
Chemical Engineering Greetings to prof. Sauro Pierucci on occasion of his 65th Birthday,
AIDAC, 151-160 (2011).

Computational advances in solving Mixed Integer Linear Programming problems

To Professor Sauro Pierucci for leadership in Process Systems Engineering

Ricardo M. Lima and Ignacio E. Grossmann

Department of Chemical Engineering, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213, United States

In this paper, we identify some of the computational advances that have been contributing to the efficient
solution of mixed-integer linear programming (MILP) problems. Recent features added to MILP solvers at the
algorithmic level and at the hardware level have been contributing to the increasingly efficient solution of more
difficult and larger problems. Therefore, we will focus on the main advances in terms of hardware, and
algorithms in one commercial solver to demonstrate the advantages and disadvantages of the recent features.
Special attention is given to the utilization of multiple threads, parallelization modes, and the integration of
heuristics with the branch and cut algorithm. Two problems are used to show the advantages of some of the new
options. The results show that while some of the new features may help on the solution of difficult problems,
they can also reduce the performance on relatively easy problems.

1. INTRODUCTION

A large number of optimization problems in Process Systems Engineering (PSE) can be described by Mixed-
Integer Linear Programming (MILP) models. Examples include the optimization of production operations
including planning and scheduling, optimization of supply chains involving logistics and distribution, multiple
period optimization (Grossmann, 2005), and process synthesis using simplified models without nonlinearities
(Biegler et al., 1999). Ultimately in Enterprise Wide Optimization (EWO) planning and scheduling are integrated
in order to avoid suboptimal decisions. Furthermore, these are integrated with the supply chain which leads to
very large-scale problems when multiple productions sites, distributions centers, markets and multiple products
are considered. In addition, there are countless applications of MILP models in other domains, such as macro
and micro economics, finance (Cornuejols G. and Tutunku R, 2007), energy planning and unit commitment
problems (see Padhy, 2004 for a review), and biological systems (Gregory et al., 2000). In the process industries,
real world problems usually lead to large-scale models, due to the size of the system under study, but also
because of models that involve multiple periods. Furthermore, often new variables and equations are introduced
to replace nonlinearities by piecewise approximations, or for performing exact linearizations (eg. product binary
and continuous variables).

Generally MILP problems can be solved using Linear Programming (LP)-based Branch & Bound (B&B)
solvers or with stochastic search based solvers. The advantage of the first approach is that it provides rigorous
lower and upper bounds on the solution, which in turn provide information regarding the optimality of the
solution. MILP problems may be represented by the following formulation:

}:}1,0{),{(

where
}),(:min{)(

bByAxyxX

XyxfycxXZ

pn ≥+×ℜ∈=

∈+=

+

and c, f, b are vector of constants, and A and B are matrices of constants. B&B algorithms rely on the start of a
solution of a linear relaxation of the form:

}:]1,0[),{(

where
}),(:min{)(

bByAxyxX

XyxfycxXZ

pn ≥+×ℜ∈=

∈+=

+

to provide upper and lower bounds on the solution. Broadly speaking the algorithm starts with the solution of the
initial relaxed LP problem at the root node, where afterwards an integral variable, xi with the fractional value xi

0
is chosen, and two additional subproblems are defined by adding the inequality xi ≤ xi

0 to the LP problem at
the root node and the other by adding xi ≥ xi

0. This procedure is repeated for each sub-problem, until the upper
bound defined by integral solutions is equal to the lower bound given by fractional solutions. During the search
the upper and lower bounds are used to prune branches of the tree (for a detailed description see Wolsey (1998)).
B&B algorithms, however, may not be able to effectively solve large problems due to the exponential number of
subproblems that may have to be solved, particularly when the LP relaxation is poor. In reality MILP solvers
have implemented more sophisticated versions denoted by Branch & Cut (B&C) algorithms. In these algorithms,
valid inequalities denoted by cutting planes are added to the linear relaxations in order to reduce the size of the
feasible space defined by X without eliminating any feasible integer solution.

As mentioned before, real world problems tend to be large and exhibit an exponential complexity with the
problem size (NP-hard). However, it is clear that in the recent years truly remarkable progress has been made in
the solution of MILP problems. As an example, consider the classical Kondili MILP model (Kondili et al.1993)
with 72 binary variables, 179 continuous variables and 250 constraints. In 1987 using Kondili’s B&B, it took
908 seconds and 1466 nodes in a VAX-8600 to solve, while Shah et al. (1993) took 119 seconds and 419 nodes
using a SUN Sparc. Finally, in 2003 using CPLEX 7.5 with a laptop IBM T-40 only 0.45 seconds was required
(Mendez et al., 2006). A more standard benchmark for MILP problems, the MIPLIB 2003 (Achterberg et al,
2006), shows that in the beginning of 2003 there were more than 30 problems with unknown optimal solution,
while in the beginning of 2011 only four problems remain to be solved (http://miplib.zib.de, accessed on Feb. 11,
2011).

The ability to solve more complex problems has been supported by: a) advances of computational resources
in terms of speed and memory, leading to faster calculations, and with enough memory storage to tackle large
amounts of data (ten years ago a Digital workstation with one 600MHz CPU was a faster computer, while
nowadays a common laptop has 4 threads each one at 2.5GHz); b) developments of new and improved
algorithms and pre-processing techniques; and c) modeling systems that speed up the definition of problems. In
addition, decomposition strategies such as rolling horizon algorithms and spatial and temporal Lagrangean
decompositions have helped to facilitate the solution of larger MILP problems.

The specific objective of this paper is to evaluate some of the recent advances of the MILP solver CPLEX.
Although there are other effective solvers like XPRESS and Gurobi, we focus on CPLEX as it has a number of
new unique features. In fact, CPLEX is currently a software package that has available a set of different solvers,
tools, and interfaces for different languages and software. CPLEX started as a linear programming solver, and
currently it can handle MILP and Quadratic Programs (QP) ranging from Mixed Integer Quadratic Programming
(MIQP) to Mixed Integer Quadratic Constrained Programming (MIQCP). During the last 20 years CPLEX has
gone through different types of developments. The current computational performance is the result of a
combination of improvements on several areas, which can be broadly divided in the following five major areas:

1. LP solvers
• Pre-processing
• Algebra for sparse systems
• Methods: primal, dual, barrier
• Techniques to avoid degeneracy and numerical difficulties

2. Cutting planes

• Several cutting planes available
3. MILP pre-processing techniques
4. Heuristics

• Node heuristics
• RINS
• Polishing

5. Parallelization
• Search in the B&B tree
• Barrier method

6. B&B
• Dynamic search

LP solvers improvements. The performance of the LP solver is of paramount importance in the solution of MILP
problems, since the B&C may have to solve a large number of LP subproblems in the enumeration tree.
Currently, commercial software have available the primal, dual and network simplex, and the primal-dual log
barrier algorithm. Bixby (2002) has made an extensive study about the performance of these solvers and reported
an improvement of three orders of magnitude between 1992 and 2002 in the speed up solution of LP problems.
These improvements are supported by a) pre-processing techniques to reduce the size of the initial problem; b)
linear algebra advances to handle sparse systems of equations; c) advances in the primal and dual simplex; and
d) the effective parallelization of barrier algorithms. An additional feature to help on the solution of LP
problems, denoted by concurrent optimization is present in CPLEX. This feature allows the solution in parallel
of LP problems using different solvers simultaneously. With this option the first thread will run the dual simplex,
the second the barrier, the third the primal simplex and the remaining threads will be used by the barrier solver.
Therefore, the barrier solver when applied to large problems may be faster than the simplex based solvers, since
there is not an effective parallelized simplex available. However, due to the superior performance of simplex
based solvers when they start from an advanced basis, these solvers are faster than the barrier solver when their
performance is compared within a B&C framework. Table 1 shows the speed ups obtained when solving an LP
problem (based on one model from Lima et al., 2011) with 60,390 equations 69,582 variables using CPLEX 7.1
with one thread and CPLEX 12.2 with eight threads in the same computer. The results show that the primal and
dual simplex solvers in CPLEX 12.2 are 4.5 and 5.5 times faster than the respective solvers in CPLEX 7.1.
Assuming that these solvers only use one thread, these improvements are due to improvements in the algorithms.
In the other hand, the parallelized barrier algorithm in version 12.2 is only 5.4 times faster.

Table 1 Elapsed CPU time to solve the same LP problem using the solvers available in CPLEX 7.1 and 12.2.

 CPU time (s)

Solver CPLEX 7.1 CPLEX 12.2

Primal Simplex 205 45

Dual Simplex 281 51

Network Simplex 174 91

Barrier 97 18

Cutting planes. All commercial solvers have the capability of generating cutting planes as a function of the type
of constraints present in the problem to solve. The goal of adding cutting planes is to improve the linear
relaxations by eliminating regions of the feasible space without cutting off integer solutions. The solvers have
their own technology to identify specific constraints in the problem and to add the appropriate cuts. For example
if CPLEX detects characteristics of a multi-commodity flow network with arc capacities it will add multi-

commodity flow cuts. For more general MILP models it will generate Gomory cuts, which have shown to be
very effective. Using standard options, the cuts are generated and added in an incremental way until the
improvement of the relaxation is within a specified tolerance. Using CPLEX as an example to track the
implementation of different cutting planes, CPLEX 6.0 (1998) had available a limited number of cuts to be
generated, while CPLEX 8.0 (2002) could generate 9 types of cutting planes, and currently, CPLEX12.2 can
generate 12 different types of cutting planes. Bixby and Rothberg (2007) have studied the impact of different
features on the CPLEX performance and have found Gomory cuts to be the most effective. They have used
CPLEX 8.0 to solve a set of 106 problems and studied the impact of deactivating some features. These authors
state that deactivating all the types of cutting planes available, the mean performance of the solver decreased
53.7 times. The progress made in the implementation of cutting planes, may suggest that the user might be less
concerned about the problem formulation in terms of defining a tight relaxation. However, from our experience,
with the current implementation of cutting planes, a tighter formulation used with an old version of CPLEX may
have more impact on the performance of the solver than the last version of CPLEX with a bad formulation.

Pre-processing and probing techniques. The pre-processing for MILP has two objectives 1) reduce the size
of the problem; and 2) improve the formulation by tightening the linear relaxation without increasing the size of
the problem. The pre-processing uses four different techniques: 1) identification of feasibility; 2) identification
of redundancy; 3) improvement of bounds; and 4) rounding. The probing techniques are based on fixing binary
variables to either 0 or 1, and then check logical implications to evaluate the possibility of fixing variables and
improve coefficients. Pre-processing and probing are both formalized in Savelsbergh (1994) and Wolsey (1998).

Heuristics. Currently the MILP solvers may apply several heuristics in order to diversify the search by
diving to lower parts of the tree where solutions are expected to be. Broadly speaking, CPLEX uses two types of
heuristics: node heuristics and neighbourhood search heuristics. The node heuristics comprise different
approaches involving deduction of values of some 0-1 binary variables that can be fixed given the value of 0-1
variables that were fixed previously, and fixing the values of 0-1 variables and solving LP subproblems. The set
of node heuristics are applied initially at the root node and their impact is evaluated in order to define the most
promising ones, which are then used during the branch and bound. In addition, if the user provides a starting
solution that is not feasible, CPLEX has the option to apply specific heuristics to repair the infeasible solution.
CPLEX 7.1 had only available node heuristics, while the current version has four types of neighbourhood search
heuristics available: a) Local Branching (LB); b) Relaxation Induced Neighborhood Search (RINS) (Dana et al.,
2005); c) Guided Dives (GD) (Dana et al., 2005); and d) evolutionary algorithms for polishing MIP solutions
(Rothberg E. 2007). From these heuristics we will highlight two, the RINS and the solution polishing.

The RINS explores the neighborhood of the incumbent to find better solutions using an algorithm with two
steps: 1) the binary variables with the same value in the incumbent and the linear relaxation are fixed; 2) a sub-
MIP with the remaining binary variables free is solved. Obviously poor relaxations lead to large sub-MIP
problems to solve. In terms of implementation the sub-MIP problems are not solved to optimality, and the
heuristic is invoked with a given frequency. The solution polishing is based on the same idea of fixing some of
the binary variables and then solving a sub-MIP problem. However, here the binary variables are fixed using
genetic operators similar to the ones used in genetic algorithms. During the B&C a solution pool with integral
solutions is kept, which are then used as seeds for the mutation and combination operators to generate a vector
with some binary variables fixed. For each vector of binary variables, a sub-MIP is solved. If the solution of this
sub-MIP is better than the incumbent, the incumbent is updated. The solution polishing requires at least one
integral solution in order to be activated. Note that both neighborhood searches maintain the logic of the upper
and lower bounds used in the B&C. The solution polishing heuristic focuses directly on the improvement of the
incumbent by solving sub-MIP problems, which has the cost of slowing down the improvement of the best
bound. Both heuristics and cutting planes contribute to prove optimality; the heuristics by improving the upper
bound by finding integer solutions, while the cutting planes focus on improving the linear relaxation and
therefore helping to move the best bound.

Parallelization. Currently, several MILP solvers offer the option to use multiple threads during the B&C
search. CPLEX offers two modes a deterministic mode and an opportunistic mode. On the one hand the
deterministic mode guarantees the invariance and repeatability of the search path and results, i.e. the path taken
to the solution is always the same in different optimization runs of the same problem. On the other hand, in the
opportunistic mode the path may be different each time we optimize the same problem since there is less
synchronization during the search. This means that for problems where optimality cannot be proved within the
maximum time set, the opportunistic mode may give different results on different optimization runs. In terms of
CPU time performance, it is expected that using more threads should be faster, and that the opportunistic mode
should outperform the deterministic mode. However, this may not be the case due to the non-deterministic nature
of the branch & bound search.

B&B and additional tools. In addition to the B&C algorithm, CPLEX 12.2 has available a new algorithm to
solve MILP problems called dynamic search. Currently, it is treated as a trade secret and details of the algorithm
have not been disclosed. The only thing that is known is that it is based on the B&C algorithm.

CPLEX, and in general MILP solvers, have additional tools that may help to improve the performance of the
MILP solvers, and help on the implementation of specific strategies to solve difficult MILP problems. These
tools involve: a) a tuning option to automatically find the most efficient MILP solver options to minimize the
CPU time; b) a solution pool built during the B&C. The goal of the tuning tool is to identify the MILP solver
options that will improve the performance of the solver. This is motivated by the large number of options that
MILP solvers offer, and their impact on the solution and performance of the solvers. In addition, the default
options are set to work well for a large collection of problems. However, they may not be the most appropriate
for a specific problem. The output result of the tuning tool is a new option file with a set of options that will
improve the performance of the solver.

 The goal of the solution pool is to create a pool of integral solutions during the B&C search, and provide
multiple solutions at the end of the optimization. The solutions collected may be filtered through criteria such as
solutions with a given percentage of the optimal solution, or diverse solutions according to a specific criterion.
This allows the decision maker to inspect sub-optimal solutions, which can be justified whenever the model does
not capture the full essence of the problem, when approximations are used, or when the data is not accurate.

2. EXAMPLES

The performance of the MILP solvers is usually evaluated for a set of problems with different characteristics in
terms of size and types of constraints. However, in this work due to space limitations only two problems are
studied. Problem I is an open problem from the GAMS library with the name poutil.gms. The objective of this
problem is to minimize the total cost involved in a portfolio optimization for electric utilities (Rebennack et al.
2009). Problem II is a problem based on the MILP continuous time slot based model for scheduling of a multi-
product single stage continuous processes proposed by Lima et al. (2011), where the goal is to determine the
optimal schedule that maximizes an economical index. The size of these problems is given in Table 2.

Table 2 Size of the problems

 Problem I Problem II

Equations

2,178

16,886

Variables

1,260

12,156

0-1 variables

773

5,938

In this work we will focus in some of the options that are not so common to tune, such as: a) the number of
threads used; b) the parallel modes: deterministic and opportunistic; c) the solution polishing option; d) the use

of heuristics; and e) the tuning tool. For both problems, when the solution polishing option is used, it is activated
after 60 seconds. In addition, for the second problem a two stage optimization is considered. The main idea
behind it is the following: first make a quick search for an integral solution using the polishing option, and
afterwards use the B&C to prove optimality. Whereas, the second stage optimization uses the solution of the first
stage as a starting point, the tuning tool is only used for the first problem to tune the CPLEX options.

These problems are implemented in GAMS 23.5 (Brooke, Kendrick, Meeraus, & Raman, 1998) and solved
on a machine running Linux with 8 threads Intel Xeon, 2.66GHz and 8GB of RAM.

3. RESULTS

Problem I can be solved to optimality in 950 seconds using one thread with CPLEX 12.2 using the default
options (if solved with XPRESS 20.00, Gurobi 3.0.1, the times are 476 seconds, 486 seconds, while no solution
was found using BDMLP 1.3 and XA 15.07a in 1000 seconds). Using CPLEX 7.1 with a time limit of 1000
seconds, the final solution is 279,070.5 (relative gap of 7.3%). These results show a clear improvement between
CPLEX 7.1 and CPLEX 12.2, and weaker performance of CPLEX 12.2 when compared with other solvers using
the default options. A careful analysis of the output log of the solvers CPLEX, XPRESS, and Gurobi shows that
the current versions spend more time at the root node, generating cuts and trying heuristics, than CPLEX 7.1. For
example, CPLEX 7.1 does not find any integral solution at the root node and adds the following cuts: one
implied bound cut and 28 Gomory fractional cuts; while at the end of the root node CPLEX 12.2 has a solution
with a relative gap of 9.1%, finds 6 integral solutions, and improves the LP relaxation by adding 12 implied
bound cuts, 5 flow cuts, 28 mixed integer rounding cuts, 56 zero-half cuts, and 7 Gomory fractional cuts. Similar
numbers are obtained with Gurobi 3.0.1 at the end of the root node: 10 integral solutions, and a total of 103 cuts.

Table 3 presents the results obtained solving this problem using different options in terms of the number of
threads, the opportunistic and the deterministic mode, and with the solution polishing activated. The results
clearly show that increasing the number of threads used reduces the CPU time required to reach optimality.
When using eight threads with the opportunistic mode instead of a single thread the elapsed CPU time is reduced
from 950 seconds to only 61 seconds. This shows a clear advantage of using multiple threads. The last row of the
table displays the results obtained when the polishing option is activated after 60 seconds, which turns out to be a
bad option. In this case CPLEX is able to find the optimal solution, but it is not able to prove optimality by
improving the best bound.

Table 3 Results for Problem I obtained for different instances

 Objective function
Instances CPU time (s) Gap (%) RMIP MIP

1 950 0.0 266,793.0 266,793.0

4D 211 0.0 266,793.0 266,793.0

4O 206 0.0 266,793.0 266,793.0

8D 95 0.0 266,793.0 266,793.0

8O 61 0.0 266,793.0 266,793.0

8D POL 1000 0.94 264,291.7 266,793.0

In order to evaluate if the performance of CPLEX can be further improved, the tuning tool is applied to Problem
I. The option file generated by the tuning tool has the following options cutpass=-1, heurfreq=-1, probe=-1,
varsel=4, which respectively set off the cutting planes generation, deactivates the heuristics, no probing, and sets
the branching based on pseudo reduced costs. Basically, it turns off some of the algorithmic capabilities. The
speed ups obtained with these options are presented in Table 4. Using the new options with one thread the CPU

time required is 67 seconds, instead of 950 seconds, while with eight threads it is only eight seconds, instead of
95 seconds. However, for this problem, the tuning tool requires 327 seconds to run. This extra time, however,
might be justified if a similar problem is to be solved many times.

Table 4 CPU times obtained for Problem I using standard options and the options from the tuning tool.

 Standard options
Options from the tuning

tool.
Threads CPU time (s) CPU time (s)

1 950 67

8D 95 8

Problem II is larger and more complex than Problem I, and optimality is not obtained within the time limit of
3600 seconds. First, in order to demonstrate the improvements of the current CPLEX version, Problem II was
solved using CPLEX 7.1 and CPLEX 12.2. The older version was not able to find one integral solution in 3600
seconds, while the latter was able to achieve a solution with a relative optimality criterion of 3.4%, see Table 5.

Table 5 Performance of CPLEX 7.1 and 12.2 solving Problem II. In CPLEX 12.2 only one thread is used.

 Objective function
Solver CPU time (s) Gap (%) RMIP MIP

CPLEX 7.1 3600 - 2,687.9 -

CPLEX 12.2 3600 3.4 2,669.0 2,580.5

Several instances were also studied for this problem. The best solution is obtained using eight threads with the
deterministic parallel mode with the solution polishing activated after 60 seconds. All instances terminate with a
relative optimality criterion less or equal than 3.5%. Figure 1 shows the objective function versus the node
number for the different instances for this problem. The first solutions found by the solver are negative but, it is
able to evolve towards positive values.

The results in Figure 1 show that with the heuristics deactivated, the performance of the solver is
significantly reduced, when compared with the other cases where heuristics are used. Analyzing the impact of
the parallelization modes, the opportunistic mode is able to find more integral solutions than the deterministic
mode, see Figures 1 and 2. Regarding the number of threads used, increasing the number of threads with the
opportunistic option does not lead to a considerable increase in the performance of the solver. However,
increasing the number of threads from 1 to 4 or 8 in the deterministic mode has an impact on the number of
solutions and the node where the integral solutions are found, see Figure 2. In addition, in Table 6 it is shown
that using eight threads with the opportunistic mode leads to a better integral solution and a lower optimality gap
than using eight threads with the deterministic mode. Figures 1, 2, and 3 show also that the number of solutions
found in the tree, and the tree level where they are found is different on each instance. Using eight threads with
the polishing option activated after 60 seconds, it finds solutions early in the search and it is reported to require
fewer nodes. However, with the polishing option it is solving sub-MIP problems that do not count as nodes, but
consume time. Therefore, the number of nodes reported is a misleading metric when heuristics are used. A better
metric is the CPU time required to achieve a solution within a given optimality criterion as shown in Figure 3,
where it is clear that the polishing option can find solutions considerably earlier than in the instance where it is
not used. The two stage optimization strategy obtained the lower optimality gap, due to the best bound found. In
this table is also shown that when the solution polishing is used for a large percentage of the time, the solver

spends more time solving sub-MIP problems than improving the best bound, see the two rows at the bottom of
Table 6.

Figure 1 Objective function vs node number for different instances for Problem II. 1D, 4D, 8D – one, four and
eight threads with the deterministic mode. 4O, 8O - four and eight threads with the opportunistic mode. 8D
POL– polishing option activated after 60 seconds with 8D.

2450

2470

2490

2510

2530

2550

2570

2590

2610

0 20,000 40,000 60,000 80,000 100,000 120,000

O
bj

ec
tiv

e
fu

nc
tio

n

Nodes

Case 1D

Case 4D

Case 8D

Case 4O

Case 8O

Case 8D POL

Case 1D

Case 8D POL

Case 4D

Case 8D

Parallel mode:
deterministic

Parallel mode:
opportunistic

Figure 2 Objective function vs node number for different instances for Problem II. 1D, 4D, 8D – one, four and
eight threads with the deterministic mode. 4O, 8O - four and eight threads with the opportunistic mode. 8D
POL– polishing option activated after 60 seconds with 8D.

-1E+11

-8E+10

-6E+10

-4E+10

-2E+10

0

2E+10

0 20,000 40,000 60,000 80,000 100,000 120,000

O
bj

ec
tiv

e
fu

nc
tio

n

Nodes

Case 1D

Case 4D

Case 8D

Case 4O

Case 8O

Case POL 8D

Case 8D without
heuristics

Without using heuristics

2400

2450

2500

2550

2600

2650

0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
tiv

e
fu

nc
tio

n

CPU time (s)

Case 8D POL

Case 8D

Figure 3 Objective function vs CPU time for different instances for Problem II, but considering only solutions
with objective function greater than 2400. 8D - eight threads deterministic, 8D POL – polishing option activated
after 60 seconds with 8D.

Table 6 Results for Problem II for different instances with different CPLEX options

The introduction of heuristics in the B&C algorithm that use a random seed, for example the solution

polishing, and the opportunistic parallel mode introduce a variability in the search path, which do not guarantee
the repeatability of the results. This means that CPLEX may have a different performance in terms of
computational time, final solution, and iterations, when the same problem is solved twice. This may be
particularly important when the optimal solution is not obtained within the time limit set. In a development phase
if repeatability is required to test different formulations, the above options should be avoided. However, they
represent an opportunity to obtain better solutions.

4. CONCLUSIONS

With the current state of the art of MILP solvers, it is possible to solve problems that have been considered
difficult or impossible to solve in the past. This has been possible by advances in the algorithms used, hardware,
and modeling systems. In this work, instead of focusing on a large set of test problems, we focus in just two
problems. The goal is to show the advantages of different options available in CPLEX that may work well in
some problems, but in fact can also reduce the performance of the solvers on relatively easy problems. As an
example, the deactivation of the heuristics in Problem I reduces by two orders of magnitude the computational

 Objective function

Instances CPU time (s) Gap (%) RMIP MIP

8D 3600 3.4

2,666.3

2,578.8

8O 3600 2.3

2,665.9

2,607.2

8D POL 3600 2.2

2,668.8

2,610.4

2 Stages optimization 3600

2.0

2,656.6

2,603.5

time, while in Problem II the heuristics help to find good solutions in the beginning of the search. An important
aspect that was not discussed is the utilization of decomposition strategies, such as rolling horizon algorithms or
Lagrangean decompositions. These have also contributed to address larger and more complex MILP problems,
which together with the advances in MILP solvers represent an opportunity to address models that are larger in
size and with increasing levels of detail.

5. REFERENCES

Atamurk, A., Nemhauser, G., Savelsbergh, M.W.P., 2000. Conflict graphs in solving integer programming
problems. European Journal of Operational Research, 121, p. 40-55.

Achterberg T., Koch T., Martin A., 2006, MIPLIB 2003. Operations Research letters. 34(4), 361-372.
Biegler L.T., Grossmann I.E., Westerberg A.W., 1999, Systematic methods of chemical process design. Prentice

Hall, New Jersey.
Bixby R, Rothberg E, 2007, Progress in computational mixed integer programming- a look back from the other

side of the tipping point, Annals of Operation Research, 49(1), 37-41.
Bixby R.E., 2002, Solving real-world linear programs: a decade and more of progress. Operations Research.

50(1), 3-15.1
Bixby R.E., Fenelon M., Gu Z., Rothberg E., Wunderling R., 2000, MIP: Theory and practice – closing the gap,

System Modeling and optimization methods, theory and applications, Kluwer Academic Publishers.
Cornuejols G., Tutunku R, 2007, Optimization methods in finance. Cambridge University Press.
Danna E., Rothberg, E., Le Pape, C., 2005. Exploring relaxation induced neighborhoods to improve MIP

solutions, Mathematical Programming, 102(1), p. 71-91.
Fischetti M., Lodi, A., 2005. Local branching. Mathematical Programming, 98, p. 23-47.
GAMS corporation, CPLEX 2010 Manual.
Gregory L.M., Maranas C.D., Gutshall K.R., Brenchley J.E., 2000, Modeling and optimization of DNA

recombination. Computers and Chemical Engineering. 24(2-7), 693-699.
Grossmann I., 2005, Enterprise-wide optimization: A new frontier in process systems engineering. AIChE

Journal, 51(7), 1846-1857.
Kondili E., Pantelides C.C., Sargent W. H., 1993, A general algorithm for short-term scheduling of bath

operations – I. MILP formulation. Computers and Chemical Engineering, 2, 211-227.
Land A. H., Doig, A. G., 1960, An automatic method for solving discrete programming problems, Econometrica,

28, pp 497-520
Lima R.M., Grossmann I.E., Jiao Y., 2011, Long-term scheduling of a single-stage multi-product continuous

process to manufacture high performance glass, Computers and Chemical Engineering, (in press).
Linderoth J., 2004. Preprocessing and Probing for integer programs, DIMACS Reconnect Conference on MIP.
Mendez C.A., Cerda J., Grossmann I.E., Harjunkoski I., Fahl M., 2006, State-of-the-art review of optimization

methods for short-term scheduling of batch processes, Computers & Chemical Engineering, 30 (6-7), 913-
946.

Padhy N., 2004. Unit commitment - A bibliographical survey. IEEE T. Power Syst. 19 (2), 1196–1205.
Rebennack S, Kallrath, J, and Pardalos, P M, Energy Portfolio Optimization for Electric Utilities: Case Study for

Germany. In Kallrath, J, Pardalos, P M, Rebennack, S, and Scheidt, M, Eds, Optimization in the Energy
Industry. Volume 2. Springer, 2009.

Rothberg E., 2007. An evolutionary algorithm for polishing Mixed Integer Programming Solutions. INFORMS
Journal On Computing, 19(4) p. 534-541.

Savelsbergh M.W.P., 1994. Preprocessing and probing techniques for Mixed Integer Programming problems.
ORSA Journal on Computing, 6(4), p. 445-454.

Shah, N., Pantelides, C. C., & Sargent, W. H. (1993). A general algorithm for short-term scheduling of batch
operations-II. Computational issues. Computers and Chemical Engineering, 2, 229 - 244.

Wolsey L.A., 1998, Integer programming. Wiley-Interscience, New York.

