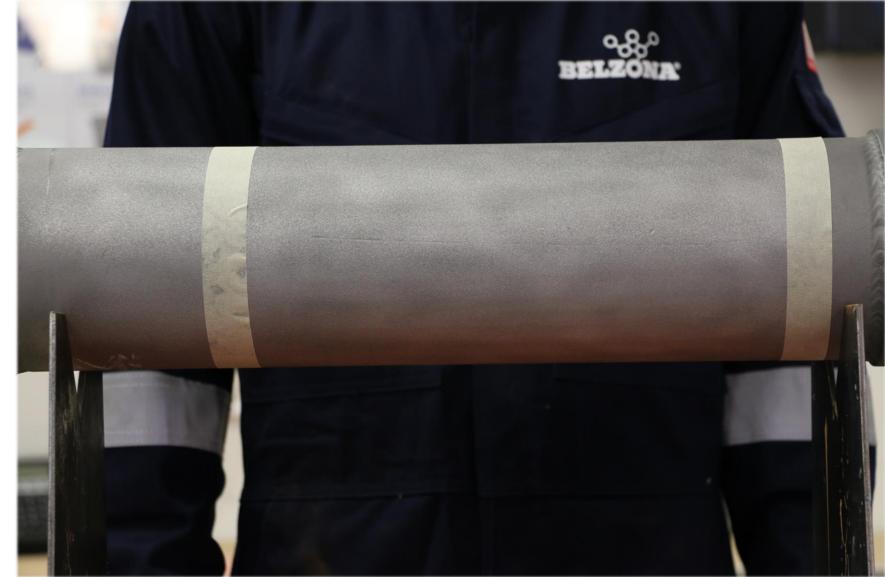
- Resin designed for application at service temperature levels up to 150°C (302°F)
- Application temperature 5 40 °C

Introducing a Compliant Solution

Belzona SuperWrap Reinforcement Sheet

Introducing a Complaint Solution

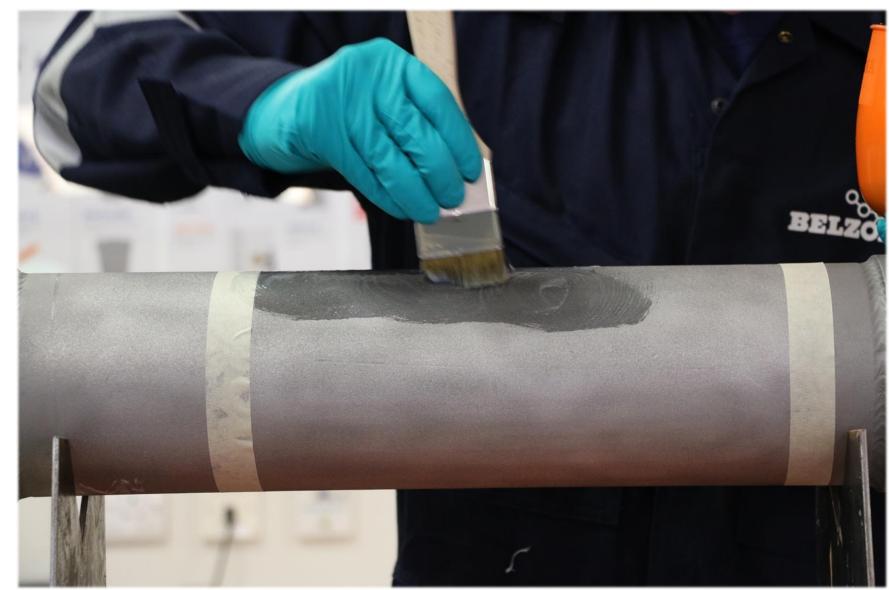
Belzona SuperWrap Release Film



Application Procedure for Superwrap II

Belzona SuperWrap Application

- Treat the defect Area
 - Plate Bond
 - Live Leak
- Prepared beyond repair area
 - Sa 2.5 or SP11
 - 75 microns or 25 microns
- Degrease



Application Procedure for Superwrap II

Belzona SuperWrap Application

Mix and apply resin to wet out the surface profile

Wet out Belzona 9381 Reinforcement sheet with same resin

Wrap wetted out reinforcement sheet around pipe

Repeat this Process to build up the required number of wraps / layers

Tightly wrap Belzona 9382 around the repair

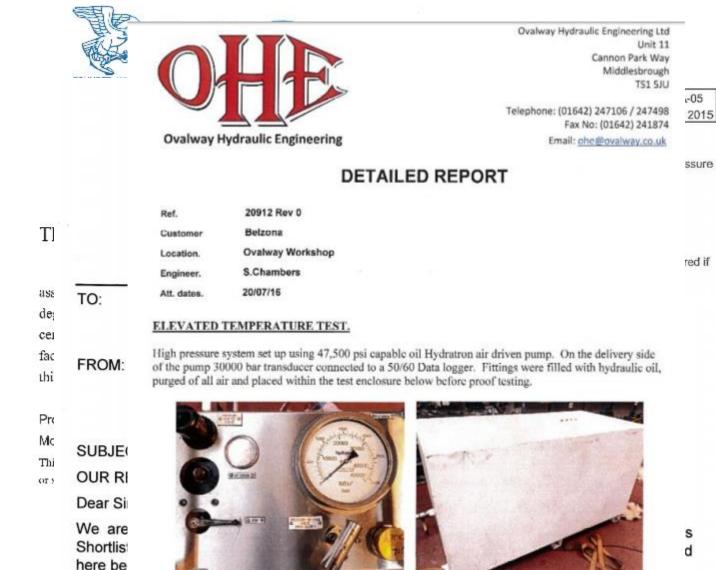
Secure ends in place with masking tape

Once cured, remove 9382 and masking tape

Property	Details	Test Methods
Tensile Properties	Tensile Strength, Tensile Modulus, Poisson's Ratio, Strain to Failure	ASTM D3039 – Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
Thermal Expansion	Coefficient of Thermal Expansion	ISO 11359 – Plastics – Thermomechanical Analysis
Material Glass Transition	Glass Transition Temperature	ISO 11357-2 – Plastics – Differential scanning calorimetry– Determination of-glass transition temperature and glass transition step height
Lap Shear Adhesion Strength	Shear strength of composite bonded to substrate	EN 1465 – Lap Shear Strength, Adhesives, Rigid to Rigid Bonded Assemblies
Structural Integrity	Wrapped pipe with defect to survive short- term pressure test	ISO 24817 – Annex C Short-term Pipe Spool Survival Test

Property	Details	Test Methods
Impact Performance	Low velocity 5 J impact performance	ISO 24817 – Annex F – Measurement of impact performance
In-Plane Shear Modulus	Shear Modulus by V- Notched Beam Method	ASTM D 5379 Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method
Energy Release Rate	Toughness parameter for the repair/substrate interface	ISO 24817 – Annex D -Measurement of γ_{LCL} for through-wall defect calculation
Long-Term Strength	Long-term (creep rupture) strength of the composite repair	ISO 14692 – Annex E – Measurement of performance test data
Long-Term Lap Shear Performance	Measurement of lap shear adhesion strength after 1000 hours of heat exposure (at 40°C)	EN 1465 – Lap Shear Strength, Adhesives, Rigid to Rigid Bonded Assemblies

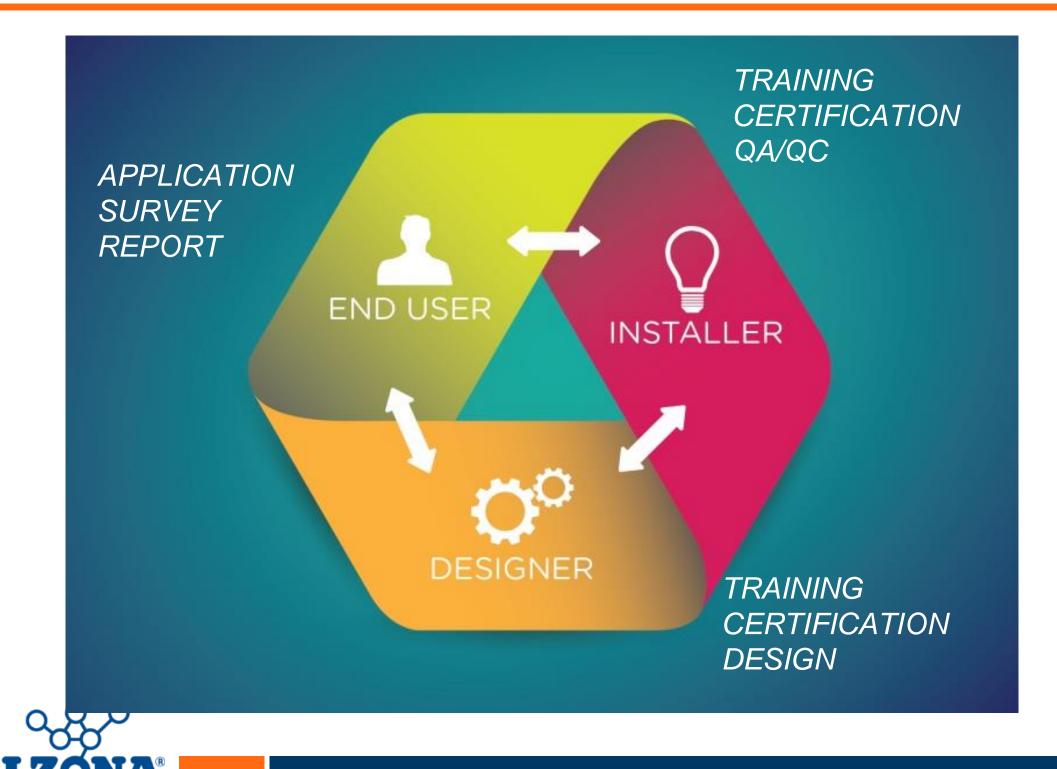
Properties	Reinforced Belzona 1981	Reinforced Belzona 1982	Carbon Steel (For comparison reasons)
Tensile	(H) 524 MPa	(H) 505 MPa	400-550
Strength	(A) 126 MPa	(A) 121 MPa	MPa*
	(H) 38,800 MPa	(H) 38,600	
Young's		MPa	200 GPa*
Modulus	(A) 18,300 MPa	(A) 15,475	200 GPa
		MPa	
Poisson's	(H) 0.26	(H) 0.26	
ratio	(A) 0.27	(A) 0.13	0.27 – 0.3*
Thermal Exp.	(H) 9.44 E-06	(H) 11 E-06	0 1 C C *
BI (mm/mm°C)	(A) 13 E-06	(A) 21 E-06	8-12 E -06*


Performance	Reinforced	Reinforced
Testing	Belzona 1981	Belzona 1982
Tensile Shear	15.5 MPa	12.3 MPa
Adhesion	15.5 MPa *(Imm)	18.95 MPa
Energy Release Rate	68.57 J/m ²	76.53 J/m ²
Short-Term Survival	Passed when tested up calculated	
Test Annex C	testing pressure level of 39.2 MPa	
Long-Term Survival Test	60 MPa sustained for 1,000 h	60 MPa sustained for 1,000 h
Test		

Approvals and Specs

Belzona SuperWrap Testing

- ABS Approved KOC
 - Specified
- **EMEPI** Specified
- OHE **Tested**


PRODUCT CATEGORY : NON-METALLIC COMPOSITE MATERIALS for THE REPAIR OF PIPING & PIPELINES. (SUPERWRAP II Only).

Delivering success

Belzona SuperWrap Process

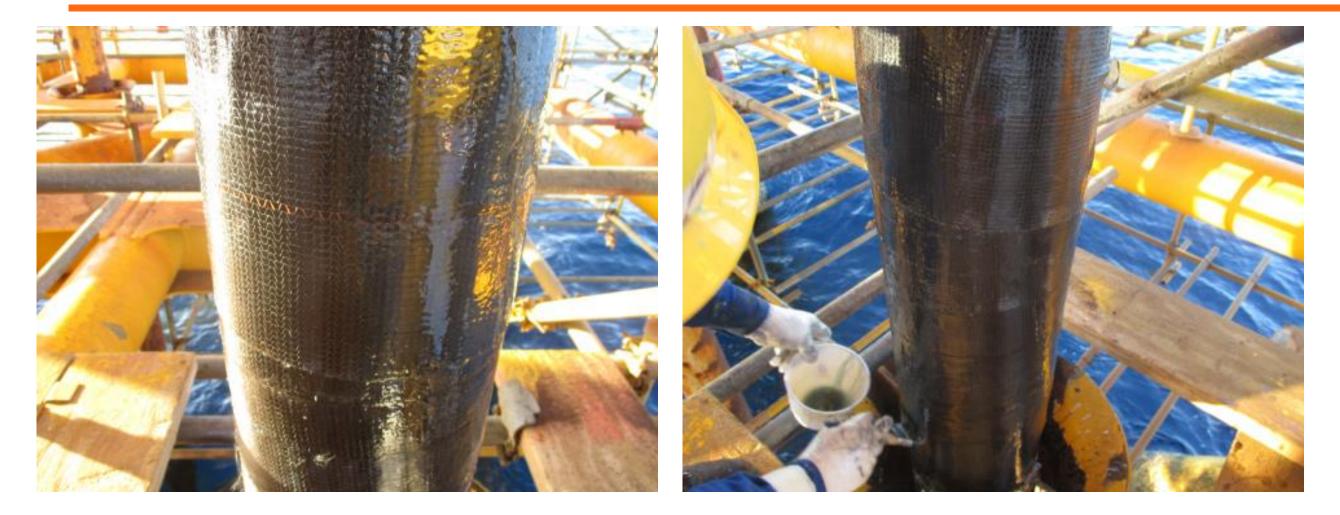
Repair • Protect • Improve

Composite Wrap Overview

Belzona SuperWrap Compliance

- Hybrid reinforcement sheet infused with resin and compressed with release film
- Tested in accordance with ISO 24817 and ASME PCC-2
- Designed in accordance with equations from standards
- Installers/Supervisors trained in accordance with standards
- Engineered Design Life

Composite Wrapping Belzona SuperWrap


Composite Wrapping Belzona SuperWrap

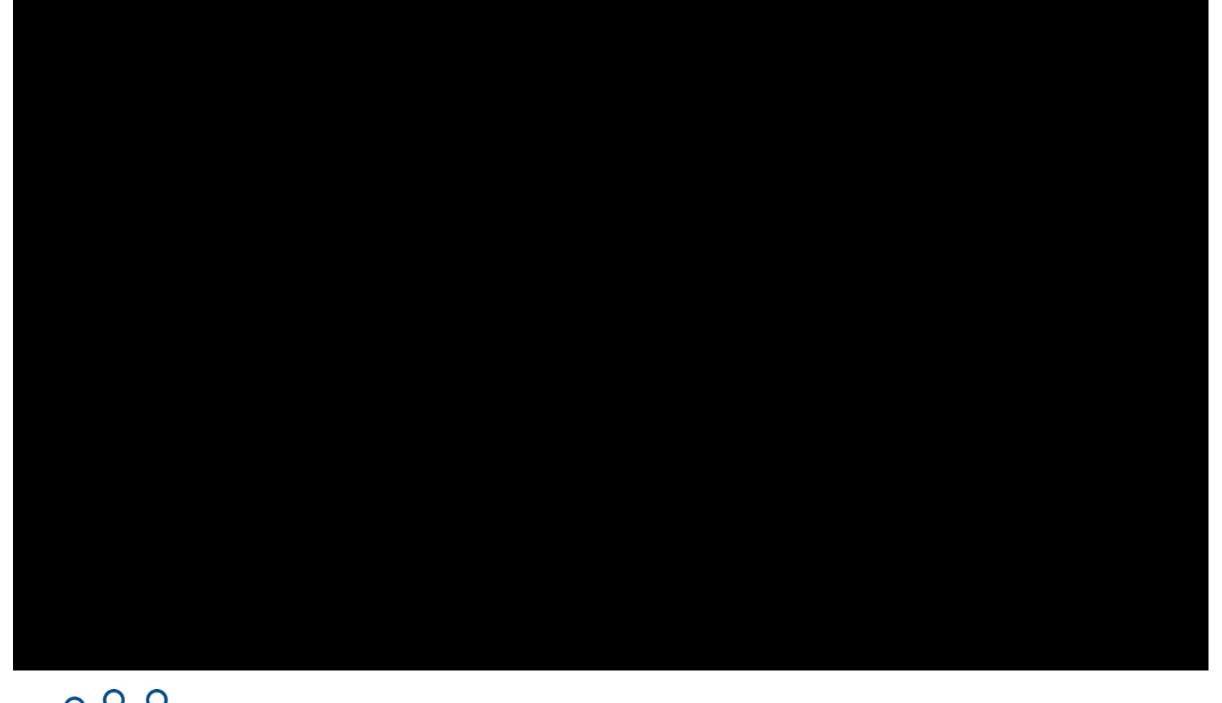
Riser Pipe, Gulf of Thailand

Composite Wrapping Belzona SuperWrap

Riser Pipe, Gulf of Thailand

Composite Wrapping Belzona SuperWrap Bend and Tee

Gas Flowline, Gulf of Thailand


Different Geometry

Belzona SuperWrap on different Shapes

Composite Solutions for Returning Strength to Damaged Assets

Thank you for your time Any questions?

