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What’s the value of verifying mixed generated 

and hand-written Code?

 Find run-time errors

– In legacy or hand code

– In the model caused by 
mixed code integration

– In the design - when missed by the workflow

 Prove the absence of run-time errors

– Prove code is free of run-time errors

– Check MISRA compliance

– Prepare for independent code verification (DO-178B, IEC 61508, …)

 Check workflow integrity, including mixed environments

– Browse code-model level to verify the implementation

– Catch defects missed by the workflow

– Find implementation errors
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Polyspace results on generated code are 

traced back to the model
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Examples of Run-Time Errors Found in 

Legacy Code, Mixed Workflow, and/or 

the Design

Model constructions Code constructions

Arithmetic errors  Scaling

 Unknown 

calibrations

 Untested data 

ranges

 Overflows, division by 

zero, bit-shifts, square 

root of negative numbers

Memory corruption  Array manipulation 

in Stateflow

 Handwritten lookup 

table functions

 Out-of-bounds array 

indexes

 Pointer arithmetic

Data truncation  Unexpected data 

flow

 Overflows, wrap around

Coding errors  Unreachable states, 

transitions

 Noninitialized data

 Dead code
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Example of Workflow 

Simulation

• Find design errors

• Find functional errors

• Find arithmetic errors

• Find coverage errors

Code Verification

• Verify standard  
compliancy

• Prove the absence of 
errors

• Verify hand written code

• Find implementation 
errors

Model Verification

• Modeling guidelines

• Find design errors

• Simplify the design

• Prove coverage

• Find unreachable 
state, transitions

• Generate test cases

 Every tool chain 

has redundancy

 The best win is to 

do early 

Verification
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Demo
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Zero – MISRA C 2012 Mandatory Violations 
Auto Code by Embedded Coder
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Practical Use of Polyspace

Three Real World Scenarios

 Scenario #1

– All handwritten code

 Scenario #2

– Handwritten code inside generated code (Embedded Coder)

 Scenario #3

– Generated code inside handwritten code
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Scenario #1: All Handwritten Code

 Embedded software components

– Complete system 100s of KLOC

– Comprise of many functions and tasks

– All integrated with handwritten code

 Problems encountered

– Runtime bugs in the handwritten and third 

party code (inadequate unit or component 

verification)

– How to verify at the interface level

– Assuring that the entire system is robust
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Using Polyspace for Scenario #1

 Modular or component verification

– Run Polyspace on each function

– Robustness: full-range or worst-case 

conditions, or

– Contextual: apply range limits on interfaces

 Integration level verification

– Run Polyspace on integrated code

– Practical limits depending on code 

complexity and LOC
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Scenario #2: Handwritten Code Inside MBD

 Generated code for model component

– Consists of subsystems and model 

references

 Often includes handwritten code

– In the form of S-Functions and legacy code

– Individually, small in size (100s LOC)

– May be automatically repeated many time 

within the MBD generated code

 Problems with integration

– Handwritten code fails (robustness issue), 

or causes generated code to fail

– Generated code may cause handwritten 

code to fail (Interface related failures)

– Handwritten code treated as blackbox by 

Simulink

Legacy Data
Model Reference 

…

=

MBD Generated Code

Storage 

Classes

Model Reference 

…

…

S-FunctionS-Function
S-FunctionS-Function

S-Function

S-FunctionS-Function
S-FunctionS-Function
Custom Code

S-FunctionS-Function
S-FunctionS-Function

Legacy Code

…Subsystem

…



12

Using Polyspace for Scenario #2

 Modular verification of S-Functions or 

legacy code

– Robustness: full-range or worst-case 

conditions, or

– Contextual: apply range limits on interfaces

 Verification of mixed handwritten and 

generated code

– Can perform robustness and contextual 

verification on interfaces of the generated 

code, including global data

– Polyspace product traces code level defects 

back to the Simulink model

– Handwritten code treated as whitebox by 

Polyspace
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Scenario #3: Generated code inside 

handwritten code

 Code integration outside MBD

– Generated code integrated together with 

handwritten code

– All components integrated into embedded 

software with handwritten code

 Problems with integration

– Runtime bugs in the handwritten and third 

party code (inadequate unit or component 

verification)

– Verifying generated code especially at 

interface level

– How to project relevant problems back to 

the model?

– Assuring that the entire system is robust
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Using Polyspace for Scenario #3

 Modular verification of handwritten or 

generated code

– Run Polyspace on each function or file

– Robustness: full-range worst-case 

conditions, or

– Contextual: apply range limits on interfaces

 Integration level verification

– Run Polyspace on integrated code

– Polyspace products traces code level 

defects back to the Simulink model

– Practical limits depending on code 

complexity and LOC
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Verify mixed generated and hand-code
Prove the absence of run-time errors in source code 

Quality improvement

•Prove the absence of errors

•No compilation, no execution, 

no test cases

•Early verification of C/C++ or 

Ada
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Orange:

unproven

Red: 

faulty

Grey:

dead

Green:

reliable
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Thank You 


