Name: <u>KEY</u>		Class Period:	
	Compound Names	and Formulas Activity	
Part 1			
Instructions: Study t	he following compound formulas and t	heir corresponding names.	Then answer the questions below.
Formula	Name	Formula	Name
NaCl	sodium chloride	NaBr	sodium bromide
KI	potassium iodide	$MgCl_2$	magnesium chloride
MgO	magnesium oxide	Na ₂ O	sodium oxide
K_2O	potassium oxide	CaF ₂	calcium fluoride
Al_2S_3	aluminum sulfide	$AlCl_3$	aluminum chloride
K_3N	potassium nitride	LiBr	lithium bromide
Questions:			
1. What type of elen	nents are in these compounds? Metals	or Nonmetals?	
metals and	nonmetals		
2. How many differe	nt types of elements are in each comp	ound?	
2			
3. Is there an order t	he elements are written in both name	and formula? If yes, what is	s it?
metal is 1 st ;	then the nonmetal		

4. Subscripts tell how many of each element there are. How are these elements put together? What determines if there

The overall charge of the compound must be neutral (Equal number of + and -)

5. Are there **suffixes** or prefixes used in the names? If so, is there a pattern to the usage?

-ide to nonmetal; the metals name do not change

needs to be more than one of either element?

Based on the examples of formulas/names and the answer	ers to your (questions	, come up with a set of rules for naming
Rules for	pounds wit	h 2 eleme	ents
Writing names • metal first and then nonmetal			
Name the metal first. Do not change its name.			
Name nonmetal second; change the ending to -	-ide.		
•			
Writing Formulas			the conservation of
 the charges must balance out; therefore the sho 	оиіа ве по сі	narge on	tne compouna
6. What type of bonding is occurring in these compounds Ionic Bonding; Opposite charges attract; held to	-		olds the compound together.
Based on your rules, name these compounds.			
1. CaCl ₂ <u>calcium chloride</u>	4.	Li ₂ S	<u>lithium sulfide</u>
2. BeO <u>beryllium oxide</u>	5.	Bal ₂	barium iodide
3. SrBr ₂ <u>strontium bromide</u>	6.	Na₃N	sodium nitride
Based on your rules, write the formulas for these compo	ounds.		
1. lithium iodide <u>Lil</u>			
2. magnesium bromide <u>MgBr</u> 2			
3. cesium oxide <u>Cs₂O</u>			
4. beryllium nitride <u>Be₃N₂</u>			
5. calcium sulfide <u>CaS</u>			

potassium chloride <u>KCI</u>

6.

Part 2
Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below.
You might need to refer to your Essentials Sheet.

Formula	Name	Formula	Name
NaOH	sodium hydroxide	NH ₄ Cl	ammonium chloride
$Mg(OH)_2$	magnesium hydroxide	Na ₂ SO ₄	sodium sulfate
Ca(NO ₃) ₂	calcium nitrate	$(NH_4)_2O$	ammonium oxide
NaNO ₃	sodium nitrate		
$Mg_3(PO_4)_2$	magnesium phosphate		

Questions:

1. Are the similarities to the compounds in part 1? If so, what are they?

metal and nonmetal; metal is still first

2. Are there differences to the compounds in part 1? If so, what are they?

more than two elements; polyatomic ions present- do not change their name; NH_4^+ can act as a metal

3. What do the () mean? Why are they needed?

() are needed when more than one polyatomic ion is needed

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds. These will update the rules you came up with in part 1.

Rules for Naming Ionic Compounds with More than 2 Elements

Writing names

- Do not change the name of the polyatomic ion
- •
- •
- •

Writing Formulas

- still need to balance formulas; if more than one polyatomic ion is needed, use ()
- •

Based on your rules, name these compounds.

 Be_3N_2

1.	NH ₄ NO ₃ <u>ammonium nitrate</u>	4.	K ₂ SO ₄ <u>potassium sulfate</u>
2.	MgSO ₄ _magnesium sulfate	5.	NaHCO ₃ <u>sodium hydrogen carbonate</u>
3.	AIPO ₄ <u>aluminum phosphate</u>	6.	LiCN <u>lithium cyanide</u>
Based (on your rules, write the formulas for these compounds	•	
1.	ammonium nitrate <u>NH₄NO₃</u>		
2.	calcium sulfate <u>CaSO</u> 4		
3.	lithium phosphate <u>Li₃PO₄</u>		_
4.	magnesium carbonate		
5.	calcium hydroxide <u>Ca(OH)</u> 2		_
6.	calcium nitrite <u>Ca(NO₂)</u> 2		

Even the smallest change in the name can mean a big difference in the formula. It is very important to pay attention to detail.

Be(NO₃)₂

4. How would the formulas of beryllium nitride and beryllium nitrate be different?

Part 3
Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below

Formula	Name	Formula	Name
CuCl	copper (I) chloride	CuCl ₂	copper (II) chloride
Cu ₂ O	copper (I) oxide	CuO	copper (II) oxide
FeF_2	iron (II) fluoride	FeF ₃	iron (III) fluoride
FeO	iron (II) oxide	Fe_2O_3	iron (III) oxide
VF ₅	vandium (V) fluoride	CrCl ₃	chromium (III) chloride
CoCl ₂	cobalt (II) chloride	CoCl ₃	cobalt (III) chloride
AgCl	silver chloride	Ag_2S	silver sulfide
ZnCl ₂	zinc chloride	ZnS	zinc sulfide
FeCO ₃	iron (II) carbonate	$CuNO_3$	copper (I) nitrate

Questions:

1. Are the similarities to the compounds in part 1 and 2? If so, what are they?

metal and nonmetal; nonmetal is still first; nonmetal still ends in -ide unless polyatomic

2. Are there differences to the compounds in part 1 and 2? If so, what are they?

Roman numerals are present

3. What group of elements is involved in these compounds?

Transition metals

4. How is the Roman numeral determined? What does the Roman numeral indicate?

The Roman numeral is the charge of the transition metal, this needs to be indicated since transition metals can change charges.

5. Which do not have a roman numeral in the name? Why?

silver and zinc do not have roman numerals

Silver is always Ag^{\dagger} and zinc is always $Zn^{\dagger 2}$. Since all chemist know this, there is no need to indicate the charge.

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds. These will update the rules you came up with in part 1 and 2.

Rules for Naming Ionic Compounds

Writing	names
---------	-------

1.

2.

3.

1.

2.

3.

4.

5.

6.

Show the charge of the transition metal with a Roman numeral. This can be determined by looking at the nonmetal. **Writing Formulas** Balance the compound by using the charge indicated by the roman numeral in the name. Based on your rules, name these compounds. CoCl₃ <u>cobalt (III) chloride</u> 4. Fe₂O₃ <u>iron (III) oxide</u> CrF₆ chromiun (VI) fluoride 5. CrF₃ chromium (III) fluoride AgBr <u>silver bromide</u> 6. SnCl₄ <u>tin (IV) chloride</u> Based on your rules, write the formulas for these compounds. nickel (II) chloride _________ zinc chloride ZnCl₂ lead (IV) sulfide ______PbS₂______ cobalt (III) oxide <u>Co₂O₃</u> chromium (III) oxide <u>Cr2O3</u>

Explain how FeO and Fe₂O₃ are named differently.

iron (II) oxide iron (III) oxide

Part 4
Instructions: Study the following compound formulas and their corresponding names. Then answer the questions below.

Formula	Name	Formula	Name
CO_2	carbon dioxide	CO	carbon monoxide
SO_2	sulfur dioxide	NO	nitrogen monoxide
N_2O	dinitrogen monoxide	P_2O_5	diphosphorous pentoxide
$P_{4}O_{10}$	tetraphosphorous decoxide	CCl ₄	carbon tetrachloride
NBr ₃	nitrogen tribromide	SiO_2	silicon dioxide
N_2O_4	dinitrogen tetroxide		

Questions:

1. What type of elements are in these compounds? Metals or Nonmetals?

Nonmetals only

2. How many different types of element are in each compound?

2 elements

3. Are there suffixes or prefixes used in the names? If so, is there a pattern to the usage?

suffix: -ide is on the second element only

prefixes: tell how many of each element

mono- 1	hexa-6
di-2	hepta- 7
tri-3	octa- 8
tetra- 4	nona- 9
penta- 5	deca- 10

4. How are these different than the compounds used in parts 1-3? Discuss both the names and the formulas.

just nonmetals; names tells how many of each element; not held together by charges

Based on the examples of formulas/names and the answers to your questions, come up with a set of rules for naming compounds.

Rules for Naming Covalent Compounds

Writing	names
---------	-------

- name first element in formula- do not change name
- name second element and change ending to –ide
- use prefixes to tell how many of each element
- no mono- on first element

Writing Formulas

- use prefixes to determine what subscripts should be
- •

Based on your rules, name these compounds.

OF₂ oxygen difluoride
 NI₃ nitrogen triiodide
 PCI₃ phosphorus trichloride
 SiBr₂ silicon dibromide
 SO₃ sulfur trioxide
 BrF₅ bromine pentafluoride

Based on your rules, write the formulas for these compounds.

- 5. dinitrogen tetrafluoride <u>N₂F₄</u>

4. bromine monofluoride **BrF**

6. diboron trioxide <u>B₂O₃</u>