\qquad
\qquad

Compound Names and Formulas Activity

Part 1

Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below.

Formula	Name	Formula	Name
NaCl	sodium chloride	NaBr	sodium bromide
KI	potassium iodide	MgCl_{2}	magnesium chloride
MgO	magnesium oxide	$\mathrm{Na}_{2} \mathrm{O}$	sodium oxide
$\mathrm{K}_{2} \mathrm{O}$	potassium oxide	CaF_{2}	calcium fluoride
$\mathrm{Al}_{2} \mathrm{~S}_{3}$	aluminum sulfide	AlCl_{3}	aluminum chloride
$\mathrm{K}_{3} \mathrm{~N}$	potassium nitride	LiBr	lithium bromide

Questions:

1. What type of elements are in these compounds? Metals or Nonmetals?
metals and nonmetals
2. How many different types of elements are in each compound?

2

3. Is there an order the elements are written in both name and formula? If yes, what is it?
metal is $1^{\text {st }}$; then the nonmetal
4. Subscripts tell how many of each element there are. How are these elements put together? What determines if there needs to be more than one of either element?

The overall charge of the compound must be neutral (Equal number of + and -)
5. Are there suffixes or prefixes used in the names? If so, is there a pattern to the usage?

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds.

Rules for \qquad Ionic Compounds with 2 elements

Writing names

- metal first and then nonmetal
- Name the metal first. Do not change its name.
- Name nonmetal second; change the ending to-ide.

Writing Formulas

- the charges must balance out; therefore the should be no charge on the compound
-

6. What type of bonding is occurring in these compounds? Explain how this holds the compound together.

Ionic Bonding; Opposite charges attract; held together by charges

Based on your rules, name these compounds.

1. CaCl_{2} calcium chloride
2. BeO \qquad
3. $\mathrm{Li}_{2} \mathrm{~S}$
lithium sulfide
4. Bal_{2}
barium iodide
5. SrBr_{2} strontium bromide
6. $\mathrm{Na}_{3} \mathrm{~N}$
sodium nitride

Based on your rules, write the formulas for these compounds.

1. lithium iodide \qquad Lil
2. magnesium bromide \qquad
\qquad
3. cesium oxide \qquad
4. beryllium nitride $\mathrm{Be}_{3} \mathbf{N}_{2}$
5. calcium sulfide \qquad
6. potassium chloride \qquad

Part 2

Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below. You might need to refer to your Essentials Sheet.

Formula	Name
NaOH	sodium hydroxide
$\mathrm{Mg}(\mathrm{OH})_{2}$	magnesium hydroxide
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	calcium nitrate
NaNO	sodium nitrate
$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	magnesium phosphate

Formula
$\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}$

Name
ammonium chloride sodium sulfate ammonium oxide

Questions:

1. Are the similarities to the compounds in part 1? If so, what are they?
metal and nonmetal; metal is still first
2. Are there differences to the compounds in part 1? If so, what are they?
more than two elements; polyatomic ions present- do not change their name; $\mathrm{NH}_{4}{ }^{+}$can act as a metal
3. What do the () mean? Why are they needed?
() are needed when more than one polyatomic ion is needed

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds. These will update the rules you came up with in part 1.

Rules for Naming lonic Compounds with More than 2 Elements

Writing names

- Do not change the name of the polyatomic ion
-
-

Writing Formulas

- still need to balance formulas; if more than one polyatomic ion is needed, use ()
-

Based on your rules, name these compounds.

1. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ ammonium nitrate
2. MgSO_{4} _magnesium sulfate
3. AlPO_{4} \qquad aluminum phosphate
4. $\mathrm{K}_{2} \mathrm{SO}_{4}$ potassium sulfate
5. $\mathrm{NaHCO}_{3} \quad$ sodium hydrogen carbonate
6. LiCN lithium cyanide

Based on your rules, write the formulas for these compounds.

1. ammonium nitrate $\mathrm{NH}_{4} \mathrm{NO}_{3}$
2. calcium sulfate CaSO_{4}
3. lithium phosphate \qquad
4. magnesium carbonate \qquad
5. calcium hydroxide $\quad \mathrm{Ca}(\mathrm{OH})_{2}$
6. calcium nitrite \qquad
7. How would the formulas of beryllium nitride and beryllium nitrate be different?

Even the smallest change in the name can mean a big difference in the formula. It is very important to pay attention to detail.

Part 3

Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below.
Formula
CuCl
$\mathrm{Cu}_{2} \mathrm{O}$
FeF_{2}
FeO
VF_{5}
CoCl_{2}
AgCl^{2}
ZnCl_{2}
FeCO_{3}

Name
copper (I) chloride
copper (I) oxide iron (II) fluoride iron (II) oxide
vandium (V) fluoride
cobalt (II) chloride
silver chloride
zinc chloride
iron (II) carbonate

Formula
CuCl_{2}
CuO
FeF_{3}
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
CrCl_{3}
CoCl_{3}
$\mathrm{Ag}_{2} \mathrm{~S}$
ZnS
CuNO_{3}

Name
copper (II) chloride
copper (II) oxide iron (III) fluoride
iron (III) oxide chromium (III) chloride cobalt (III) chloride silver sulfide zinc sulfide
copper (I) nitrate

Questions:

1. Are the similarities to the compounds in part 1 and 2 ? If so, what are they?
metal and nonmetal; nonmetal is still first; nonmetal still ends in -ide unless polyatomic
2. Are there differences to the compounds in part 1 and 2 ? If so, what are they?

Roman numerals are present
3. What group of elements is involved in these compounds?

Transition metals

4. How is the Roman numeral determined? What does the Roman numeral indicate?

The Roman numeral is the charge of the transition metal, this needs to be indicated since transition metals can change charges.
5. Which do not have a roman numeral in the name? Why?
silver and zinc do not have roman numerals

Silver is always Ag^{+}and zinc is always Zn^{+2}. Since all chemist know this, there is no need to indicate the charge.

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds. These will update the rules you came up with in part 1 and 2.

Rules for Naming Ionic Compounds

Writing names

- Show the charge of the transition metal with a Roman numeral. This can be determined by looking at the nonmetal.
-
-
-

Writing Formulas

- Balance the compound by using the charge indicated by the roman numeral in the name.

Based on your rules, name these compounds.

1. CoCl_{3} _cobalt (III) chloride
2. CrF_{6} chromiun (VI) fluoride
3. AgBr silver bromide
4. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ iron (III) oxide
5. CrF_{3} _chromium (III) fluoride
6. $\quad \mathrm{SnCl}_{4}$ tin (IV) chloride

Based on your rules, write the formulas for these compounds.

1. manganese (IV) oxide \qquad MnO_{2}
2. nickel (II) chloride \qquad
\qquad
3. zinc chloride \qquad
\qquad
4. lead (IV) sulfide \qquad PbS_{2}
5. cobalt (III) oxide \qquad
\qquad
6. chromium (III) oxide \qquad
\qquad

Explain how FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are named differently.

Part 4

Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below.
Formula
CO_{2}
SO_{2}
$\mathrm{~N}_{2} \mathrm{O}$
$\mathrm{P}_{4} \mathrm{O}_{10}$
NBr_{3}
$\mathrm{~N}_{2} \mathrm{O}_{4}$

Name	Formula
carbon dioxide	CO
sulfur dioxide	NO
dinitrogen monoxide	$\mathrm{P}_{2} \mathrm{O}_{5}$
tetraphosphorous decoxide	CCl_{4}
nitrogen tribromide	SiO_{2}
dinitrogen tetroxide	

Name carbon monoxide nitrogen monoxide diphosphorous pentoxide carbon tetrachloride silicon dioxide

Questions:

1. What type of elements are in these compounds? Metals or Nonmetals?

Nonmetals only
2. How many different types of element are in each compound?

2 elements

3. Are there suffixes or prefixes used in the names? If so, is there a pattern to the usage?
suffix: -ide is on the second element only
prefixes: tell how many of each element
mono- 1
di-2
tri-3
tetra-4
penta- 5
4. How are these different than the compounds used in parts 1-3? Discuss both the names and the formulas.
just nonmetals; names tells how many of each element; not held together by charges

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds.

Rules for Naming Covalent Compounds

Writing names

- name first element in formula- do not change name
- name second element and change ending to -ide
- use prefixes to tell how many of each element
- no mono- on first element

Writing Formulas

- use prefixes to determine what subscripts should be
-

Based on your rules, name these compounds.

1. OF_{2} oxygen difluoride
2. Nl_{3} nitrogen triiodide
3. PCl_{3} _phosphorus trichloride
4. SiBr_{2} _silicon dibromide
5. SO_{3} _sulfur trioxide \qquad

Based on your rules, write the formulas for these compounds.

1. disulfur dichloride \qquad
\qquad
2. xenon tetrafluoride \qquad
\qquad
3. phosphorous pentabromide PBr_{5} \qquad
4. bromine monofluoride \qquad BrF
5. dinitrogen tetrafluoride \qquad $\mathrm{N}_{2} \underline{F}_{4}$
6. diboron trioxide \qquad
\qquad
