} MathWorks

Comprehensive Static Analysis of
Embedded Software (C/C++ and Ada) Using
Polyspace Products

Prashant Mathapati
Senior Application Engineer
MathWorks India

© 2011 The MathWorks, Inc.

@\ MathWorks

What’s the value of verifying mixed generated
and hand-written Code?

= Find run-time errors
— Inlegacy or hand code

— In the model caused by
mixed code integration

— In the design - when missed by the workflow

= Prove the absence of run-time errors
— Prove code is free of run-time errors
— Check MISRA compliance
— Prepare for independent code verification (DO-178B, IEC 61508, ...)

= Check workflow integrity, including mixed environments
— Browse code-model level to verify the implementation
— Catch defects missed by the workflow
— Find implementation errors

4\ MathWorks'

Polyspace results on generated code are
traced back to the model

E!rtwdemu_fuelsys_PonSpal:e,.-"fuel rate controller/Airflow ;|g|5|
File Edit “iew Simulation Format Tools Help
D|D”E§|J$E|<}==i>ﬁlfﬂfl|b llinf INu:urmaI
— : - [0 =81
w Estimation and C|059d-|.00p Correction 1559 rth Switch3, rtConstP.pooled3, 170, rth Switchd, I;I
1560
- =1 1561 AE oSum: '<52%/5um' incorporates:
=03 1562 # Product: '<52=/Product’
Fired point zain_transient 1563 Wy
[hrote ransient 1564 rth_DenCoef = rth_3witchd * rth_Sum £ »» 9;
| 1565 if jrth DenCoef > 32767) {
. 1566 rth _Gain transient = MaX intlé T
ey, 1567 } else if (rth DenCoef <= -32768) {
| ol 1565 rth Gain transient = MIN intle T;
=I 1569 }oelse |
Fumping Constant 1570 rth Fain transient = [intle T)rth DenCoef:
- Sum 1571 1
r csigralés | | Feedforward Control 1572
ﬂ 15735 rth DenCoef = rth Gain transient ¥ rth Switchd >> 7.
woid Ramprate(inti8 ud, int16 u2, int18 w1 [1]) 1574 if (rth DenCoef > 32767) { —
1575 rth Faih transient = MaX inrtle T
— RamprateSfen —‘ - 1576 } else if (rth DenCoef <= -32768) |
ll | W 4 1577 rth Gain transient = MIN intlg T; p
bt 3

&\ MathWorks'

Examples of Run-Time Errors Found In
Legacy Code, Mixed Workflow, and/or

the Design

Model constructions

Code constructions

Arithmetic errors

Memory corruption

Data truncation

Coding errors

= Scaling

= Unknown
calibrations

= Untested data
ranges

= Array manipulation
in Stateflow

= Handwritten lookup
table functions

= Unexpected data
flow

= Unreachable states,
transitions

= Overflows, division by
zero, bit-shifts, square
root of negative numbers

« Out-of-bounds array
Indexes
= Pointer arithmetic

= Overflows, wrap around

= Noninitialized data
= Dead code

‘ &\ MathWorks
Example of Workflow

Simulation

* Find design errors
* Find functional errors
* Find arithmetic errors
* Find coverage errors

= Every tool chain
has redundancy

= The best win is to
do early
Verification

Model Verificat

* Modeling guidelines
* Find design errors
 Simplify the design

* Prove coverage

* Find unreachable
state, transitions

* Generate test cases

>ode Verification

* Verify standard
compliancy

* Prove the absence of
errors

* Verify hand written code

* Find implementation
errors

4\ MathWorks

Demo

4\ MathWorks

Zero — MISRA C 2012 Mandatory Violations
Auto Code by Embedded Coder

" Polyspace Bug Finder - demo2 \\central-bgl\home\pmathapa\Documents\MATLAB\16a\results_demo2\demo2

File Reporting Metrics Tools Window Help

(=@

sbed 1e1s [A]

& o &l| [> run 0 stop |
B Results Summary % Configuration
E~ demo2 X 4 b8
Family & Information = Target & Compiler Coding Rules & Code Metrics
B Defect Macros
- Environment Settings

Coding Rules

- Inputs & Stubbing

Check MISRA C:2004
Check MISRA AC AGC

Coding Rules & Code Metrics

- Main Generator
- Reporting
- Distributed Computing

|required—ru|es

-
v |
-

OBL-rules

- Advanced Settings < | I}

[¥% Configuration Result Details|

]

Dashboard \\central-bgl\home\pmathapa\Documents\MATLAB\16a\results_demo2\demo2

: Display: | Top 10 w | defects and violations by Category = | T New

Array access out of bounds -

No MISRA C:2012 violations found

111

<|

1

4 111
H Project Browser Results Summary

|+ Dashboard | =] output Summarﬂ Source | = Run Log |

&\ MathWorks

Practical Use of Polyspace

Three Real World Scenarios

= Scenario #1
— All handwritten code

= Scenario #2
— Handwritten code inside generated code (Embedded Coder)

= Scenario #3
— Generated code inside handwritten code

‘ MathWorks

Scenario #1: All Handwritten Code

- Embedded software components
— Complete system 100s of KLOC
— Comprise of many functions and tasks
— All integrated with handwritten code

Embedded Software

= Problems encountered

— Runtime bugs in the handwritten and third
party code (inadequate unit or component
verification)

- How to verify at the interface level

— Assuring that the entire system is robust

Obj. Code
(libraries)

‘ MathWorks

Using Polyspace for Scenario #1

Embedded Software

Obj. Code

(libraries)

Modular or component verification
— Run Polyspace on each function

— Robustness: full-range or worst-case
conditions, or

— Contextual: apply range limits on interfaces

Integration level verification
— Run Polyspace on integrated code

— Practical limits depending on code
complexity and LOC

10

Scenario #2:

&\ MathWorks'

Handwritten Code Inside MBD

L | S-Function

. Custom Code

|
=
J‘u Legacy Code

Subsystem

Model Reference

Storage
Classes

Legacy Data

MBD Generated Code

Generated code for model component

Consists of subsystems and model
references

Often includes handwritten code

In the form of S-Functions and legacy code
Individually, small in size (100s LOC)

May be automatically repeated many time
within the MBD generated code

Problems with integration

Handwritten code fails (robustness issue),
or causes generated code to fall

Generated code may cause handwritten
code to fail (Interface related failures)

Handwritten code treated as blackbox by
Simulink
11

&\ MathWorks
Using Polyspace for Scenario #2

| = Modular verification of S-Functions or

I - | legacy code
- S-Function | |

| | — Robustness: full-range or worst-case
- Custom Code

— Contextual: apply range limits on interfaces

|
|
J‘u Legacy Code

= Verification of mixed handwritten and

Storage
 Classes generated code
Model Reference Legacy Data — Can perform robustness and contextual
verification on interfaces of the generated

code, including global data

— Polyspace product traces code level defects
MBD Generated Code back to the Simulink model

— Handwritten code treated as whitebox by
Polyspace

12

4\ MathWorks

Scenario #3: Generated code inside
handwritten code

Embedded Software = Code integration .outS|de MBD |
| — Generated code integrated together with
handwritten code
— All components integrated into embedded
MBD software with handwritten code
Generated
Code S]
m = Problems with integration
— Runtime bugs in the handwritten and third
party code (inadequate unit or component
verification)
Third Party - Verifying generated code especially at
il Obj. Code interface level
| UEHES) _ How to project relevant problems back to
the model?

— Assuring that the entire system is robust

13

4\ MathWorks

Using Polyspace for Scenario #3

Embedded Software

MBD
Generated
Code

Third Party
Code

Obj. Code

(libraries)

Modular verification of handwritten or
generated code
— Run Polyspace on each function or file

— Robustness: full-range worst-case
conditions, or

— Contextual: apply range limits on interfaces

Integration level verification
— Run Polyspace on integrated code

— Polyspace products traces code level
defects back to the Simulink model

— Practical limits depending on code
complexity and LOC

14

&\ MathWorks:

Verify mixed generated and hand-code
Prove the absence of run-time errors in source code

gtatic woid Pointer Arithmetic (woid)
{

int array[1l00]:

int i, *p = arravy:

for{i = 0; i < 100; it++, pHH Green:
* = 0: r II |
g eliable
if({get bus status() = 0] { |
if (get oil pressure()] > 0) Red:
po= 5 faulty
elze @
i+; |
) =
Grey:

dead

i = get bus status():;
if (1= 0) { f(p-i) = 10: } |
®
if (0 < i) &s& (1 <= 100)) {
p=p-i:
p o= 5;
'

SO<0O0=7T

Quality improvement

*Prove the absence of errors
*No compilation, no execution,
no test cases

*Early verification of C/C++ or
Ada

15

4\ MathWorks'

Thank You

