
1© 2011 The MathWorks, Inc.

Comprehensive Static Analysis of

Embedded Software (C/C++ and Ada) Using

Polyspace Products

Prashant Mathapati

Senior Application Engineer

MathWorks India

2

What’s the value of verifying mixed generated

and hand-written Code?

 Find run-time errors

– In legacy or hand code

– In the model caused by
mixed code integration

– In the design - when missed by the workflow

 Prove the absence of run-time errors

– Prove code is free of run-time errors

– Check MISRA compliance

– Prepare for independent code verification (DO-178B, IEC 61508, …)

 Check workflow integrity, including mixed environments

– Browse code-model level to verify the implementation

– Catch defects missed by the workflow

– Find implementation errors

3

Polyspace results on generated code are

traced back to the model

4

Examples of Run-Time Errors Found in

Legacy Code, Mixed Workflow, and/or

the Design

Model constructions Code constructions

Arithmetic errors Scaling

 Unknown

calibrations

 Untested data

ranges

 Overflows, division by

zero, bit-shifts, square

root of negative numbers

Memory corruption Array manipulation

in Stateflow

 Handwritten lookup

table functions

 Out-of-bounds array

indexes

 Pointer arithmetic

Data truncation Unexpected data

flow

 Overflows, wrap around

Coding errors Unreachable states,

transitions

 Noninitialized data

 Dead code

5

Example of Workflow

Simulation

• Find design errors

• Find functional errors

• Find arithmetic errors

• Find coverage errors

Code Verification

• Verify standard
compliancy

• Prove the absence of
errors

• Verify hand written code

• Find implementation
errors

Model Verification

• Modeling guidelines

• Find design errors

• Simplify the design

• Prove coverage

• Find unreachable
state, transitions

• Generate test cases

 Every tool chain

has redundancy

 The best win is to

do early

Verification

6

Demo

7

Zero – MISRA C 2012 Mandatory Violations
Auto Code by Embedded Coder

8

Practical Use of Polyspace

Three Real World Scenarios

 Scenario #1

– All handwritten code

 Scenario #2

– Handwritten code inside generated code (Embedded Coder)

 Scenario #3

– Generated code inside handwritten code

9

Scenario #1: All Handwritten Code

 Embedded software components

– Complete system 100s of KLOC

– Comprise of many functions and tasks

– All integrated with handwritten code

 Problems encountered

– Runtime bugs in the handwritten and third

party code (inadequate unit or component

verification)

– How to verify at the interface level

– Assuring that the entire system is robust

Embedded Software

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)
Handwritten

Code

Third Party

Code
Third Party

Code

Function

or Task

(handwritten)

Function

or Task

(handwritten)
Handwritten

Code

Obj. Code

(libraries)Obj. Code

(libraries)

10

Using Polyspace for Scenario #1

 Modular or component verification

– Run Polyspace on each function

– Robustness: full-range or worst-case

conditions, or

– Contextual: apply range limits on interfaces

 Integration level verification

– Run Polyspace on integrated code

– Practical limits depending on code

complexity and LOC

Embedded Software

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)
Handwritten

Code

Third Party

Code
Third Party

Code

Function

or Task

(handwritten)

Function

or Task

(handwritten)
Handwritten

Code

Obj. Code

(libraries)Obj. Code

(libraries)

11

Scenario #2: Handwritten Code Inside MBD

 Generated code for model component

– Consists of subsystems and model

references

 Often includes handwritten code

– In the form of S-Functions and legacy code

– Individually, small in size (100s LOC)

– May be automatically repeated many time

within the MBD generated code

 Problems with integration

– Handwritten code fails (robustness issue),

or causes generated code to fail

– Generated code may cause handwritten

code to fail (Interface related failures)

– Handwritten code treated as blackbox by

Simulink

Legacy Data
Model Reference

…

=

MBD Generated Code

Storage

Classes

Model Reference

…

…

S-FunctionS-Function
S-FunctionS-Function

S-Function

S-FunctionS-Function
S-FunctionS-Function
Custom Code

S-FunctionS-Function
S-FunctionS-Function

Legacy Code

…Subsystem

…

12

Using Polyspace for Scenario #2

 Modular verification of S-Functions or

legacy code

– Robustness: full-range or worst-case

conditions, or

– Contextual: apply range limits on interfaces

 Verification of mixed handwritten and

generated code

– Can perform robustness and contextual

verification on interfaces of the generated

code, including global data

– Polyspace product traces code level defects

back to the Simulink model

– Handwritten code treated as whitebox by

Polyspace

Legacy Data
Model Reference

…

=

MBD Generated Code

Storage

Classes

Model Reference

…

…

S-FunctionS-Function
S-FunctionS-Function

S-Function

S-FunctionS-Function
S-FunctionS-Function
Custom Code

S-FunctionS-Function
S-FunctionS-Function

Legacy Code

…Subsystem

…

13

Scenario #3: Generated code inside

handwritten code

 Code integration outside MBD

– Generated code integrated together with

handwritten code

– All components integrated into embedded

software with handwritten code

 Problems with integration

– Runtime bugs in the handwritten and third

party code (inadequate unit or component

verification)

– Verifying generated code especially at

interface level

– How to project relevant problems back to

the model?

– Assuring that the entire system is robust

Embedded Software

Function

or Task

(handwritten)

Function

or Task

(MBD

Generated

Code)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(MBD

Generated

Code)

MBD

Generated

Code
Function

or Task

(handwritten)
Handwritten

Code

Third Party

Code
Third Party

Code
Obj. Code

(libraries)Obj. Code

(libraries)

14

Using Polyspace for Scenario #3

 Modular verification of handwritten or

generated code

– Run Polyspace on each function or file

– Robustness: full-range worst-case

conditions, or

– Contextual: apply range limits on interfaces

 Integration level verification

– Run Polyspace on integrated code

– Polyspace products traces code level

defects back to the Simulink model

– Practical limits depending on code

complexity and LOC

Embedded Software

Function

or Task

(handwritten)

Function

or Task

(MBD

Generated

Code)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(handwritten)

Function

or Task

(MBD

Generated

Code)

MBD

Generated

Code
Function

or Task

(handwritten)
Handwritten

Code

Third Party

Code
Third Party

Code
Obj. Code

(libraries)Obj. Code

(libraries)

15

Verify mixed generated and hand-code
Prove the absence of run-time errors in source code

Quality improvement

•Prove the absence of errors

•No compilation, no execution,

no test cases

•Early verification of C/C++ or

Ada

P
r
o
v
e
n

Orange:

unproven

Red:

faulty

Grey:

dead

Green:

reliable

16

Thank You

