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Overview

We consider flows that involve significant changes 
in density. Such flows are called compressible 
flows, and they are frequently encountered in 
devices that involve the flow of gases at very high 
speeds. 
Compressible flow combines fluid dynamics and 
thermodynamics in that both are absolutely 
necessary to the development of the required 
theoretical background. 
We develop the general relations associated with 
compressible flows for an ideal gas with constant 
specific heats. 
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Stagnation Properties

Definition of enthalpy

which is the sum of 
internal energy u and 
flow energy P/ρ
For high-speed flows, 
enthalpy and kinetic 
energy are combined into 
stagnation enthalpy h0
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Stagnation Properties

Steady adiabatic flow through duct 
with no shaft/electrical work and 
no change in elevation and 
potential energy

Therefore, stagnation enthalpy 
remains constant during steady-
flow process
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Stagnation Properties

If a fluid were brought to a complete stop (V2 = 0)

Therefore, h0 represents the enthalpy of a fluid 
when it is brought to rest adiabatically.
During a stagnation process, kinetic energy is 
converted to enthalpy.
Properties at this point are called stagnation 
properties (which are identified by subscript 0)
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Stagnation Properties

If the process is also reversible, 
the stagnation state is called the 
isentropic stagnation state.

Stagnation enthalpy is the same 
for isentropic and actual 
stagnation states
Actual stagnation pressure P0,act is 
lower than P0 due to increase in 
entropy s as a result of fluid 
friction.
Nonetheless, stagnation processes 
are often approximated to be 
isentropic, and isentropic 
properties are referred to as 
stagnation properties
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Stagnation Properties

For an ideal gas, h = CpT, which allows the h0 to be rewritten

T0 is the stagnation temperature.  It represents the temperature an ideal 
gas attains when it is brought to rest adiabatically.

(V2/2cp ) corresponds to the temperature rise, and is called the      
dynamic temperature

For ideal gas with constant specific heats, stagnation pressure 
and density can be expressed as
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Stagnation Properties

When using stagnation enthalpies, there is no need 
to explicitly use kinetic energy in the energy 
balance.

Where h01 and h02 are stagnation enthalpies at 
states 1 and 2.
If the fluid is an ideal gas with constant specific heats
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Speed of Sound and Mach Number

Important parameter in 
compressible flow is the speed of 
sound.

Speed at which infinitesimally small 
pressure wave travels

Consider a duct with a moving 
piston

Creates a sonic wave moving to the 
right
Fluid to left of wave front 
experiences incremental change in 
properties
Fluid to right of wave front maintains 
original properties
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Speed of Sound and Mach Number

Construct CV that encloses 
wave front and moves with it

Mass balance

cancel Neglect 
H.O.T.
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Speed of Sound and Mach Number

Energy balance ein = eout

cancel cancel Neglect 
H.O.T.
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Speed of Sound and Mach Number

Using the thermodynamic relation

Combining this with mass and energy 
conservation gives

For an ideal gas
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Speed of Sound and Mach Number

Since 
R is constant
k is only a function of T
Speed of sound is only a 
function of temperature
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Speed of Sound and Mach Number

Second important 
parameter is the 
Mach number Ma
Ratio of fluid velocity 
to the speed of sound

Flow regimes 
classified in terms of 
Ma

Ma < 1   : Subsonic

Ma = 1   : Sonic

Ma > 1   : Supersonic

Ma >> 1 : Hypersonic

Ma ≈ 1   : Transonic
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One-Dimensional Isentropic Flow

For flow through nozzles, 
diffusers, and turbine blade 
passages, flow quantities vary 
primarily in the flow 
direction

Can be approximated as 
1D isentropic flow

Consider example of 
Converging-Diverging Duct
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One-Dimensional Isentropic Flow

Example illustrates:
Ma = 1 at the location of 
the smallest flow area, 
called the throat
Velocity continues to 
increase past the throat, 
and is due to decrease in 
density
Area decreases, and then 
increases.  Known as a 
converging - diverging 
nozzle.  Used to 
accelerate gases to 
supersonic speeds.
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One-Dimensional Isentropic Flow 
Variation of Fluid Velocity with Flow Area

Relationship between V, ρ, and A are complex
Derive relationship using continuity, energy, 
speed of sound equations

Continuity

Differentiate and divide by mass flow rate (ρAV)
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Derived relation (on image at 
left) is the differential form of 
Bernoulli’s equation.

Combining this with result 
from continuity gives

Using thermodynamic 
relations and rearranging 

One-Dimensional Isentropic Flow 
Variation of Fluid Velocity with Flow Area
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This is an important relationship
For Ma < 1,  (1 - Ma2) is positive ⇒ dA and dP have the 
same sign. 

Pressure of fluid must increase as the flow area of the duct increases, 
and must decrease as the flow area decreases

For Ma > 1,  (1 - Ma2) is negative ⇒ dA and dP have 
opposite signs. 

Pressure must increase as the flow area decreases, and must decrease 
as the area increases

One-Dimensional Isentropic Flow 
Variation of Fluid Velocity with Flow Area
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A relationship between dA and dV can be derived by 
substituting ρV = -dP/dV (from the differential Bernoulli 
equation)

Since A and V are positive
For subsonic flow (Ma < 1)	 dA/dV < 0
For supersonic flow (Ma > 1)	 dA/dV > 0
For sonic flow (Ma = 1)		 dA/dV = 0

One-Dimensional Isentropic Flow 
Variation of Fluid Velocity with Flow Area
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Comparison of flow properties in subsonic and supersonic nozzles and diffusers

One-Dimensional Isentropic Flow 
Variation of Fluid Velocity with Flow Area
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One-Dimensional Isentropic Flow 
Property Relations for Isentropic Flow of Ideal Gases

Relations between static properties and stagnation properties 
in terms of Ma are useful.

Earlier, it was shown that stagnation temperature for an ideal 
gas was

Using definitions, the dynamic temperature term can be 
expressed in terms of Ma
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Substituting T0/T ratio into P0/P and ρ0/ρ relations:

Numerical values of T0/T, P0/P and ρ0/ρ can be compiled in 
Tables (e.g. for k=1.4)

For Ma = 1, these ratios are called critical ratios

One-Dimensional Isentropic Flow 
Property Relations for Isentropic Flow of Ideal Gases
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One-Dimensional Isentropic Flow 
Property Relations for Isentropic Flow of Ideal Gases
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Isentropic Flow Through Nozzles

Converging or converging-diverging nozzles are 
found in many engineering applications

Steam and gas turbines, aircraft and spacecraft 
propulsion, industrial blast nozzles, torch nozzles

Here, we will study the effects of back pressure 
(pressure at discharge) on the exit velocity, mass 
flow rate, and pressure distribution along the 
nozzle
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Isentropic Flow Through Nozzles
Converging Nozzles

State 1:  Pb = P0, there is no flow, and 
pressure is constant.
State 2: Pb < P0, pressure along 
nozzle decreases.
State 3: Pb =P* , flow at exit is sonic, 
creating maximum flow rate called 
choked flow.
State 4: Pb < P*, there is no change 
in flow or pressure distribution in 
comparison to state 3

State 5: Pb =0, same as state 4.
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Isentropic Flow Through Nozzles
Converging Nozzles

Under steady flow conditions, mass flow rate is 
constant

Substituting T and P from the expressions on 
previous slides gives

Mass flow rate is a function of stagnation 
properties, flow area, and Ma
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The maximum mass flow rate through a nozzle 
with a given throat area A* is fixed by the P0 and 
T0 and occurs at Ma = 1

This principle is important for chemical 
processes, medical devices, flow meters, and 
anywhere the mass flux of a gas must be known 
and controlled.

Isentropic Flow Through Nozzles
Converging Nozzles
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Isentropic Flow Through Nozzles
Converging-Diverging Nozzles

The highest velocity in a converging nozzle 
is limited to the sonic velocity (Ma = 1), 
which occurs at the exit plane (throat) of 
the nozzle
Accelerating a fluid to supersonic velocities 
(Ma > 1) requires a diverging flow section

Converging-diverging (C-D) nozzle
Standard equipment in supersonic aircraft and 
rocket propulsion

Forcing fluid through a C-D nozzle does 
not guarantee supersonic velocity

Requires proper back pressure Pb
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1. P0 > Pb > Pc

Flow remains subsonic, and mass 
flow is less than for choked flow.  
Diverging section acts as diffuser

2. Pb = PC

Sonic flow achieved at throat.  
Diverging section acts as diffuser.  
Subsonic flow at exit.  Further 
decrease in Pb has no effect on flow 
in converging portion of nozzle

Isentropic Flow Through Nozzles
Converging-Diverging Nozzles
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3. PC > Pb > PE

Fluid is accelerated to supersonic velocities in 
the diverging section as the pressure decreases.  
However, acceleration stops at location of 
normal shock.  Fluid decelerates and is subsonic 
at outlet.  As Pb is decreased, shock approaches 
nozzle exit.

4. PE > Pb > 0
Flow in diverging section is supersonic with no 
shock forming in the nozzle.  Without shock, 
flow in nozzle can be treated as isentropic.

Isentropic Flow Through Nozzles
Converging-Diverging Nozzles
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Shock Waves and Expansion Waves

Review
Sound waves are created by small pressure 
disturbances and travel at the speed of sound
For some back pressures, abrupt changes in fluid 
properties occur in C-D nozzles, creating a shock 
wave

Here, we will study the conditions under which 
shock waves develop and how they affect the 
flow.
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Shock Waves and Expansion Waves
Normal Shocks

Shocks which occur in a plane 
normal to the direction of 
flow are called normal shock 
waves
Flow process through the 
shock wave is highly 
irreversible and cannot be 
approximated as being 
isentropic
Develop relationships for flow 
properties before and after the 
shock using conservation of 
mass, momentum, and energy



ì

Conservation of mass

Conservation of energy

Conservation of momentum

Increase in entropy

Shock Waves and Expansion Waves
Normal Shocks
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Combine conservation of mass 
and energy into a single equation 
and plot on h-s diagram

Fanno Line:  locus of states that 
have the same value of h0 and 
mass flux

Combine conservation of mass 
and momentum into a single 
equation and plot on h-s diagram 

Rayleigh line
Points of maximum entropy 
correspond to Ma = 1.

Above / below this point is 
subsonic / supersonic

Shock Waves and Expansion Waves
Normal Shocks



ì

There are 2 points where the 
Fanno and Rayleigh lines intersect : 
points where all 3 conservation 
equations are satisfied

Point 1:  before the shock 
(supersonic)
Point 2:  after the shock (subsonic)

The larger Ma is before the shock, 
the stronger the shock will be.
Entropy increases from point 1 to 
point 2 :  expected since flow 
through the shock is adiabatic but 
irreversible

Shock Waves and Expansion Waves
Normal Shocks
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Equation for the Fanno line for an 
ideal gas with constant specific 
heats can be derived

Similar relation for Rayleigh line is

Combining this gives the 
intersection points

Shock Waves and Expansion Waves
Normal Shocks
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Shock Waves and Expansion Waves
Oblique Shocks

Not all shocks are 
normal to flow 
direction.
Some are inclined 
to the flow 
direction, and are 
called oblique 
shocks
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At leading edge, flow is 
deflected through an angle θ 
called the turning angle
Result is a straight oblique 
shock wave aligned at shock 
angle β relative to the flow 
direction
Due to the displacement 
thickness, θ is slightly greater 
than the wedge half-angle δ. 

Shock Waves and Expansion Waves
Oblique Shocks
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Like normal shocks, Ma decreases across the 
oblique shock, and are only possible if upstream 
flow is supersonic
However, unlike normal shocks in which the 
downstream Ma is always subsonic, Ma2 of an 
oblique shock can be subsonic, sonic, or supersonic 
depending upon Ma1 and θ.

Shock Waves and Expansion Waves
Oblique Shocks
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All equations and shock 
tables for normal shocks 
apply to oblique shocks as 
well, provided that we use 
only the normal 
components of the Mach 
number

Ma1,n = V1,n/c1

Ma2,n = V2,n/c2θ−β-Ma relationship

Shock Waves and Expansion Waves
Oblique Shocks
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Shock Waves and Expansion Waves
Oblique Shocks
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If wedge half angle               
𝛿 > θmax, a detached 
oblique shock or bow 
wave is formed

Much more complicated 
that straight oblique 
shocks.
Requires CFD for analysis.

Shock Waves and Expansion Waves
Oblique Shocks
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Similar shock waves see for axisymmetric bodies, 
however, θ−β-Ma relationship and resulting diagram is 
different than for 2D bodies

Shock Waves and Expansion Waves
Oblique Shocks
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For blunt bodies, without 
a sharply pointed nose,     
δ = 90°, and an attached 
oblique shock cannot exist 
regardless of Ma.

Shock Waves and Expansion Waves
Oblique Shocks
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Shock Waves and Expansion Waves
Prandtl-Meyer Expansion Waves

In some cases, flow is turned in the opposite 
direction across the shock

Example:  wedge at angle of attack θ greater 
than wedge half angle δ
This type of flow is called an expanding flow, in 
contrast to the oblique shock which creates a 
compressing flow
Instead of a shock, a expansion fan appears, 
which is comprised of infinite number of Mach 
waves called Prandtl-Meyer expansion waves
Each individual expansion wave is isentropic :  
flow across entire expansion fan is isentropic
Ma2 > Ma1

P, ρ, T decrease across the fan

Flow turns gradually as each 
successful Mach wave turns
the flow ay an infinitesimal amount
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Prandtl-Meyer expansion fans also occur in 
axisymmetric flows, as in the corners and trailing 
edges of the cone cylinder.

Shock Waves and Expansion Waves
Prandtl-Meyer Expansion Waves
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Interaction between shock waves and expansions waves in 
“over expanded” supersonic jet

Shock Waves and Expansion Waves
Prandtl-Meyer Expansion Waves


