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ABSTRACT 

Understanding the biological signals encoded in a genome is a key challenge of 
computational biology.  These signals are encoded in the four-nucleotide alphabet of 
DNA and are responsible for all molecular processes in the cell.  In particular, the 
genome contains the blueprint of all protein-coding genes and the regulatory motifs used 
to coordinate the expression of these genes.  Comparative genome analysis of related 
species provides a general approach for identifying these functional elements, by virtue 
of their stronger conservation across evolutionary time.  

In this thesis we address key issues in the comparative analysis of multiple 
species.  We present novel computational methods in four areas (1) the automatic 
comparative annotation of multiple species and the determination of orthologous genes 
and intergenic regions (2) the validation of computationally predicted protein-coding 
genes (3) the systematic de-novo identification of regulatory motifs (4) the determination 
of combinatorial interactions between regulatory motifs.   

We applied these methods to the comparative analysis of four yeast genomes, 
including the best-studied eukaryote, Saccharomyces cerevisiae or baker’s yeast.  Our 
results show that nearly a tenth of currently annotated yeast genes are not real, and have 
refined the structure of hundreds of genes.  Additionally, we have automatically 
discovered a dictionary of regulatory motifs without any previous biological knowledge.  
These include most previously known regulatory motifs, and a number of novel motifs.  
We have automatically assigned candidate functions to the majority of motifs discovered, 
and defined biologically meaningful combinatorial interactions between them.  Finally, 
we defined the regions and mechanisms of rapid evolution, with important biological 
implications.  

Our results demonstrate the central role of computational tools in modern biology.  
The analyses presented in this thesis have revealed biological findings that could not have 
been discovered by traditional genetic methods, regardless of the time or effort spent.  
The methods presented are general and may present a new paradigm for understanding 
the genome of any single species.  They are currently being applied to a kingdom-wide 
exploration of fungal genomes, and the comparative analysis of the human genome with 
that of the mouse and other mammals.  

 

Thesis Co-Supervisor:  Eric Lander, professor of Biology 

Thesis Co-Supervisor:  Bonnie Berger, professor of Applied Mathematics 
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OVERVIEW 

Biological Signals 

Understanding the biological signals encoded in a genome is a key challenge of 

modern biology.  These signals are encoded in the four-nucleotide alphabet of DNA and 

are responsible for all molecular processes in the cell.  In particular, the genome contains 

the blueprint of all protein-coding genes and the control signals used to coordinate the 

expression of these genes.  The well-being of any cell relies on the successful recognition 

of these signals, and a large number of biological mechanisms have evolved towards this 

goal.  Specific protein complexes are responsible for the copying of a gene segment from 

DNA to messenger RNA (transcription) and for its eventual translation into protein 

following the genetic code to assign an amino acid to every tri-nucleotide codon.  A 

specific class of proteins called transcription factors help recruit the transcription 

machinery to a target gene by binding their specific DNA signals (regulatory motifs) in 

response to environmental conditions.  An abundance of information within the cell 

guides these processes, involving protein-protein and protein-DNA interactions between 

a multitude of players, the state of DNA coiling, and other mechanisms that are still not 

well-understood.  

The computational identification of genes however, can only rely on the primary 

DNA sequence of the organism.  Current programs use properties about the protein-

coding potential of DNA segments that are unseen by the transcription machinery.  In 

particular, since genes always start with an ATG (start codon) and end in with TAG, 

TGA, or TAA (one of three stop codons), programs exist that specifically look for these 

stretches between a start and a stop codon called ORFs (Open Reading Frames).  The 

basic approach is to identify ORFs that are too long to have likely occurred by chance. 

Since stop codons occur at a frequency of 3 in 64 in random sequence, ORFs of 60 or 

even 150 amino acids will occur frequently by chance, but longer ORFs of 300 or 

thousands of amino acids are virtually always the result of biological selective pressure.  

Hence, simple computational programs can easily recognize long genes, but many small 

genes will be indistinguishable from spurious ORFs arising by chance.  This is evidenced 

by the considerable debate over the number of genes in yeast1-5 with proposed counts 

ranging from 4800 to 6400 genes. The situation is worse for organisms with large, 
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complex genomes, such as mammals where estimated gene counts have ranged from 30 

to 120 thousand genes.  

The direct identification of the repertoire of regulatory motifs in a genome is even 

more challenging.  Regulatory motifs are short (typically 6-8 nucleotides), and do not 

obey the simple rules of protein-coding genes.  In any single locus, nothing distinguishes 

these signals from random nucleotides.  Traditionally, their discovery relied on deletion 

studies of consecutive DNA segments until regulation was disrupted and the control 

region was identified6.  With the sequence of multiple genes in the same pathway at hand, 

it became possible to search for the repetition of these signals in genes controlled by the 

same transcription factor.  Computational methods have been developed to search for 

enriched sequence motifs in predefined sets of genes (for example, using expectation-

maximization7 or gibbs-sampling8, reviewed in 9).  As microarray analysis provided 

genome-wide levels of gene expression under a various experimental conditions, 

computational methods of gene clustering have resulted in hundreds of such sets of 

genes.  Various computational methods have been used to mine these sets for regulatory 

motifs, and dozens of candidate motifs have resulted from each search.  The vast majority 

of these candidate motifs are due to noise however, and only a total of about 50 real 

motifs have currently been discovered.   

The current methods of motif identification suffer from a number of limitations.  

(a) First and foremost is that the weak signal of small motifs is hidden in the noise of 

relatively large intergenic regions.  This inherent signal to noise ratio limits even the best 

programs from recognizing true motifs in the input data.  (b) Additionally, the sets of 

genes searched, and hence the motifs discovered, are limited by our current biological 

knowledge of co-regulated sets of genes.  The current knowledge is based on the 

experimental conditions reproduced in the lab, which is likely to be a small fraction of the 

vast array of environmental responses yeast uses to survive in its natural habitat.  (c) 

Finally, an emerging view of gene regulation has put in question the approaches that 

search for a single motif responsible for a pathway or environmental response.  Pathways 

are not regulated as isolated components in the cell.  Genes and transcription factors have 

multiple functions and are used in multiple pathways and environmental responses.  More 

importantly, transcription factors do not act in isolation, and protein-protein interactions 
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between factors are as important as protein-DNA interactions between each individual 

factor and its target genes.  Hence, individual gene sets will be enriched in multiple 

motifs, and individual motifs will be enriched in multiple gene sets.  A comprehensive 

understanding of regulatory motifs requires a novel, more powerful approach.  

Comparative genome analysis of related species should provide such a general 

approach for identifying functional elements without prior knowledge of function.  

Evolution relentlessly tinkers with genome sequence and tests the results by natural 

selection.  Mutations in non-functional nucleotides are tolerated and accumulate over 

evolutionary time.  However, mutations in functional nucleotides are deleterious to the 

organism that carries them, and become sparse or extinct.  Hence, functional elements 

should stand out by virtue of having a greater degree of conservation across the genomes 

of related species.  Recent studies have demonstrated the potential power of comparative 

genomic comparison. Cross-species conservation has previously been used to identify 

putative genes or regulatory elements in small genomic regions10-13. Light sampling of 

whole-genome sequence has been used as a way to improve genome annotation4,14. 

Complete bacterial genomes have been compared to identify pathogenic and other 

genes15-18. Genome-wide comparison has been used to estimate the proportion of the 

mammalian genome under selection19. 

Contributions of this thesis 

The goal of this thesis is to develop computational comparative methods to 

understand genomes.  We develop and apply general approaches for the systematic 

analysis of protein-coding and regulatory elements by means of whole-genome 

comparisons with multiple related species.  We apply these methods to Saccharomyces 

cerevisiae, commonly known as baker’s yeast.  S. cerevisiae is a model organism for 

which many genetic tools and techniques have been developed, leading to a wealth of 

experimental information.  This knowledge has allowed us to validate our biological 

predictions and assess the power of the methods developed.  We generated high-quality 

draft genome sequences from three Saccharomyces species of yeast related to S. 

cerevisiae.  These data provide us with invaluable comparative information currently 

unmatched by previous sequencing efforts.  Starting with the raw nucleotide sequence 

assemblies of the three newly sequenced species and the current sequence and annotation 
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of S. cerevisiae, we set out to discover functional elements in the yeast genome based on 

the comparison of the four species.   

We first present methods for the automatic comparative annotation of the four 

species and the determination of orthologous genes and intergenic regions (Chapter 1).  

The algorithms enabled the automatic identification of orthologs for more than 90% of 

genes despite the large number of duplicated genes in the yeast genome.   

Given the gene correspondence, we construct multiple alignments and present 

comparative methods for gene identification (Chapter 2).  These rely on the different 

patterns of nucleotide change observed in the alignments of protein coding regions as 

compared to non-coding regions, specifically the pressure to conserve the reading frame 

of proteins.  The method has high specificity and sensitivity, and enabled us to revisit the 

current gene catalogue of S.cerevisiae with important biological implications.  

We then turn to the identification of regulatory motifs (Chapter 3).  We present 

statistical methods for their systematic de-novo identification without use of prior 

biological information.  We automatically identified 72 genome-wide sequence elements, 

with strongly non-random conservation properties.  To validate our findings, we 

compared the discovered motifs against a list of known motifs, and found that we 

discovered virtually all previously known regulatory motifs, and an additional 41 motifs.  

We assign function to these motifs using sets of functionally related genes (Chapter 4), 

and we discover additional motifs enriched in these sets.   

We further present methods for revealing the combinatorial control of gene 

expression (Chapter 5).  We study the genome-wide co-occurrence of regulatory motifs, 

and discover significant correlations between pairs of motifs that were not apparent in a 

single genome.  We show that these correspond to biologically meaningful relationships 

between the corresponding factors and that motif combinations can change the specific 

functional enrichment of target genes, thus increasing the versatility of gene regulation 

using only a limited number of regulatory motifs.  

We finally focus on the differences between the species compared and discover 

the regions and mechanisms of evolutionary change (Chapter 6).  We study rapid gene 

family expansions and discover that they localize in the telomeres.  We show that 

chromosomal rearrangements and inversions are mediated by specific sequence elements.  
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We find specific mechanisms of rapid protein change in environment adaptation genes, as 

well as stretches of unchanged nucleotides suggesting novel functions for uncharacterized 

genes.  

Our results demonstrate the central role of computational tools in modern biology.  

Our methods are general and applicable to the study of any organism.  They are currently 

being applied to a kingdom-wide exploration of fungal genomes and the comparative 

analysis of the human genome with that of the mouse and other mammals.  Comparison 

of multiple related species may present a new paradigm for understanding the genome of 

any single species.   
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BACKGROUND 

0.1. Molecular biology and the study of life.  

It is both humbling and bewildering that what separates humans from bacteria is 

merely the organization and assembly of the same basic bio-molecules.  It is the study of 

these shared foundations of life that gave rise to the discipline of molecular biology.  In 

the microscopic level, complex and simple organisms alike are made up of the same unit 

of life, the cell.  A cell contains all the information and machinery necessary for its 

growth, maintenance and replication.  It is delimited from its surrounding by a water-

impermeable membrane and all communication and transport across the membrane is 

tightly controlled.  Two major types of cells exist, prokaryotic cells with simple internal 

organization, and eukaryotic cells, with extensive compartmentalization of functions such 

as information storage in the nucleus, energy production in mitochondria, metabolism in 

the cytoplasm, etc.  In unicellular organisms, the cell constitutes the complete organism, 

whereas multi-cellular organisms (typically eukaryotes) can contain up to trillions of 

cells, and hundreds of specialized cell types.  In either case though, a cell can rarely be 

thought of in isolation, but is constantly interacting with its surrounding, sensing the 

presence of environmental changes, and exchanging stimuli with other cells that may be 

part of the same colony or organism.  

Within a cell, virtually all functional roles are fulfilled by proteins, the most 

versatile type of macromolecule.  Various types of proteins fulfill an immense array of 

tasks.  For example, enzymes catalyze countless chemical reactions;  transcription factors 

control the timing of gene usage; transporters carry molecules inside or outside the cell; 

trans-membrane channels regulate the concentrations of molecules in the cell; structural 

proteins provide support and shape to the cell; actins can cause motion; receptors 

recognize intra- or extra-cellular signals.  This incredible versatility of proteins comes 

from the innumerable combinations of an alphabet of only 20 amino acid building blocks, 

juxtaposed in a single unbranched chain of hundreds or thousands of such amino acids.  

All amino acids share an identical portion of their structure that forms the protein 

backbone, to which is attached one of 20 possible side chains of variable size, shape, 

charge, polarity, hydrophobicity.  The precise sequence of amino acids dictates a unique 
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three-dimensional fold that optimizes electrostatic and other interactions between the 

side-chains and with the solvent.  

DNA in turn carries the genetic information that encodes the precise sequence of 

all proteins, the signals that control their production, and all other inheritable traits.  DNA 

is also a macromolecule, consisting of the linear juxtaposition of millions of nucleotides.  

It encodes the genetic information digitally, like the bits of a digital computer, in the 

precise ordering of four types of nucleotides. Like amino-acids, these nucleotides share a 

fixed portion that forms a (phosphate) backbone to which is connected (via a deoxyribose 

sugar) a variable portion that is one of four bases, abbreviated A, C, G, T.  Unlike 

proteins however, the structure of DNA is fixed.  It consists of two strands, like the 

sidepieces of a ladder, connected by pairs of bases, like the steps of ladder.  The two 

strands are wrapped around each other and form a double-helix.  The two phosphate 

backbones form the outside of the helix, and the base pairs, connected by weak hydrogen 

bonds, form the interior of the helix.  Only two pairings of bases are possible, based on 

shape and charge complementarity:  A always pairs with T and C always pairs with G.  

This self-complementarity of the DNA structure forms the very basis of heredity:  during 

DNA replication, the two strands open locally, and each strand becomes the template for 

synthesizing the opposite strand, its sequence dictated by base complementarity.  The 

DNA double helix is rarely exposed.  It is typically wrapped around histone proteins and 

packaged in a coiled structure referred to as chromatin.   

The complete DNA content of an organism is referred to as its genome, and is 

contained in one or more large uninterrupted pieces called chromosomes.  Prokaryotic 

cells contain one circular chromosome, and eukaryotic cells contain varying numbers of 

linear chromosomes (16 in yeast, 23 pairs in human) that are compartmentalized within 

the cell nucleus.  Each linear chromosome is marked by a well-defined central region, the 

centromere and the chromosomal endpoints called telomeres.  In a multi-cellular 

organism, every cell contains an identical copy of the genome (with extremely few 

exceptions such as red blood cells that do not have a nucleus).  In addition to the 

chromosomal DNA, cells typically contain additional small pieces of DNA in plasmids 

(small circular pieces found in bacteria and typically containing antibiotic resistance 

genes), or mitochondria and chloroplasts (energy production organelles found in 
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eukaryotes).  Genome size varies widely across species, typically 5kb-200kb (kilo-bases) 

for viruses20-22, 500kb to 5Mb for bacteria15, 10-30Mb for unicellular fungi23,24, 97Mb for 

the worm25, 165Mb for the fly26, 2-3Gb for mammals19,27, and 100Mb-100Gb for plants28.  

The amino-acid sequence of every protein is encoded within a single continuous 

stretch of DNA called a gene.  The transfer of information from the four-letter nucleotide 

alphabet of DNA to the 20 amino-acid alphabet of proteins is ensured by a process called 

translation.  Consecutive nucleotide triplets (codons) are translated into consecutive 

amino-acid residues, according to a precise translation table, referred to as the genetic 

code.  There are 64 possible codons and only 20 amino acids, hence the genetic code 

contains degeneracies, and the same amino acid can be encoded by multiple codons.  

Additionally, the codon ATG (that codes for Methionine) also serves as a special 

translation initiation signal, and three codons (TGA, TAG, TAA) are dedicated 

translation termination signals.  These are typically called start and stop codons.  DNA is 

a directional molecule, and so are proteins.  DNA is always read and synthesized in the 5’ 

to 3’ direction (named after the 5’ and 3’ carbons in the carbon-ring of the sugar).  Given 

this directionality of either strand, we can refer to sequences upstream (5’) or 

downstream (3’) of a particular nucleotide on the same strand.  The two complementary 

strands run in opposite direction and are called anti-parallel, hence upstream in one strand 

is complementary to downstream on the opposite strand.  Upstream and downstream are 

typically used in relation to the coding strand of a gene (containing the sequence ATG).  

Proteins are synthesized from the N terminus (encoded by the 5’ part of the gene) to the 

C terminus (encoded by the 3’ part of the gene).  

0.2. Gene regulation and the dynamic cell 

DNA is not directly translated into protein, but it is first transferred by 

complementarity into an intermediary single-stranded information carrier called 

messenger RNA or mRNA in a process called transcription.  The Central Dogma of 

biology refers to this transfer of the genetic information from DNA to RNA to protein.  

RNA is similar to DNA, but is single-stranded and contains a different type of sugar 

connector between the phosphate backbone and the variable base (also the four bases are 

A,C,G,U instead of A,C,G,T).  This difference in structure enables RNA to assume 

complex three-dimensional folds and perform a variety of cellular functions, only one of 
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which is information transfer between DNA and protein.  In eukaryotic cells, 

transcription occurs in the nucleus where the DNA resides, and the resulting mRNA 

molecule is then transferred outside the nucleus where the translation machinery resides.  

During this transfer, the transcript undergoes a maturation step, including the excision 

(called splicing) of untranslated gene portions (called introns), and the joining of the 

remaining portions of the transcribed gene that are typically translated (called exons).  

The splicing of introns is dictated by subtle signals between 6 and 8 bp (base pairs) long 

that are found mainly at the junctions between exons and introns and within each intron.  

In prokaryotic cells, transcripts do not undergo splicing and sometimes contain multiple 

consecutively translated genes of related function.  

The process of protein and RNA production, also called gene expression, is 

tightly controlled at multiple stages, but mainly at the stage of transcription initiation.  

This involves the uncoiling of chromatin structure around the gene to be expressed and 

the recruitment of a number of protein players that include the transcription machinery.  

These processes are regulated by a specific class of DNA-binding proteins called 

transcription factors.  These bind the double-stranded DNA helix in sequence-specific 

binding sites, recognizing electrostatic properties of the nucleotides at each contact point.  

A regulatory motif describes the sequence specificity of a transcription factor, namely, 

the nucleotide patterns that are in common to the sites bound.  Transcription factors are 

classified according to their effect on the expression of their target genes:  an activator 

increases the level of gene expression when bound, and a repressor decreases that level. 

Transcription factor binding is modulated by the protein concentration and localization of 

the transcription factor, the three-dimensional conformation of the transcription factor 

that may depend on chemical modifications, protein-protein interactions with other 

factors that may bind cooperatively or competitively, and chromatin accessibility 

Figure 0.1.  The Central Dogma of Biology.  DNA makes RNA makes protein 
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surrounding the binding site.  Finally, in addition to transcription initiation, gene 

expression is regulated at many stages, including mRNA transport and splicing, 

translation initiation and efficiency, mRNA stability and degradation, post-translational 

modifications of a protein, and protein stability.  

These processes together modulate gene expression in response to environmental 

changes, and are interlinked in complex regulatory networks, responsible for the dynamic 

nature of the cell.  These dynamics create the multitude of specific cell responses to 

varying environmental stimuli.  Gene regulation also creates the incredible variety of cell 

types found within the same organism.  For example heart, liver, lung, nail, skin, eye, 

neurons, hair, or bone all have the exact same DNA content, but express a different set of 

genes.  Changes in gene expression however, can also be responsible for a number of 

complex diseases.  Understanding the dynamic cell is a major challenge for molecular 

biology and modern medicine.   

0.3. Evolutionary change and comparative genomics 

The evolution of these complex mechanisms was shaped by the forces of random 

change and natural selection.  Random genomic change can generate new functions or 

disrupt existing ones, and natural selection favors and keeps the fittest combinations.  The 

genotypic differences accumulated at the DNA level lead to observed phenotypic 

differences between individuals of a population.  Genomic changes can be as subtle as 

the mutation, insertion or deletion of individual nucleotides, and as drastic as the 

duplication or loss of chromosomal segments, entire chromosomes, or complete 

genomes.  Changes in a protein-coding gene can lead to multiple co-existing variants, or 

alleles, of that gene within a population, that differ in specific residues and perform the 

same function with slight differences.  As the result of mating, the progeny will inherit a 

combination of paternal and maternal alleles for different genes.  The random mating of 

individuals within a populations and the random segregation of chromosomal segments in 

gamete formation creates new allelic combinations at each generation.  The frequency of 

these allelic combinations will vary through evolutionary time, either by selection for 

their evolutionary fitness or by random genetic drift.  As populations segregate and adapt 

to their environment, different combinations of alleles dominate in each population.  The 

resulting differences in behavior or chromosomal organization can lead to loss of 
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reproductive ability across sub-populations and the emergence of new species.  The 

emergence of new functions in these changing species allowed adaptation to all niches on 

land, in the air, underground, or in the deepest oceans, in species as diverse as dinosaurs 

and amoebae.  It is thought that all life in the planet descends from a single ancestral cell 

that lived around 3.5 billion years ago, and the incredible biodiversity observed today 

resulted from incremental changes of existing life forms.  

The genomes of related species exhibit similarities in functional elements that 

have undergone little change since the species’ common ancestor.  Deleterious mutations 

in these functional regions have certainly occurred, but the individuals carrying them 

have been at a disadvantage and eventually eliminated by natural selection.  Mutations in 

non-functional regions have no effect to an organism’s reproductive fitness, and will 

accumulate over evolutionary time.  Hence, the combined effects of random mutation and 

natural selection allow comparative approaches to separate conserved functional regions 

from diverged non-functional regions.  Comparative genome analysis of related species 

should provide a general approach for identifying functional elements without prior 

knowledge of function, by virtue of having a greater degree of conservation across the 

genomes of related species.  When selecting species for a pairwise comparative analysis, 

we face a tradeoff between closely related species (with many common functional 

elements but additional spuriously conserved non-functional regions), and distantly 

related species (with mostly diverged non-functional regions but fewer common 

functional elements).  The use of multiple closely-related species may present an 

attractive alternative, exhibiting an accumulation of independent mutations in non-

functional regions, while having most biological functions in common.  

Recent studies have demonstrated the potential power of comparative genomic 

comparison. Cross-species conservation has previously been used to identify putative 

genes or regulatory elements in small genomic regions10-13. Light sampling of whole-

genome sequence has been studied as a way to improve genome annotation4,14. Complete 

bacterial genomes have been compared to identify pathogenic and other genes15-18. 

Genome-wide comparison has been used to estimate the proportion of the mammalian 

genome under selection19.   
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0.4. Sequence alignment and phylogenetic trees 

The comparison of related sequences is typically represented as sequence 

alignment (for an example see figure 3.2).  The correspondence of nucleotides across the 

sequences compared is given by offsetting the nucleotides of each sequence such that 

matching nucleotides are stacked at the same index across all sequences.  To represent 

insertions or deletions (indels), gaps are typically inserted as dashes in the shorter 

sequence;  these could represent a deletion in the sequence containing the gap, or an 

insertion in the other sequences.  Typically, no reordering or repetition of nucleotides is 

allowed within a sequence, and hence no inversions, duplications, or translocations are 

represented in a sequence alignment.  To construct an alignment of two sequences is 

equivalent to finding the optimal path in a two-dimensional grid of cells, and dynamic 

programming algorithms have been developed to align two sequences in time 

proportional to the product of their lengths, and space proportional to sum of their 

lengths.  The optimal alignment of two sequences minimizes the total cost of insertions, 

deletions, and nucleotide substitutions (gaps and mismatches), each penalized according 

to input parameters.  These parameters are set to match estimated rates of insertions, 

deletions and nucleotide substitutions in well-conserved portions of carefully-constructed 

alignments.  For example, substitutions between nucleotides of similar structure are more 

frequent and hence transitions between purines (A and G) or between pyrimidines (C and 

T) are penalized less than transversions from a purine to a pyrimidine and vice versa.  

Also, it is typical to penalize gaps using affine functions, namely adding a cost 

proportional to the size of the gap to a fixed cost for starting a gap.  Global alignments 

compare the entire length of the sequences compared, and local alignments only align 

sub-portions of the sequences.   

The best match of a query sequence can be found in a database of sequences by 

scoring the local alignments between the query and each sequence in the database.  

Constructing the full dynamic programming matrix for each of the sequences in a large 

database can be costly, and efficient algorithms have been developed to only align a 

small subset of the database sequences.  These algorithms take advantage of the fact that 

strong matches of a query sequence will typically contain stretches of perfectly conserved 

residues, and first select all database sequences that contain such stretches.  To do so, a 



 20

hash table is first constructed for the database, listing all sequences and positions that 

contain a particular k-mer.  After this slow step that need only be performed once, the 

lookup of all k-mers in a query sequence can be performed rapidly against a large 

database, constructing a list of hits.  Local alignments are then constructed around each 

hit, extending the k-mer matches to longer high-scoring local alignments.  These ideas 

are implemented in the popular program BLAST, and used thousands of times daily to 

query the genomes of dozens of sequenced species and millions of sequences.  One 

modification of the BLAST algorithm called two-hit Blast only constructs a local 

alignment when at least two nearby hits are found.  This allows the retrieval of more 

distantly related sequences by searching for shorter k-mers, while still maintaining high 

specificity by requiring multiple k-mer hits in common.  

Multiple sequence alignments can also be constructed for more than two 

sequences.  Constructing the full dynamic programming matrix is exponential in the 

number of sequences compared and typically impractical for long sequences.  Therefore, 

current algorithms work by extending multiple pairwise alignments between the 

sequences compared.  The similarities between all pairs of sequences can be used to 

construct a phylogenetic tree, summarizing the most likely ancestry of the sequences, 

linking them hierarchically from the most closely related pair to the most distantly related 

outgroup.  Multiple sequence alignment algorithms typically start by aligning the most 

closely related sequences, and progressively merge alignments moving up the 

phylogenetic tree from the leaves to the root.  Algorithms to merge two alignments 

typically use once-a-gap-always-a-gap methods, but more recent algorithms have been 

developed to locally re-optimize multiple alignment portions by revisiting previously 

added gaps and improving the overall alignment score.  

0.5. Model organisms and yeast genetics.  

The shared biology of related species allows one to study a biological process in 

one organism and apply the knowledge to another organism.  Simpler organisms provide 

excellent models for developing and testing the procedures needed for studying the much 

more complex human genome.  Such model organisms include bacteria, yeast, fungi, 

worms, flies and mice, each teaching us different aspects of human biology.  For 

example, the study of cancer development has flourished by studying mouse models, and 
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has lead to medical application in humans.  Mutant strains can be isolated containing 

specific defects in genes that lead to disease phenotypes.  Controlled crosses can be used 

to restore lost functions or inhibit genes at particular stages of development and study 

their effects on the organism.  The shorter the generation time of a model organism, the 

easier it is to perform multiple crosses.   

The yeast Saccharomyces cerevisiae in 

particular provides a powerful genetic system 

with the availability of a wide array of tools such 

as gene replacement, plasmids, deletion strains, 

two-hybrid systems.  Yeast is also amenable to 

biochemical methods, such as the purification and 

characterization of protein complexes.  Because of 

these experimental advantages, yeast has been the 

system of choice to study the most basic cellular 

functions common to eukaryotes such as cell division, cell structure, energy production, 

cell growth, cell death, cell cycle, gene regulation, transcription initiation, cell signaling, 

and other basic cell processes.  More recently, yeast has become the organism of choice 

for the development and testing of modern technologies for genome-wide experimental 

studies.  The complete parts-list of all genes has radically changed the face of biological 

research.  If a particular phenotype is due to the function of a single protein, it is 

necessarily encoded by one of these few thousand genes.  Additionally, the relatively 

small number of genes (~6000) allows the simultaneous observation of the complete 

genome for mRNA expression, transcription factor binding, or protein-protein 

interactions.  The public sharing of yeast strains, materials, and genome-wide 

experimental data has provided a global view of the dynamic yeast genome unmatched in 

any other organism.  

Yeast also presents an ideal organism for developing computational methods for 

genome-wide comparative analysis.  It is the most well-studied eukaryote, and the vast 

functional knowledge allows the immediate validation of our findings against previous 

work.  Additionally, the strong experimental system allows the experimental follow-up of 

biological hypotheses raised in the comparative work.  The small genome size (250 times 

Figure 0.2.  The yeast Saccharomyces 

cerevisiae undergoing cell division.  
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smaller than human) allows the sequencing of multiple yeast species at an affordable 

cost.  Additionally, the small number of repetitive elements allows for easy whole-

genome-shotgun assembly (see next section).  For all these considerations, we decided to 

work on yeast.  

0.6. Genome sequencing and assembly 

We sequenced and assembled the complete genomes of S. paradoxus, S. mikatae 

and S. bayanus, three yeast species that are close relatives of S. cerevisiae, within the 

Saccharomyces sensu stricto group29.  Their divergence times from the S. cerevisiae 

lineage are approximately 5, 10 and 20 million years (based on sequence divergence of 

ribosomal DNA sequence).  

Like S. cerevisiae, they all 

have 16 chromosomes and 

their genomes contain 

about 12 million bases.  

These species were chosen 

based on their evolutionary 

relationships (closely 

enough related that 

functional elements be 

conserved, and distant 

enough that non-functional 

bases have had enough 

evolutionary time to diverge).   

Reading the order of the nucleotides in any one segment of DNA relies on a 

technology developed by Sanger in 1977 that uses the central agent of DNA replication, 

DNA polymerase.  This protein complex recognizes the transition from double-stranded 

DNA to single-stranded DNA in an incomplete helix, and extends the shorter strand in 

the 5’ to 3’ direction.  By introducing a small fraction of faulty nucleotides that cause an 

early termination of the extension reaction, and subsequently comparing the lengths of 

resulting fragments in each of four reactions, this method infers the sequence of a DNA 

fragment.  The extension reaction can be initiated at any unique segment of DNA by 

Figure 0.3:  Phylogenetic tree of analyzed species.  The newly 

sequenced species are shown in bold.  Star denotes inferred 

genome-wide duplication of the yeast genome.  Divergence times 

are approximate and based on ribosomal DNA sequence divergence
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introducing a complementary segment called a primer.  This primer binds single-stranded 

DNA by complementarity, creating the double-strand to single-strand transition 

recognized by DNA polymerase.  Unfortunately, since the Sanger method works by 

weight separation between fragments of different lengths, it can only determine the 

sequence of small fragments (currently around 800 nucleotides).  The weight difference 

between fragments of 800 nucleotides and fragments of 801 nucleotides is too small to be 

detected reliably.  

To obtain the sequence of longer stretches of DNA, two methods are possible.  

One is to synthesize a new primer at the end of 800 nucleotides and use it to sequence the 

subsequent 800 nucleotides (and so on).  Unfortunately, synthesizing new primers is 

expensive and time-consuming since the primer to be used is not known until the 

sequence is obtained, and this method is rarely used.  An alternative method is to first 

make many copies of the longer stretch of DNA and randomly break them into small 

fragments, and then sequence 800 nucleotide reads from each of these fragments and re-

piece them together computationally (each of the fragments is inserted to a common 

vector whose sequence is known, hence the same primer can be used to sequence the end 

of each of these fragments).  This alternative method is called shotgun sequencing, in 

reference to the random breaking of the longer fragment as if struck by a shotgun.  

Sequence reads can also be obtained from both ends of a fragment, providing linking 

information between paired reads.  This method is called paired-end shotgun 

sequencing.  The shotgun fragments are typically selected to be of a particular size, 

providing additional information about the genomic distance between paired sequence 

reads.   

Shotgun sequencing depends heavily on the computational ability to correctly 

assemble the resulting fragments of sequence.  Fragment assembly searches for 

sequences common between two sequence fragments (also called reads) and unique 

otherwise, in order to join them into a longer sequence.  This is made harder due to 

sequencing errors that lead to sequence differences between reads that really come from 

the same part of the genome, as well as repetitive sequences within genomes that lead to 

identical sequences between reads that come from different parts of the genome.  Modern 

assembly programs produce stretches of continuous sequence called contigs, which are 
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linked into supercontigs or scaffolds, when their relative order, orientation, and estimated 

spacing is given by the pairing of reads (Figure 0.4).  To assemble complete genomes, 

two methods are currently in use.  Whole-genome shotgun (WGS) randomly breaks the 

complete genome and assembles all fragments computationally.  Clone-based methods 

first partition the genome into large fragments (clones) and then use shotgun sequencing 

for each of the fragments.  Clone-based methods are more expensive but more reliable.  

WGS methods are cheaper but rely more heavily on the ability of subsequent 

computational assembly programs.  Hybrids between WGS and clone-based methods are 

used nowadays in major sequencing projects.  It is also common to use WGS with links 

of multiple sizes to provide both short-range and long-range connectivity information.  

 

 

Figure 0.4 Genome Assembly.  Overlapping sequence reads are grouped into blocks of continuous 

sequence (contigs).  The pairing of forward and reverse reads provides links across neighboring 

contigs, grouping them in supercontigs or scaffolds.  Each base in the genome is observed on average 

in 7 overlapping reads. 
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CHAPTER 1:  GENOME CORRESPONDENCE 

1.1. Introduction 

The first issue in comparative genomics is determining the correct correspondence 

of chromosomal segments and functional elements across the species compared.  This 

involves the recognition of orthologous segments of DNA that descend from the same 

region in the common ancestor of the species compared.  However, it is equally important 

to recognize which segments have undergone duplication events, and which segments 

were lost since the divergence of the species.  By accounting for duplication and loss 

events, we ensure that we are comparing orthologous segments.  

We decided to use genes as discrete genomic anchors in order to align and 

compare the species.  We constructed a bipartite graph connecting annotated protein-

coding genes in S. cerevisiae to predicted protein-coding genes in each of the other 

species based on sequence similarity at the amino-acid level.  This bipartite graph should 

contain the orthologous matches but also contains spurious matches due to shared 

domains between proteins of similar functions, and gene duplication events that precede 

the divergence of the species.  Determining which matches represent true orthologs and 

resolving the correspondence of genes across the four species will be the topic of this 

chapter.  

We present an algorithm for comparative annotation that has a number of 

attractive features.  It uses a simple and intuitive graph theoretic framework that makes it 

easy to incorporate additional heuristics or knowledge about the genes at hand.  It 

represents matches between sets of genes instead of only one-to-one matches, thus 

dealing with duplication and loss events in a very straightforward way.  It uses the 

chromosomal positions of the compared genes to detect stretches of conserved gene order 

and uses these to resolve additional orthologous matches.  It accounts for all genes 

compared, resolving unambiguous matches instead of simply best matches, thus ensuring 

that all 1-to-1 genes are true orthologs.  It works at a wide range of evolutionary 

distances, and can cope with unfinished genomes containing gaps even within genes.   
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1.2. Establishing gene correspondence 

Previously described algorithms for comparing gene sets have been widely used 

for various purposes, but they are not applicable to the problem at hand.   

Best Bidirectional Hits (BBH)30,31 looks for gene pairs that are best matches of 

each other and marks them as orthologs.  In the case of a recent gene duplication 

however, only one of the duplicated genes will be marked as the ortholog without 

signaling the presence of additional homologs.  Thus, no guarantees are given that 1-to-1 

matches will represent orthologous relations and incorrect matches may be established.  

Clusters of Orthologous Genes (COG)32,33 goes a step further and matches groups 

of genes to groups of genes.  Unfortunately, the grouping is too coarse, and clusters of 

orthologous genes typically correspond to gene families that may have expanded before 

the divergence of the species compared.  This inability to distinguish recent duplication 

events from more ancient duplication events makes it inapplicable in this case, since the 

genome of S. cerevisiae contains hundreds of gene pairs that were anciently duplicated 

before the divergence of the species at hand34.  COGs would not distinguish between the 

two copies of anciently duplicated genes, and many orthologous matches would not be 

detected (Koonin, personal communication).  

We introduce the concept of a Best Unambiguous Subset (BUS), namely a group 

of genes such that all best matches of any gene within the set are contained within the set, 

and no best match of a gene outside the set is contained within the set.  A BUS builds on 

both BBHs and COGs to resolve the correspondence of genes across the species.  The 

algorithm, at its core, represents the best match of every gene as a set of genes instead of 

a single best hit, which makes it more robust to slight differences in sequence similarity.  

A BUS can be isolated from the remainder of the bipartite gene correspondence graph 

while preserving all potentially orthologous matches.  BUS also allows a recursive 

application grouping the genes into progressively smaller subsets and retaining 

ambiguities until later in the pipeline when more information becomes available.  Such 

information includes the conserved gene order (synteny) between consecutive 

orthologous genes that allows the resolving of additional neighboring genes.  
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1.3. Overview of the algorithm 

We formulated the problem of genome-wide gene correspondence in a graph-

theoretic framework.  We represented the similarities between the genes as a bipartite 

graph connecting genes between two species.  We weighted every edge connecting two 

genes by the amino acid sequence similarity between the two genes, and the overall 

length of the match.   

We separated this graph into progressively smaller subgraphs until the only 

remaining matches connected true orthologs (Figure 1.1).  To achieve this separation, we 

eliminated edges that are sub-optimal in a series of steps.  As a pre-processing step, we 

eliminated all edges that are less than 80% of the maximum-weight edge both in amino 

acid identity and in length.  Based on the unambiguous matches that resulted from this 

step, we built blocks of conserved gene order (synteny) when neighboring genes in one 

species had one-to-one matches to neighboring genes in the other species; we used these 

blocks of conserved synteny to resolve additional ambiguities by preferentially keeping 

matches within synteny blocks.  We finally searched for subsets of genes that are locally 

optimal, such that all best matches of genes within the group are contained within the 

group, and no genes outside the group have matches within the group.  These best 

unambiguous subsets (BUS) ensure that the bipartite graph is maximally separable, while 

maintaining all possibly orthologous 

relationships.  

When no further separation was 

possible, we returned the connected 

components of the final graph.  These 

contain the one-to-one orthologous pairs 

resolved as well as sets of genes whose 

correspondence remained ambiguous in 

a small number of homology groups.  

Figure 1.1. Overview of graph separation.   

We construct a bipartite graph based on the blast hits.  We consider both forward and reverse matches for near-

optimality based on synteny and sequence similarity. Sub-optimal matches are progressively eliminated simplifying

the graph.  We return the connected components of the undirected simplified graph. 
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1.4. Automatic annotation and graph construction 

In this section, we describe the construction of the weighted bipartite graph G, 

representing the gene correspondence across the species compared.  We started with the 

genomic sequence of the species and the annotation of S. cerevisiae, namely the start and 

stop coordinates of genes.  We then predicted protein-coding genes for each newly 

sequenced genome.  Finally we connected across each pair of species the genes that 

shared amino-acid sequence similarity.  

The input to the algorithm is based on the complete genome for each species 

compared.  For S. cerevisiae, we used the public sequence available from the 

Saccharomyces Genome Database (SGD) at genome-www.stanford.edu/Saccharomyces.  

SGD posts sixteen uninterrupted 

sequences, one for each chromosome.  

The sequence was obtained by an 

international sequencing consortium and 

published in 1996.  It was completed by 

a clone-based sequencing approach and 

directed sequence finishing to close all 

gaps.  Subsequent to the publication, 

updates to the original sequence have 

been incorporated in SGD based on 

resequencing of regions studied in labs 

around the world.  

The genome sequence of S. 

paradoxus, S. mikatae and S. bayanus 

was obtained at the MIT/Whitehead 

Institute Center for Genome Research.  

We used a whole-genome shotgun 

sequencing approach with paired-end 

sequence reads of 4kb plasmid clones, 

with lab protocols as described at www-

genome.wi.mit.edu.  We used ~7-fold 

Figure 1.2. Bipartite Graph Construction.  

Annotated ORFs (vertical block arrows) are 

connected based on sequence similarity.  
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redundant coverage, namely every nucleotide in the genome was contained on average in 

at least 7 different reads.  The information was then assembled with the Arachne 

computer program35,36 into a draft sequence for each genome.  The assembly contains 

contigs, namely continuous blocks of uninterrupted sequence, and scaffolds or 

supercontigs, namely uninterrupted blocks of linked contigs for which the relative order 

and orientation is known.  This order and orientation is given by the pairing of reads that 

originated from the ends of the same 4kb clone.  The draft genome sequence of each 

species has long-range continuity (more than half of the nucleotides are in scaffolds of 

length 230-500 kb, as compared to 942 kb for the finished sequence of S. cerevisiae), 

relatively short sequence gaps (0.6-0.8 kb, which is small compared to a typical gene), 

and contains the vast majority of the genome (~95%).   

Once the genome sequences are available, we determine the set of protein-coding 

genes for each species.  For S. cerevisiae, we used the public gene catalogue at SGD.  It 

was constructed by including all predicted protein coding genes of at least 100 AA that 

do not overlap longer genes by more than 50% of their length.  It was subsequently 

updated to include additional short genes supported by experimental evidence and to 

reflect changes in the underlying sequence when resequencing revealed errors.  For the 

three newly sequenced species, we predicted all uninterrupted genes starting with a 

methionine (start codon ATG) and containing at least 50 amino acids.  

We then constructed the bipartite graph connecting all predicted protein coding 

genes that share amino acid sequence similarities across any two species (Figure 1.2).  

For this purpose, we first used protein BLAST37 to find all protein hits between the two 

protein sets (we used WU-BLAST BlastP with parameters W=4 for the hit size in amino 

acids, hitdist=60 for the distance between two hits and E=10-9 for the significance of the 

matches reported).  Since the similarity between query protein x in one genome and 

subject protein y in another genome is sometimes split in multiple blast hits, we grouped 

all blast hits between x and y into a single match, weighted by the average amino acid 

percent identity across all hits between x and y and by the total protein length aligned in 

blast hits.  These matches form the edges of the bipartite graph G, described in the 

following section.  
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1.5. Initial pruning of sub-optimal matches 

Let G be a weighted bipartite graph describing the similarities between two sets 

of genes X and Y in the two species compared (Figure 1.1, top left panel).  Every edge 

e=(x,y) in E that connects nodes x ∈ X and y ∈ Y was weighted by the total number of 

amino acid similarities in BLAST hits between genes x and y.  When multiple BLAST 

hits connected x to y, we summed the non-overlapping portions of these hits to obtain the 

total weight of the corresponding edge.  We constructed graph M as the directed version 

of G by replacing every undirected edge e=(x,y) by two directed edges (x,y) and (y,x) 

with the same weight as e in the undirected graph (Figure 1.1, top right panel).  This 

allowed us to rank edges incident from a node, and construct subsets of M that contain 

only the top matches out of every node.   

This step drastically reduced the overall graph connectivity by simply eliminating 

all out-edges that are not near optimal for the node they are incident from. We defined 

M80 as the subset of M containing for every node only the outgoing edges that are at 

least 80% of the best outgoing edge (any not in the upper 20% of all scores).  This was 

mainly a preprocessing step that eliminated matches that were clearly non-optimal.  

Virtually all matches eliminated at this stage were due to protein domain similarity 

between distantly related proteins of the same super-family or proteins of similar function 

but whose separation well-precedes the divergence of the species. Selecting a match 

threshold relative to the best edge ensured that the algorithm performs at a range of 

evolutionary distances.  After each stage, we separated the resulting subgraph into 

connected components of the undirected graph (Figure 1.1, bottom right panel).   

1.6. Blocks of conserved synteny 

The initial pruning step created numerous two-cycle subgraphs (unambiguous 

one-to-one matches) between proteins that do not have closely related paralogs.  We used 

these to construct blocks of conserved synteny based on the physical distance between 

consecutive matched genes, and preferentially kept edges that connect additional genes 

within the block of conserved gene order (Figure 1.3).  Edges connecting these genes to 

genes outside the blocks were then ignored, as unlikely to represent orthologous 

relationships.  Without imposing an ordering on the scaffolds or the chromosomes, we 
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associated every gene x with a fixed position (s, start) within the assembly, and every 

gene y with a fixed position (chromosome, start) within S. cerevisiae.  If two one-to-one 

unambiguous matches (x1, y1) and (x2, y2) were such that x1 was physically near x2, 

and y1 was physically near y2, we constructed a synteny block B=({x1, x2},{y1,y2}).  

Thereafter, for a gene x3 that was proximal to {x1, x2}, if an outgoing edge (x3, y3) 

existed such that y3 was proximal to {y1,y2}, we ignored other outgoing edges (x3, y’) if 

y’ was not proximal to {y1,y2}.  

Without this step, duplicated genes in the yeast species compared remained in 

two-by-two homology groups, especially for the large number of ribosomal genes that are 

nearly identical to one another.  We found this step to play a greater role as evolutionary 

distances between the species compared became larger, and sequence similarity was no 

longer sufficient to resolve all the ambiguities. We only considered synteny blocks that 

had a minimum of three genes before using them for resolving ambiguities, to prevent 

being misled by rearrangements of isolated genes.  We set the maximum distance d for 

considering two neighboring genes as proximal to 20kb, which corresponds to roughly 10 

genes.  This parameter should match the estimated density of syntenic anchors.  If many 

genomic rearrangements have occurred since the separation of the species, or if the 

scaffolds of the assembly are short, the syntenic segments will be shorter and setting d to 

larger values might hurt the performance.  On the other hand if the number of 

unambiguous genes is too small at the beginning of this step, the genes used as anchors 

will be sparse, and no synteny blocks will be possible for small values of d.  

Figure 1.3. The use of synteny.  In blocks of conserved gene order (synteny), we preferentially keep 

those matches that preserve the order of orthologous genes.  
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1.7. Best Unambiguous Subsets 

We finally separated out subgraphs that were connected to the remaining edges in 

the graph by solely non-maximal edges.  These subgraphs are such that the best match of 

any node within the subset is contained within the subset, and no node outside the subset 

has its best match within the subset.  These two properties ensure that the subsets are both 

best and unambiguous.   

We defined a Best Unambiguous Subset (BUS) of the nodes of X∪S, to be a 

subset S of genes, such that ∀x: x∈S ⇔ best(x) ⊆ S, where best(x) are the nodes incident 

to the maximum weight edges from x.  We then constructed M100, following the 

notation above, namely the subset of M that contains only best matches out of a node.  

Note that multiple best matches were possible based on our definition. To construct a 

BUS, we started with the subset of nodes in any cycle in M100.  We augmented the 

subset by following forward and reverse best edges, that is including additional nodes if 

their best match was within the subset, or if they were the best match of a node in the 

subset. This ensured that separating a subset did not leave any node orphan, and did not 

remove the strictly best match of any node.  When no additional nodes needed to be 

added, the BUS condition was met.   

Figure 1.4 shows a toy 

example of a similarity matrix.  

Genes A, B, and C in one genome 

are connected in a complete bipartite 

graph to genes 1, 2 and 3 in another 

genome (ignoring for now synteny 

information).  The sequence simila-

rity between each pair is given in the 

matrix, and corresponds to the edge 

weight connecting the two genes in 

the bipartite graph.  The set (A,1,2) 

forms a BUS, since the best matches 

of A, 1, and 2 are all within the set, 

Figure 1.4. Best Unambiguous Subsets (BUS). A BUS is a set

of genes that can be isolated from a homology group while

preserving all potentially orthologous matches.  Given the

similarity matrix above and no synteny information, two such

sets are (A,1,2) and (B,C,3). 
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and none of them represents the best match of a gene outside the set.  Hence, the edges 

connecting (A,1,2) can be isolated as a subgraph without removing any orthologous 

relationships, and edges (B,1), (B,2), (C,1), (C,2), (A,3) can be ignored as non-

orthologous.  Similarly (B,C,3) forms a BUS.  The resulting bipartite graph is shown.  A 

BUS can be alternatively defined as a connected component of the undirected version of 

M100 (Figure 1.1, bottom panels).  

This part of the algorithm allowed us to resolve the remaining orthologs, mostly 

due to subtelomeric gene family expansions, small duplications, and other genes that did 

not benefit from synteny information.  In genomes with many rearrangements, or 

assemblies with low sequence coverage, which do not allow long-range synteny to be 

established, this part of the algorithm will play a crucial role.   

A 

C 

B 

D 

Figure 1.5. Performance of the algorithm.  Dotplot representation of the bipartite graph.  The 16 

chromosomes of S. cerevisiae are stacked end-to-end along the y-axis, and the scaffolds of S. paradoxus

are shown along the x-axis.  Every point (x,y) represents an edge between S. paradoxus gene y and S. 

cerevisiae gene x.  A. Initial bipartite graph.  B. Graph resulting from initial disambiguation step.  C.  

Graph resulting from use of BUS and synteny information. D.  Unambiguous matches in graph C.  
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1.8. Performance of the algorithm 

We applied this algorithm to automatically annotate the assemblies of the three 

species of yeast.  Our Python implementation terminated within minutes for any of the 

pairwise comparisons.  We successfully resolved the graph of sequence similarities 

between the four species, and found important biological implications in the resulting 

graph structure.   

Figure 1.5 illustrates the performance of the algorithm for the 6235 annotated 

ORFs in S. cerevisiae and all predicted ORFs in S. paradoxus.  The graph is initially very 

dense (panel A), the vast majority of edges representing non-orthologous matches, mostly 

due to protein domain similarities, ancient duplications that precede the time of the 

common ancestor of the species compared, and transposable elements.  After applying 

the initial pruning step, many of the spurious matches are eliminated (panel B).  The 

presence of unambiguous matches allows us to build blocks of conserved gene order, and 

use these to resolve additional matches using the BUS algorithm (panel C).  The 

unambiguous 1-to-1 matches are mostly syntenic for S. paradoxus, thus ensuring that we 

are comparing orthologous regions.  

More than 90% of genes have clear one-to-one orthologous matches in each 

species, providing a dense set of landmarks (average spacing ~2 kb) to define blocks of 

conserved synteny covering essentially the entire genome.  Not surprisingly, transposon 

proteins formed the largest homology groups. The remaining matches were isolated in 

small subgraphs.  These contain expanding gene families that are often found in rapidly 

recombining regions near the telomeres, and genes involved in environmental adaptation, 

such as sugar transport and cell surface adhesion29.  For additional details see section 6.2.   

We have additionally experimented running only BUS without the original 

pruning and synteny steps.  More than 80% of ambiguities were resolved, and the 

remaining matches corresponded to duplicated ribosomal proteins and other gene pairs 

that are virtually unchanged since their duplication.  The algorithm was slower, due to the 

large initial connectivity of the graph, but a large overall separation was obtained.  Figure 

1.6 compares the dotplot of S. paradoxus and S.cerevisiae with and without the use of 

synteny.  Every point represents a match, the x coordinate denoting the position in the 

S.paradoxus assembly, and the y coordinate denoting the position in the S.cerevisiae 
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genome, with all chromosomes put end-to-end.  Lighter dots represent homology 

containing more than 15 genes (typically transposable elements) and circles represent 

smaller homology groups (rapidly changing protein families that are often found near the 

telomeres).  The darker dots represent unambiguous 1-to-1 matches, and the boxes 

represent synteny blocks.  

This algorithm has also been applied to species at much larger evolutionary 

distances, with very successful results (Kellis and Lander, manuscript in preparation).  

Despite hundreds of rearrangements and duplicated genes separating S.cerevisiae and 

K.yarowii, it successfully uncovered the correct gene correspondence between the two 

species that are more than 100 million years apart.   

Additionally, the algorithm works well with unfinished genomes.  By working 

with sets of genes instead of one-to-one matches, this algorithm correctly groups in a 

single orthologous set all portions of genes that are interrupted by sequence gaps and split 

in two or multiple contigs.  A best bi-directional hit would match only the longest portion 

and leave part of a gene unmatched.  Finally, since synteny blocks are only built on one-

to-one unambiguous matches, the algorithm is robust to sequence contamination.  A 

contaminating contig will have no unambiguous matches (since all features will also be 

present in genuine contigs from the species), and hence will never be used to build a 

synteny block.  This has allowed the true orthologs to be determined and the 

contaminating sequences to be marked as paralogs.  

Figure 1.6. The effect of using synteny.  Blocks of conserved gene order (blue squares) help resolve additional 

ambiguities.  These are mostly due to pairs of anciently duplicated yeast genes.   
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This algorithm provides a good solution to determining genome correspondence, 

works well at a range of evolutionary distances, and is robust to sequencing artifacts of 

unfinished genomes.  

1.9. Conclusion.  

We have unambiguously resolved the one-to-one correspondence of more than 

90% of S. cerevisiae genes.  This provides us with a unique dataset whereby we can align 

and compare the evolutionary pressure of nearly every region in the complete yeast 

genome across four closely related relatives.  In presence of gene duplication, some of the 

evolutionary constraints that a region is under are relieved, and uniform models of 

evolution would not capture the underlying selection for these sites.  By ensuring that the 

regions compared are orthologous, we can make uniform assumptions about the rate of 

change of different regions, and apply statistical models for the significance of strong or 

weak conservation.   

In this thesis, we will use the multiple alignments of the four species to discover 

protein-coding genes based on the pressure to conserve the reading frame of the amino 

acid translation (Chapter 2).  We will also search for unusually strong conservation in 

non-coding regions to discover recurring patterns that constitute regulatory motifs 

(Chapter 3).  We will assign functions to these motifs (Chapter 4) and discover their 

combinatorial interactions (Chapter 5) based on their conserved instances.  Finally, we 

will focus on the differences between the species to discover regions and mechanisms of 

rapid evolutionary change (Chapter 6).  
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CHAPTER 2:  GENE IDENTIFICATION 

2.1. Introduction 

The genome of a species encodes genes and other functional elements, 

interspersed with non-functional nucleotides in a single uninterrupted string of DNA.  

Recognizing protein-coding genes relies on finding stretches of nucleotides free of stop 

codons (called Open Reading Frames, or ORFs) that are too long to have likely occurred 

by chance.  Since stop codons occur at a frequency of roughly 1 in 20 in random 

sequence, ORFs of at least 60 amino acids will occur frequently by chance (5% under a 

simple Poisson model) and even ORFs of 150 amino acids will appear by chance in a 

large genome (0.05%). This poses a huge challenge for higher eukaryotes in which genes 

are typically broken into many, small exons (on average 125 nucleotides long for internal 

exons in mammals27).  

The basic problem is distinguishing real genes – those ORFs encoding a 

translated protein product – from spurious ORFs – the remaining ORFs whose presence 

is simply due to chance.  The current public catalogue of yeast genes lists 6062 predicted 

ORFs that could theoretically encode proteins of at least 100 amino acids.  Only two-

thirds of these have been experimentally validated (known), and the remaining ~2000 

ORFs are currently annotated as hypothetical.  The total number of real protein-coding 

genes has been a subject of considerable debate, with estimates ranging from 4,800 to 

6,400 genes (in mammalian genomes, estimates have ranged from 28,000 to more than 

120,000 genes).   

In this chapter, we use the comparative information to recognize real genes based 

on their conservation across evolutionary time.  With the availability of genome-wide 

alignments across the four species, we first examined the different ways by which 

sequences change in known genes and in intergenic regions.  The alignments of known 

genes revealed a clear pressure to preserve protein-coding potential.  We constructed a 

computational test for reading frame conservation (RFC) and used it to revisit the 

annotation of yeast.  We showed that more than 500 previously annotated ORFs are not 

meaningful and discovered 43 novel ORFs that were previously overlooked.  We 

additionally refined the gene structure of hundreds of genes, including translation start, 
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stop, and exon boundaries.  We show that our method has high sensitivity and specificity, 

and suggest changes that affect nearly 15% of yeast genes.  

2.2. Different conservation of genes and intergenic regions 

We examined the different types of conservation in genes and intergenic regions.  

We used the 1-to-1 orthologous anchors (see Chapter 1) to construct a nucleotide-level 

alignment of the genomes.  The strong conservation of local gene order and spacing 

(Figure 2.1) allowed us to construct genome-wide multiple alignments.  We aligned each 

gene together with its flanking intergenic regions using CLUSTALW38 for the multiple 

alignments across the four species.  When sequence gaps were present in one or more 

species, we constructed the alignment in multiple steps.  We first aligned the gapless 

species creating a base alignment.  Then we aligned each portion of a partially covered 

ortholog onto the base alignment, and constructed a consensus for each species based on 

the individually aligned portions.  We marked missing sequence between contigs by a dot 

and disagreeing overlapping contigs by N.  Finally, we constructed a multiple alignment 

of the four species by merging the piece-wise alignments.  With sequence alignments at 

millions of positions across the four species, it is possible to obtain a precise estimate of 

the rate of evolutionary change, including substitutions and insertion-deletions (indels), in 

Figure 2.1. Strong conservation of local gene order and spacing allows genome-wide multiple 

alignments.  A 50kb segment of S. cerevisiae chromosome VII aligned with orthologous contigs from each 

of the other three species. Predicted ORFs are shown as arrows pointing in the direction of transcription. 

Orthologous ORFs are connected by dotted lines, and colored by the type of correspondence: red for 1-to-1 

matches, blue for 1-to-2 matches and white for unmatched ORFs.  Sequence gaps are indicated by vertical 

lines at ends of contigs, with estimated size of gap shown by the length of the hook. 
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the tree connecting the species.  We counted transitions, transversions, insertions and 

deletions within these alignments and used these to estimate the rate of evolutionary 

change between the species. We counted the rate of synonymous and non-synonymous 

substitutions for every protein coding gene to find evidence of positive selection.  The 

detailed results will be described in chapter 6.   

We compared the rate of sequence change at aligned sites across the four species 

in intergenic and genic (protein-coding) regions (Figure 2.2).  We found radically 

different types of conservation.  Intergenic regions typically showed short stretches 

between 8 and 10 bases of near-perfect conservation, surrounded by non-conserved 

bases, rich in isolated gaps.  Protein-coding genes on the other hand were much more 

uniform in their conservation, and typically differed in the largely-degenerate third-codon 

position.  The proportion of sites corresponding to a different nucleotide in at least one of 

the three species is 58% in intergenic regions but only 30% in genic regions – a 

Figure 2.2. Patterns of change in genes and intergenic regions. Schematic representation of two multiple 

sequence alignments in ORF YMR017W and neighboring intergenic region.  Aligned nucleotides across the 

four species are shown as stacked squares, colored by their conservation: green for conserved positions, 

yellow otherwise.  Alignment gaps are shown in white and frame-shifting insertions (length not a multiple 

of 3) are shown in red.  In addition to the abundance of frame-shift indels shown here, numerous in-frame 

stop codons are observed in the other three species. 
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difference of ~2-fold.  The difference becomes much greater when one considers the 

gapped positions in alignments, representing insertion and deletion events (indels).  The 

proportion of indels is 14% in intergenic regions, but only 1.3% in genic regions.  The 

contrast is even sharper for indels whose length is not a multiple of three.  These would 

disrupt the reading frame of a functional protein-coding gene, and are detrimental when 

they occur in real genes, unless they are compensated by a nearby indel that restores the 

reading frame.  Frame-shifting gaps are found in 10.2% of aligned positions in intergenic 

regions, but only in 0.14% of positions in genic regions, a 75-fold strong separation.  We 

used these alignment properties to recognize real genes.  

2.3. Reading Frame Conservation Test 

We developed a Reading Frame Conservation (RFC) test to classify each ORF in 

S. cerevisiae as biologically meaningful or not, based on the proportion of the ORF over 

which reading frame is locally conserved in each of the other three species.  Each species 

with an orthologous alignment cast a vote for accepting or rejecting the ORF, and the 

votes were tallied to reach a decision for that ORF.   

  We evaluated the percent of nucleotides that are in the same frame within 

overlapping windows of the alignment.  For every such window, we labeled each 

nucleotide of the first sequence by its position within a codon, as 1, 2 or 3 in order, 

starting at codon offset 1.  We similarly labeled the nucleotides of the second sequence, 

but once for every start offset (1, 2, or 3). We then counted the percentage of gapless 

positions in the alignment that contained the same label in both aligned species, and 

selected the maximum percentage found in each of the three offsets of the second 

sequence (Figure 2.3).  The final RFC value for the ORF was calculated by averaging the 

percentages obtained at overlapping windows of 100 nucleotides starting every 50 

Figure 2.3. Reading Frame Conservation Test.  Gaps in this alignment between S. cerevisiae and S. 

paradoxus change the correspondence of reading frame.  
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nucleotides.  For overlapping ORFs in the S. cerevisiae genome (n = 948), the RFC was 

calculated only for the portion unique to each overlapping ORF.  For spliced genes (n = 

240), the RFC was calculated only on the largest exon.   

We found that the distribution of frame conservation within each species is 

bimodal, and we chose a simple cutoff for each species, 80% for S.paradoxus, 75% for 

S.mikatae and 70% for S.bayanus.  If the RFC of the best hit was above the cutoff, a 

species voted for keeping the ORF tested.  If the RFC was below the cutoff and the hit 

was trusted as orthologous, the species voted for rejecting the tested ORF.  Finally, if no 

orthologous hit could be found due to coverage, a species abstained from voting.  We 

calculated a score between –3 and +3 for every ORF based on the number of species that 

accepted it (+1) and the number of species that rejected it (-1).  We kept all ORFs with a 

score of 1 or greater, and rejected all ORFs with a score of –1 or smaller.  We manually 

inspected the remaining ORFs.   

We also applied this test to 3966 annotated ORFs with associated gene names 

(Table 2.4).  These have been studied and named in at least one peer-reviewed 

publication, and are likely to be represent real genes.  Only 15 of these (0.38%) were 

rejected (KRE20, KRE21, KRE23, KRE24, VPS61, VPS65, VPS69, BUD19, FYV1, FYV2, 

FYV12, API2, AUA1, ICS3, UTR5, YIM2).  We inspected these manually and concluded 

that all were indeed likely to be spurious. Most lack experimental evidence. For the 

remainder, reported phenotypes associated with deletion of the ORF seems likely to be 

explained by fact that the ORF overlaps the promoters of other known genes.  

500 15002000 Hypothetical genes 

99% 1% ~300 intergenic regions 

0.1% 99.6% ~4000 named genes 

Reject Accept 

Table 2.4. Testing all annotated protein-coding genes.  The RFC test showed strong sensitivity and 

specificity,  accepting virtually all experimentally verified genes (named genes) and rejecting all 

intergenic regions tested.  We further applied this test to all the hypothetical genes and showed that 

more than 500 currently annotated genes are not real. 
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To investigate the power of the approach to reject spurious ORFs, we also applied 

it to a set of controls sequences consisting of 340 intergenic sequences in S. cerevisiae 

with lengths similar to the ORFs tested (Table 2.4). About 96% were rejected as having 

conservation properties incompatible with a biologically meaningful ORF, showing that 

the test has high sensitivity. Of the remaining 4% that were not rejected, close inspection 

shows that three-quarters appear to contain true ORFs. Some define short ORFs with 

conserved start and stop codons in all four species and others extend S. cerevisiae ORFs 

in the 5’- or 3’-direction in each of the other three species. Thus, at most 1% of true 

intergenic regions failed to be rejected by the RFC test.  

The conservation-based gene identification algorithm we proposed has thus high 

sensitivity and specificity.  In the next section, we apply it systematically for de-novo 

gene identification in S. cerevisiae.  

2.4. Results:  Hundreds of previously annotated genes are not real 

When the yeast genome sequence was completed23, 6275 ORFs were identified in 

the nuclear genome that could theoretically encode proteins encoding at least 100 amino 

acids and that do not overlap a longer ORF by more than half of their length (Figure 2.5). 

SGD has since updated the catalog based on complete resequencing and re-annotation of 

chromosome III, re-analysis of other chromosomes and reports in the scientific literature. 

Figure 2.5.  Rejected genes are mainly short.  These are likely to be occurring by chance alone 

given the nucleotide composition of the yeast genome.  The rejected genes show no evidence of 

function, such as mRNA expression, protein function, genetically or bio-chemically.  
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This resulted in a current version (as of May 2002) with 6062 ORFs ≥ 100 amino acids, 

consisting of 3966 ‘named’ genes (described in at least one publication) and 2096 

‘uncharacterized’ ORFs. SGD also includes a small collection of ORFs < 100 amino 

acids (see below). 

We sought to apply the RFC test to all 6062 ORFs in SGD. A total of 117 could 

not be analyzed because they were almost completely contained within an overlapping 

ORF (99 cases, with average non-overlapping portion = 12 bp) or because an orthologous 

region could not be unambiguously defined in any of the species (18 cases).  Of the 5945 

ORFs tested, the analysis strongly validated 5550 ORFs. The vote was unanimous in 

5458 (~98%) of cases.  In the remaining cases, a valid gene appears to have degenerated 

in one of the four species.  A total of 367 ORFs were strongly rejected.  These rejections 

were unanimous in 63% of cases.  In most of the remaining cases, S. paradoxus was too 

closely related to S. cerevisiae to have accumulated enough frameshifts to allow 

definitive rejection.  The analysis deadlocked (one confirmation, one rejection, one 

abstention) for 28 ORFs (0.5%).  We inspected these, together with the 117 cases that 

could not be analyzed due to overlaps and found convincing evidence (based on 

conservation of amino acids, start and stop codons, and presence of indels), that 20 are 

valid protein coding genes and 105 are spurious. We were unable to reach a judgment in 

the remaining 20 cases.  Overall, a total of 5570 ORFs were accepted, 472 ORFs were 

rejected, and 20 remain ambiguous.  

The vast majority of the rejections (96%) involve uncharacterized ORFs (for an 

example see Figure 2.6).  SGD reports no compelling biological evidence (such as 

Figure 2.6. Example of a rejected gene.  DNA sequence that was previously though to encode a gene 

shows an accumulation of frame-shifting insertions and deletions (for color key see Figure 2.2).  The 

sequence in fact does not correspond to a gene, get transcribed, or produce a protein product.  
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changes in mRNA expression) to suggest that these ORFs encode a true gene.  Most of 

these overlap another well-conserved ORF, but show many insertions and deletions in the 

non-overlapping portion.  The remainder tend to be small (median = 111 aa, with 93% ≤ 

150 aa) and show atypical codon usage23,39,40. Figure 2.6 illustrates the case of an ORF of 

333 bp that is clearly biologically meaningless.  The orthologous sequence in all four 

species is laden with frameshifts (as well as stop codons).  Only one rejected ORF, 

YBR184W, appears to represent a true gene that fails the RFC test because it is evolving 

very rapidly (see section 6.6).  

In summary, the Reading Frame Conservation (RFC) test allowed a major 

revisiting of the yeast genome annotation.  By observing the pattern of indels in the 

multiple alignment of predicted ORFs, it allowed us to automatically classify them as 

biologically meaningful or spurious.  It reached a decision automatically in 98% of cases, 

accepting 99% of named ORFs and rejecting 99% of real intergenic regions, showing 

strong sensitivity and specificity.  It resulted in a drastic reduction of the yeast gene 

count, rejecting nearly 500 ORFs.  We next use the comparative information to refine the 

boundaries of ORFs.  

2.5. Refining Gene Structure 

Comparative genome analysis not only improves the recognition of true ORFs, it 

also yields much more accurate definitions of gene structure – including translation start, 

translation stop and intron boundaries.  We used the comparative data to identify 

sequencing errors and refine the boundaries of true genes.  Previous annotation of S. 

cerevisiae has defined the start of translation as the first in-frame ATG codon. However, 

the actual start of translation could lie 3’ to this point, and the earlier in-frame ATG may 

be due to chance.  Alternatively, if sequencing errors or mutations have obscured an 

earlier in-frame ATG codon, the true translation start  could lie 5’ to this point.  

Similarly, the annotated stop codon could be erroneously annotated, due to sequencing 

errors.  Identifying the correct gene boundaries is important for many reasons, both 

experimental (for example to construct gene probes), as well as computational (for 

example to search for regulatory motifs).   
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We examined the multiple alignment of unambiguous ORFs to identify 

discrepancies in the predicted start and stop codons across the four species.  We searched 

for the first in-frame ATG in each species and compared it to the annotated ATG in S. 

cerevisiae.  In the S. cerevisiae start was not conserved, we automatically suggested a 

changed translation start if a subsequent in-frame ATG was conserved in all species and 

was the first in-frame ATG in at least one species.  Otherwise, we searched for a 

conserved ATG 5’ to that point.  Similarly, we suggested changes in stop codons when a 

common stop in all other species disagreed with the S. cerevisiae annotation.  We 

manually inspected the alignments to confirm that the suggested start and stop boundary 

changes agreed with conservation boundaries.  We identified merges of consecutive S. 

cerevisiae ORFs, when they unambiguously matched a single ORF in at least one other 

species, and when their lengths added up to the length of the matching ORF.   

We identified 210 cases in which the presumed translational start in S. cerevisiae 

does not correspond to the first in-frame start codon in at least two of the three other 

species (Figure 2.7 panel 1).  In the vast majority of these cases, inspection of the 

sequence alignments provides strong evidence for an alternative conserved position for 

the translational start, either 3’ or 5’ to the previous annotation.  We observed a lower 

overall conservation as well as frame-shifting indels outside the new boundaries.  

Similarly, we identified 330 cases in which the presumed translational stop codon in S. 

cerevisiae does not correspond to the first in-frame stop codon in at least two of the three 

Figure 2.7. Refining gene boundaries.  The start and stop codons of more than 300 genes have been 

refined based on the comparisons.  These sometimes reveal sequencing errors in S. cerevisiae.  

2 

1 
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species. In ~25% of these cases, the other three species share a common stop codon and a 

single base change to the S. cerevisiae sequence would result in a stop codon in the 

corresponding location (Figure 2.7 panel 2).  The remaining 75% of cases appear to 

represent true differences in the location of the translational stop across the species. Thus, 

stop codons appear to show more evolutionary variability in position than start codons.   

We also developed methods for the automatic detection of frame-shifting 

sequencing errors.  When regions of the multiple alignment shifted from one well-

conserved reading frame to another well-conserved reading frame, we pinpointed regions 

of potential sequencing errors in each of the species.  A number of these were detected in 

the reference sequence of S. cerevisiae.  We confirmed 32 of these computational 

predictions by resequencing and found that in each case the published sequence was in 

error, and that the predicted erroneous nucleotide was always within a few base pairs 

from the experimentally confirmed sequencing error.  

We identified 32 cases where two adjacent ORFs in S. cerevisiae are joined into a 

single ORF in all three other species.  In every case, a single nucleotide change would 

suffice to join the ORFs in S. cerevisiae (either a substitution altering a stop codon or an 

indel altering the reading frame).  In principle, these cases could represent errors in the 

genome sequence, mutations private to the sequenced strain S288C, or substitutions fixed 

in S. cerevisiae. We examined 19 cases by resequencing the relevant region in S288C. 

Our results revealed an error in the published sequence in 11 cases (establishing that there 

is a single ORF in S288C) and confirmed the published sequence in the remaining 7 

cases.  Sequencing of additional strains will be required to determine whether these 

remaining cases represent differences in S288C alone or in S. cerevisiae in general.  

We also found two named ORFs (FYV5 and CWH36) that pass the RFC test and 

cause phenotypes when deleted, but show no significant protein similarity across the four 

species. In both cases, inspection reveals that the opposite strand encodes a protein that 

shows strong amino acid conservation. (The latter gene has two introns, increasing the 

count of doubly spliced genes to 8.) In each case, we postulate that the protein 

responsible for the reported deletion phenotype is encoded on the opposite strand. 

All merges and boundary refinements suggested specific changes to the 

nucleotide sequence of S. cerevisiae (except 3’ changes of translation start that required 
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no change).  To validate our predictions, we re-sequenced the sites of predicted sequence 

discrepancies.  We used both forward and reverse reads in two different PCR reactions 

spanning the site.  We examined 4 cases in which the comparative data suggested an 

earlier start codon and found, by resequencing, that all correspond to errors in the 

published sequence of S288C.  We examined 17 such cases and found that 15 are 

explained by errors in the published sequence of S288C.   

New Introns. We also examined the conservation of introns in the yeast genome. 

We studied 218 of the 240 ORFs reported in SGD to contain at least one intron (omitting 

the rest primarily due to lack of an orthologous alignment).  In 92% of cases, the donor, 

branchpoint, and acceptor sites were all strongly conserved with respect to both location 

and sequence. Moreover, exon boundaries closely demarcated the domains of sequence 

conservation as measured by both nucleotide identity and absence of indels.  

Discrepancies were found in 17 cases, of which at least 9 strongly suggest that the 

previous annotation is incorrect. Five identify a new first exon (Figure 2.8) and four 

predict that a previously annotated intron is spurious. 

We then sought to identify previously unrecognized introns by searching the S. 

cerevisiae genome for conserved splicing signals.  We searched for conserved and 

proximal splice donor and branch signals and manually inspected the resulting 

alignments.  Having constructed multiple alignments of ORFs and flanking intergenic 

regions, we searched for conserved splicing signals.  We used 10 variants of splice donor 

signals (6-7bp) and 8 variants of branch site signals (7bp) that are found in 

Figure 2.8. Identifying correct splicing. The short first exon was incorrectly annotated in S. cerevisiae.  A 

shorter and earlier first exon is conserved across the four species, and corresponds to the correct splicing.  
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experimentally validated S. cerevisiae introns41.  We searched each species independently 

but required that orthologous signals appear within 10 bp from each other in the multiple 

alignment of the region.  We also required that branch and donor be no more than 600bp 

apart, which is the case for 90% of known S. cerevisiae introns.  We then inspected the 

multiple alignment surrounding the conserved signals for three properties: (1) a 

conserved acceptor signal, [CT]AG, 3’ of the branch site (2) high RFC 5’ of the donor 

signal and 3’ of the acceptor signal.  (3) low RFC within the intron.  Roughly half of the 

conserved donor/branch pairs met our additional requirements.   

We predict 58 novel introns. Fifty cases affect the structure of known genes 

(defining new 5’-exons in 42 cases, 3’-exons in 7 cases and an internal splice in one case) 

and two indicate the presence of new genes. The relationship of the apparent splice 

signals to existing genes is unclear for the remaining six cases. We visually inspected our 

predictions and compared our results to experimental studies by Ares and colleagues that 

identified new introns using techniques such as microarray hybridization41. Of our 58 

predicted introns, 20 were independently discovered by this group. Of the four annotated 

introns predicted to be spurious, all four show no experimental evidence of splicing. Our 

remaining predictions are currently being tested in collaboration with Ares and 

colleagues. 

2.6. Analysis of small ORFs 

The power of our method was limited for small ORFs.  Smaller regions may 

indeed show lack of indels due to chance, and hence a high reading frame conservation 

score may not be meaningful.   

We tested 141 ORFs encoding 50-99 amino acids for which some biological 

evidence has been published and are reported in SGD. Applying the RFC test and 

inspecting the results, we conclude that 120 appear to be true genes, 18 appear to be 

spurious ORFs and 3 remain unresolved. SGD also lists 32 ORFs encoding < 50 aa. We 

did not undertake a systematic search for all such ORFs, because control experiments 

showed that the RFC test lacked sufficient power to prove the validity of such small 

ORFs (see below).  However, it is able to reject 7 of the 32 ORFs as likely to be spurious.  

Our yeast gene catalogue thus contains 188 short genes (<100 aa), of which 43 are novel. 
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To evaluate the predictive power of the RFC test for small ORFs, we additionally 

tested for presence of in-frame stop codons in the other species.  When a small ORF in S. 

cerevisiae showed a strong overall frame conservation, we measured the length of the 

longest ORF in the same orientation in each orthologous locus. We measured the percent 

of the S. cerevisiae length that was open in each species (no stop codons), and took the 

minimum of the three percentages (OPEN) across the three additional species.  When the 

reading frame was open in each of the other species, the lengths found were identical to 

that of S. cerevisiae, and OPEN was 100%.  When OPEN was below 80%, we concluded 

that stop codons appeared in the orthologous sequence, and therefore that the RFC test 

falsely accepted a segment that did not correspond to a true gene.  We observed the 

distribution of OPEN for different values of RFC.  For S. cerevisiae ORFs between 50 

and 100 amino acids (aa), selecting for high RFC automatically selected for high OPEN, 

and we estimated the test has high specificity.  For ORFs between 30 and 50 aa however, 

only a small portion of the ORFs with high RFC show a high OPEN, and we conclude 

that the lack of indels within the small interval considered is not due to selective pressure, 

but instead lack of evolutionary distance between the species aligned.  

We further systematically searched the remainder of the S. cerevisiae genome and 

evaluated all ORFs in this size range. Control experiments demonstrated that the RFC test 

has high power to discriminate reliably between valid and spurious ORFs in this size 

range. The genome contains 3161 such ORFs, nearly all are readily rejected by the RFC 

test. However, 43 novel genes were identified. These ORFs not only pass the RFC test, 

but they also have orthologous start and stop codons. Five of these have been reported in 

the literature subsequent to the SGD release studied here 

Figure 2.9. Revised yeast catalogue.  Our analysis has affected nearly 15% of all genes.  
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2.7. Conclusion:  Revised yeast gene catalog 

Based on the analysis above, we propose a revised yeast gene catalog consisting 

of 5538 ORFs ≥ 100 amino acids. This reflects the proposed elimination of 503 ORFs 

(366 from the RFC test, 105 by manual inspection and 32 through merger). A total of 20 

ORFs in SGD remain unresolved. Complete information about the gene catalog is 

provided in 29 and will be discussed more fully in a subsequent manuscript in 

collaboration with SGD and other yeast investigators.  The revised gene count is 

consistent with at least two recent predictions based on light shotgun coverage of related 

species4,5.  We believe that this represents a reasonably accurate description of the yeast 

gene set, because the analysis examines all ORFs ≥ 100 amino acids, the methodology 

has high sensitivity and specificity and the evidence is unambiguous for the vast majority 

of ORFs. Nonetheless, some errors are likely to remain. The results could be confirmed 

and remaining uncertainties resolved by sequencing of additional related yeast species, as 

well as by other experimental methods.  

Despite the intensive study of S. cerevisiae to date, comparative genome analysis 

points to the need for a major revision of the yeast gene catalog affecting more than 15% 

of all ORFs (Figure 2.9).  The results suggest that comparative analysis of a modest 

collection of species can permit accurate definition of genes and their structure.  

Comparative analysis can complement the primary sequence of a species and provide 

general rules for gene discovery that do not rely solely on known splicing signals for 

gene discovery.  Previous studies have shown that such methods are also applicable to the 

understanding of mammalian genes42.  The ability to observe the evolutionary pressures 

that nucleotide sequences are subjected to radically changes our power for signal 

discovery.  
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CHAPTER 3:  REGULATORY MOTIF DISCOVERY 

3.1. Introduction 

Regulatory motifs are short nucleotide sequences typically upstream of genes that 

are used to control the expression of genes, dictating under which conditions a gene will 

be turned on or off.  Direct identification of regulatory elements is more challenging than 

that of genes. Such elements are typically short (6-15 bp), tolerate some degree of 

sequence variation and follow few known rules. To date, the majority have been found by 

experimentation, such as systematic mutation of individual promoter regions; the process 

is laborious and unsuited for genome-scale analysis.  

Computational analysis of single genomes has been successfully used to identify 

regulatory elements associated with known sets of related genes7-9.  These methods 

typically search for frequently-occurring sequence patterns at various distances upstream 

of coordinately expressed genes, and will be further described in chapter 4.  They are 

however limited by the experimental information available, and hence do not permit a 

comprehensive direct identification of regulatory elements43. 

Comparative genomics offers various approaches for finding regulatory elements. 

The simplest approach is to perform cross-species sequence alignment to find 

phylogenetic footprints, regions of unusually high conservation. This approach has long 

been used to study promoters of specific genes in many organisms10,12,44-46 and recently 

was applied across the entire human and mouse genomes19. The genome alignments of 

the four Saccharomyces species can similarly be used to study each yeast gene, to help 

define promoters and other islands of intergenic conservation (Figure 3.2).  

Our interest was to go beyond inspection of individual islands of conservation to 

construct a comprehensive dictionary of regulatory elements used throughout the 

genome. We investigated the conservation properties of known regulatory motifs and 

used the insights gained to design an approach for de novo discovery of regulatory motifs 

directly from the genome.   

In this chapter, we develop and apply methods for genome-wide motif discovery.  

We compare our results to a database of experimentally validated regulatory motifs and 

rediscover virtually all previously known motifs.  In chapter 4 we develop methods for 
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inferring a candidate function for the motifs discovered making use of biological 

knowledge about genes, and in chapter 5 we explore their combinatorial interactions.  

3.2. Regulatory motifs 

The current knowledge of gene regulation is based on focused experimental 

studies of specific examples.  The deletion of a transcription factor was shown to disrupt 

the use of its target genes.  Regulatory elements were identified in genetic screens 

through function-disrupting mutations that reside outside of a protein-coding ORF.  

Systematic mutagenesis of a particular promoter region (also known as promoter 

bashing) and testing the resulting effect on gene expression has been used to identify 

functional blocks in upstream regions of genes.  To identify regulatory motifs at a 

nucleotide level, footprinting methods can be used.  These methods expose the bound 

region to DNA damaging agents that degrade unbound nucleotides, leaving a ‘footprint’ 

of the transcription factor on the bound and thus protected nucleotides.  Finally, even 

higher resolution information is obtained through crystal structures of transcription 

factors bound to DNA.  These different methods have produced lists of bound sites for 

each of a small number of well-studied transcription factors.  

The sites bound by these factors exhibit sequence similarities that reveal the 

binding specificity of each factor, and can be represented in a regulatory motif.  

Representations for these motifs range from 

consensus sequences listing the nucleotides 

involved in binding, to weight matrices and 

graphical models. Consensus sequences or 

sequence profiles are the simplest such 

representation, giving a list of possible bases for 

each position in the bound site.  Some positions 

are strict and require the presence of a particular 

nucleotide, others allow for degeneracies.  

These can be represented compactly using the 

IUB standard one-letter code (Table 3.1).  More 

complex representations can be used allowing 

for more detail in the binding specificity.          

IUB Nucleotides Name [pA,pc,pG,pT]

A A Adenine [1, 0, 0, 0]

C C Cytosine [0, 1, 0, 0]

G G Glutamine [0, 0, 1, 0]

T T Tyrosine [0, 0, 0, 1]

S C or G Strong [0, ½, ½, 0]

W A or T Weak [½, 0, 0, ½]

R A or G PuRine [½, 0, ½, 0]

Y C or T pYrimidine [0, ½, 0, ½]

M A or C aMino group [½, ½, 0, 0]

K G or T Keto group [0, 0, ½, ½]

B C or G or T Not A [0, ⅓, ⅓, ⅓]

D A or G or T Not C [⅓, 0, ⅓, ⅓]

H A or C or T Not G [⅓, ⅓, 0, ⅓]

V A or C or G Not T [⅓, ⅓, ⅓, 0]

N A, C, G or T aNy base [¼, ¼, ¼, ¼] 

Table 3.1. Degenerate nucleotide code.  
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A weight matrix representation of a motif of length L assigns weight vector wi = [wA, wC, 

wG, wT] to every position i between 1 and L.  The binding strength of a sequence can be 

scored against a weight matrix by simply adding up the corresponding scores for each 

position.  In a probabilistic framework, the weights can represent the relative frequencies 

of each nucleotide in real motifs, multiplying across the corresponding weights gives the 

probability that a sequence s matches the motif represented by m.  Alternatively, if log 

probabilities are used instead, summing across the matrix gives the corresponding log 

probability.  This probability can be compared to the probability of obtaining s by chance, 

to obtain a log-likelihood ratio that the sequence matches the motif.  Both consensus 

sequences and weight matrices model the binding contributions of nucleotide position as 

independent.  More complex Bayesian representations for motifs can be used to capture 

pairwise and multiple dependencies between positions.  As the models become more 

complex however, the increased power comes at a cost, increasing the number of 

parameters and possibly overfitting data.  

Transcription factors have evolved different ways to contact the DNA double 

helix, and these are reflected in different types of regulatory motifs.  Some factors make 

one long contact with the DNA helix recognizing between 6 and 8 positions, some of 

which can be degenerate.  One such example is the Mbp1 transcription factor involved in 

the timing of events such as DNA replication during cell division and recognizes the 

motif ACGCGT.  Other factors contact the DNA at two different points, resulting in motifs 

with two cores, separated by a stretch of unspecified bases.  For example, the binding site 

recognized by Abf1, a general transcription factor involved in silencing and replication, 

recognizes the motif RTCRYNNNNNACGR.  The DNA-binding domains of other factors 

are made of two identical parts (and hence called homodimers), contacting each other and 

each contacting the DNA helix.  The two parts recognize identical sequences, but on 

opposite strands, and hence result in motifs that are reverse palindromes of themselves.  

One such example is the Gal4 factor involved in galactose metabolism, recognizing 

CGGNNNNNNNNNNNCCG, namely CGG on one strand spaced by 11 nucleotides (one full 

turn of the double helix) from its reverse complement, CCG.  
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3.3. Extracting signal from noise 

Computationally, discovering regulatory motifs amounts to extracting signal from 

noise.  When the motifs searched are expected to be more frequent than other patterns of 

the same length, one can apply discovery algorithms such as Expectation Maximization 

(EM) or Gibbs sampling (and others reviewed in ref 9).  These were pioneered by 

Lawrence and coworkers47, and made popular in software programs like MEME7,48, 

AlignACE8,49,50 or BioProspector51.  More recent work has extended these methods to 

incorporate phylogenetic footprinting45,52-54. These methods separate the motif discovery 

problem in two sub-problems.  (1) Given a set of starting coordinates i1, …, in in each of 

the sequences, construct the optimal matrix representation for a motif that starts at each 

of these positions.  (2) Given a matrix representation for a motif m, find the starting 

positions of the best matches for that motif in each of the sequences.  These algorithms 

start with a random assignment for the start positions and infers the best matrix, then 

iterates to improve the assignment of start positions to better match the motif.  EM 

algorithms choose the optimal assignment for each of these rounds of iteration.  Gibbs 

sampling algorithms instead sample amidst the best start positions.  Both algorithms 

converge as long as the motif searched is actually frequent in the sequences searched, 

since probabilistically, the algorithms will be likely to sample these motifs in their 

iterative steps, and upon sampling them will converge to include them.  

These methods have typically been applied to the upstream sequences of small 

sets of genes, but are not applicable to a genome-wide discovery.  Instead, k-mer 

counting methods have been used to find short sequences that occur more frequently in 

intergenic regions, as compared to coding regions in a genome-wide fashion43.  However, 

these typically find very degenerate sequences (such as poly-A or poly-T) and have 

shown limited power to separate regulatory motifs from the mostly non-functional 

intergenic regions.  This is largely due to the small number of functional instances of 

regulatory motifs, as compared to the large number of non-functional nucleotides.  The 

discovery of regulatory motifs still relies heavily on extensive experimentation.  

Comparative genomics provides a powerful way to distinguish regulatory motifs 

from non-functional patterns based on their conservation.  In this chapter we first study 

conservation properties of known regulatory motifs.  We use these to construct three tests 
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to detect the genome-wide signature of motif-like conservation.  We use these tests to 

detect all significant patterns with strong genome-wide conservation, constructing a list 

of 72 genome-wide motifs.  We compare this list against previously identified regulatory 

motifs and show that our method has high sensitivity and specificity, detecting most 

previously known regulatory motifs, but also a similar number of novel motifs.  In 

chapter 4, we assign candidate functions to these novel motifs, and in chapter 5, we study 

their combinatorial interactions.  

3.4. Conservation properties of known regulatory motifs 

We first studied the binding site for one of the best studied transcription factors, 

Gal4, whose sequence motif is CGG(N)11CCG (which contains 11 unspecified bases). Gal4 

regulates genes involved in galactose utilization, including the GAL1 and GAL10 genes 

that are divergently transcribed from a common intergenic region (Figure 3.2). The Gal4 

Figure 3.2. Phylogenetic footprinting of the Gal1-Gal10 intergenic region reveals functional nucleotides.  
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motif occurs three times in this intergenic region, and all three instances show perfect 

conservation across the four species. In addition, there is a fourth, experimentally 

validated binding site55 for Gal4 that differs from the consensus by one nucleotide in S. 

cerevisiae. This variant site is also perfectly preserved across the species.  

We then examined the frequency and conservation of Gal4 binding sites across 

the aligned genomes (Figure 3.3).  In S. cerevisiae, the Gal4 motif occurs 96 times in 

intergenic regions and 415 times in genic (protein coding) regions. The motif displays 

certain striking conservation properties.  First, occurrences of the Gal4 motif in intergenic 

regions have a conservation rate (proportion conserved across all four species) that is ~5-

fold higher than for equivalent random motifs (12.5% vs. 2.4%). Second, intergenic 

occurrences of the Gal4 motif are more frequently conserved than genic occurrences 

(12.5% vs. 3%). By contrast, random motifs are less frequently conserved in intergenic 

regions than genic regions (3.1% vs. 7.0%), reflecting the lower overall level of 

conservation in intergenic regions. Thus, the relative conservation rate in intergenic vs. 

genic regions is ~11-fold higher for Gal4 than for than random motifs. Third, the Gal4 

motif shows a higher conservation rate in divergent vs. convergent intergenic regions 

(those that lie upstream vs. downstream of both flanking genes); no such preferences is 

seen for control motifs. These three observations suggest various ways to discover motifs 

based on their conservation properties (see conservation criteria below).  

Figure 3.3. Genome-wide conservation of the Gal4 motif.  The six-fold to 11-fold separation between 

the conservation of Gal4 and that of random control motifs suggests three signatures for motif discovery. 
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We extended these observations by assembling a catalog of 55 known regulatory 

sequence motifs (Table 3.4), by starting with two public databases (SCPD56,57 and 

YTFD58) and curating the entries to select those with the best support in the literature.  

Table 3.4. Genome-wide conservation of known motifs.  Matching nucleotides in bold. S=strong 

match, W=weak match, NE=not enriched, NC=no category available. Category scores in brackets.  
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We defined a Motif Conservation Score (MCS) based on the conservation rate of the 

motif in intergenic regions.  To evaluate the Motif Conservation Score (MCS) of a motif 

m of given length and degeneracy, we compared its conservation ratio  to that of random 

patterns of the same length and degeneracy.  We first computed the table F containing the 

relative frequencies of two-fold and three-fold degenerate bases, given the S. cerevisiae 

nucleotide frequencies (.32 for A and T, .18 for C and G).  For example, W=[AT] 

(.32*.32) is a more likely two-fold degenerate base than Y=[CT] (.18*.32).  We then 

selected 20 random intergenic loci in S. cerevisiae.  For each of these loci, we used the 

order of nucleotides at that locus together with the order of degeneracy levels in m to 

construct a random motif.  If the first character of m was two-fold degenerate and the first 

nucleotide at the selected locus was A, we picked a two-fold degenerate base containing 

A (W, R or M), their relative frequencies dictated by F, and continued for every character 

of m.  We then counted conserved and non-conserved instances of each of the 20 

generated control patterns and computed r, the log-average of their conservation rates.  

We then counted the number of conserved and non-conserved intergenic instances of m, 

and computed the binomial probability p of observing the two counts, given r.  We 

finally reported the MCS of the motif as a z-score corresponding to p, the number of 

standard deviations away from the mean of a normal distribution that corresponds to tail 

area p.  Nearly all of these sequence motifs are binding sites of known transcription 

factors.  Most of the known motifs show extremely strong conservation, with 60% having 

MCS ≥ 4 (which is substantially higher than expected by chance). Some of the motifs, 

however, show relatively modest MCS. These motifs may be incorrect, suboptimal or not 

well conserved. 

3.5. Genome-wide motif discovery 

Our methodology for genome-wide motif discovery involves first identifying 

conserved mini-motifs and then using these to construct full motifs (Figure 3.5).  Mini-

motifs are sequences of the form XYZn(0-21)UVW, consisting of two triplets of specified 

bases interrupted by a fixed number (from 0 to 21) of unspecified bases. Examples are 

TAGGAT, ATAnnGGC, or the Gal4 motif itself. The total number of distinct mini-

motifs is 45,760, if reverse complements are grouped together.   
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Conserved mini-motifs are evaluated according to three conservation criteria 

(CC1-3), based on our observations about the properties of the Gal4 motif. In each case, 

conservation rates are normalized to appropriate random controls. CC1 (Intergenic 

conservation) evaluates the conservation rate of a mini-motif in intergenic regions. CC2 

(Intergenic-genic conservation) evaluates the stronger conservation in intergenic regions 

as compared to genic regions.  CC3 (Upstream-downstream conservation) evaluates the 

different conservation of a mini-motif when it occurs upstream vs. downstream of a gene.  

CC1:  Intergenic conservation.  We searched for mini-motifs that show a 

significant conservation in intergenic regions.  For every mini-motif, we counted ic the 

number of perfectly conserved intergenic instances in all four species, and i the total 

number of intergenic instances in S.cerevisiae.  We found that the two counts seem 

linearly related for the large majority of patterns (Figure 3.5 panel A), which can be 

Figure 3.5. Genome-wide motif discovery method.  The three conservation tests and motif collapsing.  
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attributed to a basal level of conservation r given the total evolutionary distance that 

separates the four species compared.  We estimated the ratio r as the log-average of non-

outlier instances of ic/i within a control set of all motifs at a given gap size.  We then 

calculated for every motif the binomial probability p of observing ic successes out of i 

trials, given parameter r.  We assigned a z-score S to every motif corresponding to 

probability p.  This score is positive if the motif is conserved more frequently than 

random, and negative if the motif is diverged more frequently than random.  We found 

that the distribution of scores is symmetric around zero for the vast majority of motifs.  

The right tail of the distribution however is much further than the left tail, containing 

1190 motifs more than 5 sigma away from the mean, as compared to 25 motifs for the left 

tail.  By comparing the two counts, we estimated that 94% of these 1190 motifs are non-

random in their conservation enrichment.   

CC2:  Intergenic-genic conservation. We searched for motifs that are 

preferentially conserved in intergenic regions, as compared to coding regions.  In addition 

to ic and i (see previous section), we counted the number of conserved coding instances 

gc, and the number of total coding instances g, for every mini-motif.  We observed the 

ratio of conserved instances that are intergenic a=ic/(ic+gc), and compared it to the total 

ratio of motif instances that are intergenic b=i/(i+g).  Not surprisingly, we found that 

typically b=25% of all motif instances appeared in intergenic regions, which account for 

roughly 25% of the yeast genome.  Similarly, only a=10% of conserved motif instances 

appeared in intergenic regions, which reflects the lower conservation of intergenic 

regions.  To correct for this typical depletion in intergenic conservation, we estimated a 

correction factor f=a/b for mini-motifs of similar GC-content.  Then for a given mini-

motif, the proportion of all instances found in intergenic regions and the correction for 

the lower conservation of intergenic regions together gave us r=f*i/(i+g), the expected 

ratio of conserved intergenic instances for that motif.  We evaluated the binomial 

probability p of of observing at least ic conserved instances in intergenic regions and 

ic+gc conserved instances overall, given the expected ratio r.  As in CC1, we computed a 

z-score S for every motif and found a distribution centered around zero for the large 

majority of motifs, and a heavier right tail.  We selected 1110 motifs above 5 sigma and 

estimated that 97% are non-random as compared to only 39 motifs below -5 sigma.  
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CC3:  Upstream-downstream conservation.  We searched for motifs that are 

differentially conserved in upstream regions and downstream regions.  We defined 

upstream-only intergenic regions in divergent promoters that are upstream of both 

flanking ORFs, and downstream-only intergenic regions in convergent 3’ terminators that 

are downstream of both flanking ORFs.  We then counted uc and u, the conserved and 

total counts in upstream-only regions, and similarly dc and d in downstream-only regions.  

We found that upstream-only and downstream-only regions have similar conservation 

rates, and the ratios uc/u and dc/d are both similar to ic/i for the large majority of motifs.  

We thus used a simple chi-square contingency test on the four counts (uc,u,dc,d) to find 

motifs that are differentially conserved.  We found 1089 mini-motifs with a chi-square 

value of 10.83 or greater, which corresponds to a p-value of .001.  Given the multiple 

testing of 45760 mini-motifs, we estimated that roughly 46 will show such a score by 

chance and that 96% of the selected motifs will be non-random.  

The conserved mini-motifs are then used to construct full motifs (Figure 3.5). 

They are first extended, by searching for nearby sequence positions showing significant 

correlation with a mini-motif. The extended motifs are then clustered, merging those with 

substantially overlapping sequences and those that tend to occur in the same intergenic 

regions. Finally, a full motif is created by deriving a consensus sequence (which may be 

degenerate). Motifs are typically degenerate, and a single full-motif can be responsible 

for multiple strong mini-motifs.  We now describe methods to recover the full motifs and 

their degeneracy. 

We extended each mini-motif selected by searching for surrounding bases that are 

preferentially conserved when the motif is conserved.  We used an iterative approach 

adding at every iteration one base that maximally discriminates the neighborhood of 

conserved motif instances from the neighborhood of non-conserved motif instances.  The 

added base was selected from fourteen degenerate symbols of the IUB code (A, C, G, T, 

S, W, R, Y, M, K, B, D, H, V).  When no such symbol separated the conserved and non-

conserved instances with significance above 3 sigma, we terminated the extension.  

Figure 3.5 panel D shows the top-scoring mini-motif found in CC1 (Row 1), and the 

corresponding extension (Row 2).  We found that many mini-motifs have the same or 

similar extensions, and we grouped these based on sequence similarity.  We measured the 
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similarity between two motifs as the number of bits in common in the best ungapped 

alignment of the two motifs, divided by the minimum number of bits contained in either 

Table 3.6. Discovered motifs and associated function.   
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motif.  Based on the pairwise motif similarity matrix, we clustered the extended motifs 

hierarchically, collapsing two groups if the average similarity between their member 

motifs was at least 70%.  We then computed a consensus sequence for every cluster of 

extended motifs, resulting into a smaller number of mega-motifs for each test (332 for 

CC1, 269 for CC2 and 285 for CC3).  Row 3 shows the first 9 members of the top cluster 

in CC1, and the resulting mega-motif.  Finally, we merged mega-motifs based on their 

co-occurrence in the same intergenic regions (Row 4).  We computed a hypergeometric 

co-occurrence score between the intergenic regions hit by each mega-motif and again 

collapsed these hierarchically.  We computed a consensus for every cluster, and iterated 

the co-occurrence-based collapsing step (results not shown).  We obtained fewer than 200 

distinct genome-wide motifs.  Each full motif is assessed for genome-wide conservation 

by calculating its MCS, and those motifs with MCS ≥ 4 are retained.  Each full motif was 

also tested for enrichment in upstream vs. downstream regions, by comparing its 

conservation rate in divergent vs. convergent intergenic regions. 

3.7. Results and comparison to known motifs 

The vast majority of the 45,760 possible mini-motifs show no distinctive 

conservation pattern. However, ~2400 mini-motifs show high scores by one or more of 

these criteria (Figure 3.5 panels A, B, C). There is substantial overlap among the mini-

motifs produced by the three criteria, with about 50% of those found by one criterion also 

found by another.  

The conserved mini-motifs give rise to a list of 72 full motifs having MCS ≥ 4 

(Table 3.6). We omit full motifs with low MCS scores, and those that overlap tRNA 

genes and may be due to secondary RNA structure.  Most of the motifs show preferential 

enrichment upstream of genes, but six are enriched downstream of genes.  These 72 

discovered motifs, found with no prior biological knowledge, show strong overlap with 

28 of the 33 known motifs having MCS ≥ 4. They include 27 strong matches and 1 

weaker match.  The 72 discovered motifs also contain matches to 8 of the 22 known 

motifs with MCS < 4. In these cases, the comparative analysis identified closely related 

motifs that have higher conservation scores than the known motifs and occur largely at 

the same genes; these may represent a better description of the true regulatory element.  

Comparative genomic analysis thus automatically discovered 36 motifs with matches to 
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most of the known motifs (65% of the full set, 85% of those with high conservation). It 

also identified 42 additional ‘novel’ motifs not found in our list of known motifs.  In the 

next chapter, we develop methods to understand these novel motifs and assign a 

candidate function to each of them.   

3.8. Conclusion 

Motif discovery amounts to extracting small sequence signals hidden within 

largely non-functional intergenic sequences.  This problem is difficult in a single genome 

where the signal-to-noise ratio is very small.  Previous methods have thus been limited to 

discovering motifs within small sets of genomic regions.  We have conducted a genome-

wide exhaustive search for all regulatory motifs.  We produced a list of 72 strongly 

conserved motifs, that includes most previously identified motifs.  This ability to directly 

discover regulatory motifs drastically changes our view of gene regulation. Instead of a 

case-by-case study, we can now observe complete views of all regulatory building 

blocks.  Our method has re-discovered most previously known regulatory motifs without 

use of any prior biological function.  It should theoretically be applicable to any genome 

for which no experimental data is available.  Additionally, in yeast, we can use the 

biological information to discover the function of the discovered motifs.  We can also use 

biological function to discover additional motifs.  These two goals will be the topic of the 

next chapter.   
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CHAPTER 4:  REGULATORY MOTIF FUNCTION 

4.1. Introduction 

In response to environmental changes, a single transcription factor can induce the 

expression of all genes necessary to fulfill a particular function, such as galactose import 

and utilization.  These genes are typically scattered throughout the genome and targeted 

by the presence in their upstream regions of a specific regulatory motif recognized by the 

factor.  This regulatory motif will be enriched in the upstream regions of these genes, 

namely it will occur more frequently in these regions than expected by chance as 

compared to the rest of the genome.  

This enrichment of regulatory motifs in functionally related sets of genes can be 

used in two ways.  Given a gene set, an associated motif can be found by searching the 

upstream intergenic regions for short patterns occurring at an unusual frequency.  

Alternatively, given a novel motif whose function is unknown, an associated gene set can 

be found by testing a number of previously defined gene sets (categories) for enrichment.   

In a single genome, motifs occur frequently by chance, and hence the enrichment 

observed is sometimes not sufficient to perform either of these two tasks with high 

sensitivity and specificity.  With multiple aligned genomes at hand, most spurious motif 

instances can be eliminated and the enrichment should become more pronounced.  We 

can use this increased power to assign a candidate function to the motifs discovered in the 

previous chapter and to discover additional motifs in a category-specific way.  

In this chapter, we present methods to distinguish biologically meaningful motif 

instances under selective pressure from non-functional motif instances.  We assign 

candidate functions to the genome-wide motifs discovered in the previous chapter and 

find that the majority of discovered motifs show a significant functional enrichment.  We 

also present a new method to discover additional regulatory motifs associated with 

functional categories.  For known factors, we find that our category-based discovery 

method has great sensitivity and specificity, finding concise binding sites even when 

previous methods fail.  For all 354 categories tested, we find that only a small number of 

motifs are found and these are shared, reused across categories.  
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4.2. Constructing functionally-related gene sets.  

In yeast, a number of genome-wide experiments have resulted in functional 

groupings of genes into gene sets.  These represent possibly co-regulated groups, 

constructed from gene expression, transcription factor binding and protein function.  

Microarray technology enables the simultaneous measurement of gene expression 

levels for all 6000 annotated yeast genes on a single array.  Such arrays contain thousands 

of spots (one for every gene), each containing multiple single-stranded nucleotide probes 

complementary to the corresponding predicted yeast gene.  When cell extract is washed 

on the array, the single-stranded mRNA transcripts present in the cell hybridize (bind) by 

complementarity to the appropriate spots in the array.  The level of hybridization can be 

measured by first fluorescently labeling the mRNA transcripts and then measuring the 

level of fluorescence on each spot using a laser scanner.  The higher the hybridization 

measured at a spot, the higher is the inferred level of mRNA expression for that gene. 

These genome-wide experiments have been repeated for hundreds of experimental 

conditions and expression profiles have been constructed for every gene, describing its 

expression levels in each condition.  These profiles can then be clustered 

computationally59, typically by their pairwise correlation coefficients, to obtain sets of 

transcriptionally coordinated sets of genes.  

Another technology, ChIP, has recently been applied to the genome-wide level to 

observe the binding locations of a transcription factor across the genome60,61.  This 

technology enables the specific targeting of a transcription factor of interest, in order to 

pull it out of a cell extract.  Pulling a transcription factor also selects for the DNA 

fragments that it is bound to.  A researcher can then hybridize these fragments against an 

array containing probes for promoter regions, and infer which regions are bound by the 

transcription factor.  Current technologies target transcription factors by either 

constructing an antibody specific to the factor, or by appending to the transcription factor 

a tag to which an antibody already exists (antibodies are molecules used by our immune 

system to recognize specific proteins of invading agents like viruses or bacteria; hence 

the name of Chromatin Immuno-Precipitation abbreviated as ChIP, referring to the use of 

antibodies to cause the chromatin bound by a factor to precipitate with the factor when 
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this one is pulled).  The DNA is fragmented before precipitation and only a few hundred 

bases surrounding the bound site are typically pulled.  

Genes can also be grouped into functional categories, based on the experimentally 

determined function of the proteins they encode.  The function of thousands of yeast 

genes has been experimentally determined (to various degrees of precision).  The 

scientific papers that describe these functions have been manually curated by the 

Saccharomyces Genome Database (SGD) group, generating a vast repository of 

knowledge.  This knowledge has been classified hierarchically into Gene Ontology (GO) 

information or MIPS62, using a unified language that crosscuts species and organism 

boundaries.  This hierarchy groups at each internal node genes of related function, from 

the most specific to the most general, in categories such as ‘meiotic DNA double-strand 

break processing’, ‘cell cycle’, or ‘metabolism’.  Genes of related function will 

sometimes be part of the same metabolic pathway, required simultaneously for the 

correct sequence of chemical modifications of a metabolite, and hence likely to be co-

regulated.  Similarly, proteins that are part of the same protein complex are likely to be 

co-regulated, since they are required simultaneously for the correct assembly of the 

protein complex.  Experimental methods similar to ChIP can be used to detect protein 

complexes63:  an antibody specific to one of the proteins in the complex is used to pull 

the entire complex out of cell extract;  the complex pulled is then fractionated at specific 

residues and the charge/weight combination of the fragments obtained by Mass 

Spectroscopy are used to find the precise set of amino acids in the fragment and the 

corresponding proteins that can result in such amino acid subsets. 

4.3. Assigning a function to the genome-wide motifs 

We used the biological knowledge captured in these sets of functionally related 

genes to assign function to the 72 genome-wide motifs discovered in the previous 

chapter.  Since motifs can be degenerate and sometimes conserved in only a subset of the 

species, we first developed methods to score conserved motif instances.  We then 

evaluated the overlap between the set of intergenic regions with motif scores above a 

given cutoff, and each functionally-related set of genes.  We found a strong overlap with 

functional sets for most of the genome-wide motifs, and discover novel motif functions.  
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We used a probabilistic representation to detect conserved motif instances.  We 

interpret every genome-wide motif m of length L as a probabilistic model, generator of 

sequences of length L over the alphabet {A,C,G,T}.  We then evaluated for every 

genome position, the probability that the sequence was generated by motif m, and 

compared this to the probability that the sequence was generated at random, given the 

ratio of A,C,G,T in the genome.  We evaluated each species in turn, to obtain a total 

number of bits in the alignment.  Since gaps may exist in the alignment, we did not 

evaluate the motif match directly on the alignment.  Instead, we evaluated the motif in the 

ungapped sequence of each species in turn, and translated the motif start coordinates 

based on the alignment.  To avoid evaluating each of 12 million start positions in the 

yeast genome against the motif, we first hashed the four genomes for rapid lookup, and 

subsequently only search those intergenic regions that contain k-mers in the motif 

searched.  To allow for degenerate matches, we also search for k-mers with one or two 

degeneracies from the query motif. We then used a simple threshold t and obtain the list 

of all intergenic regions containing conserved instances of the motif with score at least t.  

These instances are either upstream of downstream of each flanking gene, depending on 

its transcriptional orientation.  We could thus generate an ‘upstream’ list of genes that 

contain these conserved instances in their upstream regions, and a corresponding 

‘downstream’ list of genes. We compared the overlap between each upstream and 

downstream gene list against each set of functionally related genes.   

We did not expect a perfect overlap where every gene in a category would contain 

the motif and every gene outside the category would not contain the motif.  On one hand, 

we expected discrepancies due to experimental errors, incomplete annotations and 

artifacts of the clustering algorithms.  But even with perfect data, discrepancies arise 

from molecular processes that cross-cut functional categories, transcription factor binding 

that is dependent on additional protein-protein interactions or chromatin structure, 

expression clusters that are controlled  by multiple transcription factors.  At the same 

time, much like spurious motif instances can occur in a single species when motifs are 

short and degenerate, even conserved motif instances can occur by chance, although less 

frequent.  Similarly, functional motif instances may appear diverged due to alignment 

errors, or may have genuinely diverged across the species compared.  
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Thus, we evaluated the overlap between motif presence and functional 

information probabilistically.  Assume that m genes contain the motif and r genes belong 

to a particular functional category.  At random, if the motif is independent from the 

category, we expect the same proportion of genes to contain motif instances both inside 

and outside the category.  The probability of observing a deviation from that ratio can be 

evaluated using the hypergeometric distribution, described in the appendix.  If k genes are 

observed in the overlap between the two sets, and n genes are present in the yeast 

genome, we calculate a P-value that the enrichment is observed at random as the 

hypergeometric sum for all values of k’ that are greater or equal to k.  Since we were 

evaluating the overlap of each motif against a large number of candidate functional 

categories, we use a Bonferroni correction for multiple hypothesis testing.  

We applied these ideas to the motifs we discovered in our genome-wide search.  

As a control, we used the Gal4 motif (Figure 4.1). Given the biological role of Gal4, we 

considered the set of genes annotated to be involved in carbohydrate metabolism (126 

genes according to the Gene Ontology (GO)64 classification) with the set of genes that 

Figure 4.1. Assigning functions to genome-wide motifs based on functionally-related gene sets.  
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have a Gal4 binding motif upstream. The intergenic regions adjacent to carbohydrate 

metabolism genes comprise only 2% of all intergenic regions, but 7% of the occurrences 

of the Gal4 motif in S. cerevisiae (3.5-fold enrichment) and 29% of the conserved 

occurrences across the four species (15-fold enrichment).  These results suggest that a 

function of the Gal4 motif could be inferred from the function of the genes adjacent to its 

conserved occurrences.  Such putative functional assignments can be useful in directing 

experimentation for understanding the precise function of a motif.   

Novel functions for genome-wide motifs 

We compared each of the 72 motifs against a collection of 318 yeast gene 

categories based on functional and experimental data described earlier.  These categories 

consist of 120 sets of genes defined with a common GO classification in SGD64; 106 sets 

of genes whose upstream region was identified as binding a given transcription factor in 

genome-wide chromatin immunoprecipitation (ChIP) experiments61; and 92 sets of genes 

showing coordinate regulation in RNA expression studies59.  To measure how strongly 

the conserved occurrences correlated with the regions upstream (or downstream) of a 

particular gene category.  We require a hypergeometric score of at least 10-5 to judge an 

overlap as significant, after accounting for testing of multiple categories.  Most of the 36 

discovered motifs that correspond to known motifs showed strong category correlation. 

Categories with the strongest correlation included those identified by ChIP with the 

transcription factor known to bind the motif, although many other relevant categories 

were identified. Of the 42 novel motifs, 25 show strong correlation with at least one 

category and thus can be assigned a suggestive biological function (Table 3.6). 

Some motifs appear to define previously unknown binding sites associated with 

known transcription factors. Motif 32 is likely to be the binding site for Rgt1, which 

regulates genes involved in glucose transport65; the motif occurs upstream of many such 

genes, including appearing five times upstream of HXT1, which encodes a high-affinity 

glucose transporter. Motifs 21, 31 and 51 are all associated with genes whose upstream 

regions are bound by Sum1, a transcriptional repressor of genes involved in meiosis. The 

first motif has been previously reported (MSE)66, but the latter two are novel and occur 

near genes whose products are involved in chromatin silencing and transcriptional 

repression. 
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Other motifs do not match regions bound by known transcription factors, but 

show strong correlation with functional categories. Motif 9 occurs upstream of genes 

involved in nitrogen metabolism, including amino acid and urea metabolism, nitrogen 

transport, glutamine metabolism and carbamoyl phosphate synthesis.  Motif 25 is 

enriched among co-expressed genes (expression cluster 37) whose products function in 

vesicular traffic and secretion, including GDP/GTP exchange factors essential for the 

secretory machinery, clathrin assembly factors and many vesicle and plasma membrane 

proteins. Motifs 9, 13, 26, 34, 37 may play a role in filamentation.  They are all enriched 

in genes co-regulated during environmental changes, involved in signaling and budding 

and bound by transcription factors involved in filamentation, such as Phd1.  

Six motifs show higher conservation downstream of ORFs.  Some of these may 

be in the 3’ untranslated region of a transript and play a regulatory role in mRNA 

localization or stability.  The strongest (Motif 6 and 67) is found at genes whose product 

localizes to the cytosolic translational machinery, the mtDNA translational machinery or 

the mitochondrial outer membrane. Downstream motifs are also found enriched in a 

group of genes repressed during environmental stress (Motif 60 with expression cluster 

37) and a group of genes involved in energy production (Motif 66 with expression cluster 

46).  

Two motifs (Motif 11a and Motif 69) show variable gap spacing, suggesting a 

new type of degeneracy within the recognition site for a transcription factor complex.  

Motif 11a corresponds closely to the known motif for Swi4 (Motif 11) but is interrupted 

by a central gap of 5, 7 or 9 bases; these variant motifs all show strong correlation with 

genes bound by Swi4 in ChIP experiments. 

4.4. Discovering additional motifs based on gene sets 

We next explored whether additional motifs could be found by searching 

specifically for conservation within individual gene categories.  We selected mini-motifs 

based on their enrichment in specific categories and extended them to full motifs.  We 

first evaluated our motif discovery method for ChIP experiments of factors with known 

motifs, and we found high sensitivity and specificity.  We then searched for novel motifs 

in all 318 functional categories and discovered novel motifs.  
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The enrichment of regulatory motifs found in co-regulated gene sets has been the 

primary motivation for motif discovery algorithms such as MEME, AlignAce or 

BioProspector.  These algorithms typically search for frequently occurring motifs within 

the set and subsequently evaluate the significance of the enrichment observed based on 

the overall frequency of the motifs throughout the genome.  Thus, they search for motifs 

that are frequent within the set, and filter out those that are also frequent outside the set.  

We select for both criteria simultaneously by choosing mini-motifs based directly on their 

category enrichment score.  We counted the conserved instances within the category (IN), 

and the conserved instances outside the category (OUT).  We estimated the ratio 

p=IN/(IN+OUT) that we should expect for the category, based on the entire population 

of mini-motifs.  We then calculated the significance of an observed enrichment as the 

binomial probability of observing IN successes out of IN+OUT trials given the 

probability of success p.  We assigned a z-score to each mini-motif, as described in the 

genome-wide search.  We extended those mini-motifs of z-score at least 5 sigma by 

searching for neighboring conserved bases that increase the specificity.  We finally 

collapsed motifs of similar extension based on sequence similarity.  

Table 4.2. Category-based motif discovery shows increased power to discover concise motifs.  

Hyper shows the enrichment of the previously published motif in the ChIP experiment corresponding to 

the factor.  For slightly enriched motifs, MEME fails to find the correct motif, but the conservation-

based method succeeds.  Concise and correct motifs are found in each case.  
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We first evaluated our ability to detect the 43 known motifs for which ChIP 

experiments61 had been performed with the transcription factor that binds the motifs. For 

each category defined by the ChIP experiment, we undertook category-based motif 

discovery.  Strong category-based motifs were found in 29 cases and these invariably 

corresponded closely to the known motifs (Table 4.2). These include 11 cases in which 

the motif had not been found by genome-wide motif discovery, suggesting that a 

category-based approach can be more sensitive in some cases.  No strong category-based 

motifs were found for the remaining 14 known cases, including 7 cases in which genome-

wide analysis yielded the known motif.  Analysis of these 14 known motifs showed that 

none were, in fact, enriched in the ChIP-based category.  This may reflect errors in the 

known motifs in some cases and imperfect ChIP data in others. Genome-wide analysis 

may simply be more powerful than category-based analysis in some instances.  In all, 46 

of the 55 known motifs were found by either genome-wide or category-based analysis. 

The remaining 9 cases may reflect true failures of the comparative genomic analysis or 

errors in the known motifs.   

We compared our results to the motifs discovered by MEME in a single species as 

reported in Lee et al61.  Our method showed stronger sensitivity in discovering all motifs 

for which the ChIP experiment indeed contained the correct motif.  Additionally, the 

method showed strong specificity in the motifs discovered:  the motifs were short and 

concise, and closely matched the published consensus.  On the contrary, MEME failed to 

find the true motif in a number of cases, and when a motif was found it was generally 

obscured by a number of surrounding spurious bases that are not reported in the known 

motifs.  Thus, we successfully used the additional information that comes from the 

multiple alignment to improve category-based motif discovery with very satisfactory 

results.  By comparing multiple species, the signal becomes stronger.  It allows the search 

to focus on the conserved bases, eliminating most of the noise.  Table 1 summarizes the 

results. For each factor, we show the published motif, the hypergeometric enrichment 

score of the motif within the category (Hyper), the motif discovered by MEME and a 

quality assessment, the motif discovered by our method, as well as the corresponding 

category-based score and a quality assessment, and finally the comparison of our method 

to MEME.  The performance of MEME degrades for less enriched motifs, but we 

consistently find the correct motif.  



 74

We then applied the approach to all 318 gene categories.  A total of 181 well-

conserved motifs were identified, with many of these being equivalent motifs arising 

from multiple categories. Merging such motifs resulted in 52 distinct motifs, of which 43 

were already found by the analyses described above. The remaining 9 motifs represent 

new category-based motifs (Table 4.3), including the following. 

Three novel motifs are associated with genes that are bound by the transcription 

factors Rap1, Ste12 and Cin5, respectively. Rap1 is known to bind incomplete or 

degenerate instances of the published motif and the new motif may confer additional 

specificity. The motif associated with Ste12 is the known binding site for the partner 

transcription factor Tec1, suggesting that Ste12 binding is strongly associated with its 

partner under the conditions examined. Similarly, the novel motif associated with Cin5 

may be that of a partner transcription factor.  Three novel motifs are associated with the 

GO category for carbohydrate transport, fatty-acid oxidation and glycolysis-glycogenesis, 

respectively. Three novel motifs are associated with an expression cluster (cluster 37) 

that includes many genes involved in energy metabolism and stress response.  

4.7. Conclusion 

Category-based motif discovery contributes only a modest number of additional 

motifs beyond those found by genome-wide analysis.  This confirms the relatively small 

number of regulatory motifs in yeast.  A limited count is surprising given the large 

number of coordinately transcribed processes in yeast.  The versatility of fine-grain yeast 

regulation may be rooted in a combinatorial control of gene expression, which will be the 

topic of the next chapter. 

Table 4.3. Novel category-based motifs.  
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CHAPTER 5: COMBINATORIAL REGULATION 

5.1. Introduction 

We also used the comparisons to understand combinatorial interactions between 

regulatory motifs.  A simple view of gene regulation where each environmental response 

is regulated by a dedicated transcription factor would require as many transcription 

factors and regulatory motifs as there are molecules and environmental changes.  This is 

however not the case.  It is estimated that only 160 transcription factors exist in the yeast 

genome, but yeast cells contain thousand of co-regulated sets of genes.  This discrepancy 

requires a different model of gene regulation that goes beyond a one-to-one 

correspondence between regulatory motifs and cellular processes.  

Our results from the previous chapter indeed point to a model where specific 

motif combinations are responsible for different cell responses.  We saw that a single 

motif is typically involved in the control of many processes, and that a single process is 

typically enriched in multiple regulatory motifs.  Furthermore, we saw that different 

processes were enriched in different combinations of regulatory motifs.  Protein-protein 

interactions between the multiple factors bound upstream of every gene may dictate the 

specific combination of conditions under which the gene will be expressed. 

Understanding the combinations of regulatory motifs that are biologically meaningful, 

and the changing target gene sets may explain the versatility of eukaryotic gene 

regulation using only a small number of regulatory building blocks.  

In this chapter, we develop methods to reveal the combinatorial control of gene 

expression.  We construct a global motif interaction map, simply based on proximity of 

conserved motif pairs without requiring biological knowledge of gene function.  We then 

present evidence for the changing functional specificities of the motif combinations 

discovered.  Finally, we show the genome-wide effect of motif combinations on gene 

expression change.  

5.2. Motifs are shared, reused across functional categories 

We saw in the previous chapter that the motifs discovered across different 

categories largely overlapped.  Each motif was discovered on average in three different 
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categories.  This overlap is certainly to be expected between functionally related 

categories such as the chromatin IP experiment for Gcn4, the expression cluster of genes 

involved in amino acid biosynthesis, as well as the GO annotations for amino acid 

biosynthesis, all of which are enriched in the Gcn4 motif, the master regulator of amino 

acid metabolism.  

More surprisingly however, different transcription factors are often enriched in 

the same motif (which may be due to cooperative binding), and the same motif appears 

enriched in multiple expression clusters and functional categories.  For example, Cbf1, 

Met4, and Met31 share a motif, and so do Hsf1, Msn2 and Msn4; Fkh1 and Fkh2; Fhl1 

and Rap1; Ste12 and Dig1; Swi5 and Ace2;  Swi6, Swi4, Ash1 and Mbp1.  Also, a single 

motif involved in environmental stress response is found repeatedly in numerous 

expression clusters, and in functional categories ranging from secretion, cell organization 

and biogenesis, transcription, ribosome biogenesis and rRNA processing.   

Hence, the set of regulatory motifs that are specific to one functional category 

seems limited.  This can hamper category-based motif discovery methods:  no category 

will be enriched in a single motif, and no motif will be enriched in a single category.  

Additionally, there are a number of experimental limitations to a category-based 

approach.  For example, the expression clusters we have used, although constructed over 

an impressive array of experiments, are still limited to the relatively few experimental 

conditions generated in the lab.  Additionally, the functional categories we used are 

limited to the few well-characterized processes in yeast, and the molecular function of 

more than 3000 ORFs remains unknown.   

A genome-wide approach presents a new and powerful paradigm to understanding 

the dictionary of regulatory motifs.  By discovering in an unbiased way the complete set 

of conserved sequence elements, we now have the building blocks to subsequent analyses 

of regulation.  To understand the full versatility of gene regulation, we now turn to 

understanding the combinatorial code of motif interactions.  We first show that motif 

combinations can change the specificity of target genes, not in an additive, but in a 

combinatorial way.  We then present methods to discover interacting motifs from the 
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genome-wide co-occurrence of their conserved instances, without making use of 

functional information.  We then show that the interactions found are meaningful.  

5.3. Changing specificity of motif combinations.  

The effect of motif sharing a reuse can be additive or combinatorial.  An additive 

effect simply adds the effect of the co-occurring transcription factors.  For example, if 

each of two factors induces the expression of a gene, and both bind to a particular region, 

then their effect would be a doubly increased level of transcription for that gene.  A 

combinatorial effect can be more complex.  Namely, the combination of two factors may 

repress expression for a gene, even though either of the factors alone induces its 

expression.  

Similarly, we should find that transcription factor combinations show different 

functional specificities than either of the transcription factors alone (Figure 5.1).  We 

study here the gene category enrichment of two transcription factors that are known to 

bind to DNA cooperatively:  Ste12 and Tec1.  We considered three types of regions:  

those containing Tec1 motifs but no Ste12 motifs, those containing Ste12 motifs but no 

Tec1 motifs, and those containing both Ste12 and Tec1 motifs.  We then intersected these 

Figure 5.1. Changing specificity of motif combinations increases versatility of gene regulation.  
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three types of regions against the gene sets described previously.   

We found that the regions that contain only the conserved Ste12 motif are 

enriched for genes involved in mating and pheromone response, while those that contain 

conserved occurrences of both the Ste12 and Tec1 motifs are enriched for genes involved 

in filamentous growth. These computational observations are consistent with recent 

elegant work showing genome-wide evidence that Ste12 and Tec1 indeed cooperate 

during starvation to induce filamentation-specific genes68. We also found that regions that 

contain only conserved occurrences of the Tec1 motif are enriched for genes involved in 

budding and cell polarity, suggesting that Tec1 has functions that do not require 

cooperative binding with Ste12.  

5.4. Genome-wide motif co-occurrence map.  

We next address the question of discovering these motif interactions in a genome-

Figure 5.2. Genome-wide motif co-occurrence map reveals biologically meaningful motif 

relationships and transcription factor interactions 
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wide fashion.  Protein-protein interactions between cooperatively binding transcription 

factors require that they bind in proximity upstream of their target genes.  The regulatory 

motifs recognized by these factors should therefore co-occur in these intergenic regions 

of cooperative binding.  The spatial orientation and physical distance between these 

motifs may vary across different genes, the varying distances being compensated by 

DNA bending that can bring the two sites in proximity.  However, motif interactions do 

not typically cross gene boundaries, that are enforced by chromatin packaging and larger 

physical distances from one intergenic region to the next.  Thus, co-occurrence of 

regulatory motifs in the same intergenic regions might be a good indicator of interacting 

transcription factors.  

Using the comparison of the four species, we observed the genome-wide co-

occurrence patterns of regulatory motifs (Figure 5.2).  We searched for motifs that occur 

in the same intergenic regions more frequently than one would expect by chance.  We 

computed the probability of seeing at least k regions in common when one motif is found 

in m regions and the other motif is found in r regions, given a total of n intergenic regions 

using the hypergeometric distribution.   

Without using any functional information of gene categories, we found a number 

of significant motif interactions.  These group motifs together into complex motif co-

occurrence networks that may form the basis for studying combinatorial regulation of 

gene expression.  These are not apparent in a single genome, where functional instances 

of the motif are overwhelmed by a much larger number of random occurrences.  Cross 

species conservation greatly decrease this random noise and reveals biologically 

meaningful correlations. 

5.5. Results.  

We outlined here a number of biologically significant connections in the motif co-

occurrence map.  The combinatorial effect between Ste12 and Tec1 was indeed observed 

at the genome-wide level.  The Ste12 and Tec1 motifs show clear correlation, with about 

20% of regions having a conserved occurrence of one also having a conserved occurrence 

of the other. This enrichment is not apparent when considering S. cerevisiae alone.  
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The motif co-occurrence map reveals a number of biologically meaningful 

interactions.  (a) About 60% of regions containing conserved motifs for the transcription 

factor Leu3 (which regulates branched-chain amino-acid biosynthesis) also contain 

conserved motifs for Gcn4 (a general factor regulating amino acid biosynthesis, as well 

as many other processes).  (b) About 46% of regions containing conserved motifs for the 

transcription factor Met31 also contain conserved occurrences of Cbf1. In fact, Cbf1 

(which is involves in DNA bending) is known to physically interact and cooperate with 

the MET regulatory complex. (c) About 34% of regions containing a conserved Gal4 

motif also contain a conserved Mig1 motif. In this case, the correlation reflects 

antagonistic interaction. Gal4 induces galactose metabolism genes in presence of 

galactose, but Mig1 represses galactose metabolism in presence of glucose.  (d) Pairwise 

co-occurrence connects a group of five motifs: Msn2/4 (general stress response), Rlm1 

(response to cell-wall stresses), Pdr1 (pleiotropic drug resistance), Tea1 (Ty element 

activator) and Tbf1 (Telomere-binding factor).  This suggests a possible link between 

various stress responses and adaptive changes at the genome level69.   

Many additional correlations are seen among known and novel motifs and can be 

pursued experimentally and computationally to construct comprehensive co-occurrence 

networks.  These can provide information valuable in deciphering biological pathways in 

yeast. 

5.6. Conclusion.   

In this chapter, we provide methods to discover meaningful combinatorial 

interactions between regulatory motifs in a genome-wide way.  Motif combinations can 

change the functional specificity of downstream motifs, and regulate a large number of 

processes using only a small number of regulatory motifs.  This combinatorial nature of 

yeast regulation allows for a robust and modular regulatory network to adapt to changing 

environmental conditions.  It is possible that additional regulatory motifs are added to the 

network, modulated by the more stable master regulatory motifs.  We can further pursue 

these ideas to understand the rewiring of regulatory networks across evolutionary time.  

This may be one of many subtle ways of rapid evolutionary change outlined in the next 

chapter. 
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CHAPTER 6:  EVOLUTIONARY CHANGE 

6.1. Introduction 

In previous chapters, we used the stronger conservation of functional elements 

across related species for the direct identification of genes and regulatory motifs.  

However, the species compared are not identical.  They live in different environments 

and are subject to different pressures for survival.  In the short evolutionary time that 

separates them, they have undergone  a number of evolutionary changes to adapt to their 

respective environments.   

In comparative genomics, both similarities and differences of the species 

compared can reveal important biological principles.  Focusing on the similarities gives 

us a view of a core cell whose functionality has remained unchanged since the common 

ancestor of the species.  Focusing on the differences gives us a dynamic view of a 

changing genome, and the mechanisms evolved for rapid adaptation to changing 

environments.   

In this chapter, we focus on the mechanisms of evolutionary change that have 

become apparent in our comparisons.  We show that the ambiguities in gene 

correspondence found in chapter 1 are localized in rapidly evolving telomeric regions at 

the chromosome endpoints.  We also show that non-telomeric changes in gene order are 

due to either the inversion of a chromosomal segment (containing fewer than 20 genes) or 

reciprocal exchanges of chromosomal arms.  For both types of events, the sequences at 

the breakpoints suggest specific mechanisms of chromosomal change.  We observed few 

differences in gene content between the species, suggesting that phenotypic differences 

may be due to more subtle effects like protein domain changes and changes in gene 

regulation.  Finally, we observed rapidly and slowly evolving genes:  at one end of the 

spectrum, we found evidence of positive selection for rapid change in membrane 

adhesion proteins, suggesting a small number of mechanisms of rapid change;  we also 

found genes that were surprisingly strongly conserved suggesting new hypotheses for 

their function.  
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6.2. Protein family expansions localize at the telomeres.  

In the previous chapters, we used unambiguous ORFs and intergenic regions to 

discover conserved coding and regulatory elements in the yeast genome.  In this chapter, 

we use ORFs with ambiguous correspondence to determine regions of rapid change.   

We marked the chromosomal location of all S. cerevisiae ORFs that are 

ambiguous in at least one species.  We then constructed ambiguity clusters when two or 

more ambiguous ORFs within 16kb of each other.  We counted the number of 

ambiguities in each cluster, counting more than one ambiguities for an ORF whose 

correspondence was ambiguous in more than one species.  Only 32 clusters were found 

containing more than two ambiguities.  We ignored two clusters due to regions of low 

coverage in S. mikatae and one cluster corresponding to a previously described inversion.  

Most of the ambiguities are strikingly clustered in telomeric regions (Figure 6.1). 

More than 80% fall into one of 32 clusters of two or more genes (average size ~18 kb, 

together comprising ~4% of the genome), which correspond nearly perfectly to the 32 

telomeric regions of the 16 chromosomes of S. cerevisiae. Only one telomeric region 

lacks a cluster and only one cluster does not lie in telomeric regions in S. cerevisiae: it is 

a recent insertion of a segment that is telomeric in the other three species. The rapid 

structural evolution in the telomeric regions can also be observed at the gene level. The 

gene families contained within these regions (including the HXT, FLO, PAU, COS, THI, 

YRF families) show significant changes in number, order, and orientation. The regions 

also harbor many novel sequences, including protein-coding sequences.  Finally, the 

telomeric regions have undergone 11 reciprocal translocations across the species.   

Together, these features define relatively clear boundaries for the telomeric 

regions on all 32 chromosome arms, with sizes ranging from ~7 kb to ~52 kb on 

chromosome I-R. The extraordinary genomic churning occurring in these regions - and 

the telomeric localization of environment adaptation protein families - together probably 

play a key role in rapidly creating phenotypic diversity over evolutionary time.  A high 

degree of variation in telomeric gene families has also been reported in P. falsiparum69, 

the parasite responsible for malaria, and is related to antigenic variation.  
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Figure 6.1. Rapid evolution in telomeres.  Telomeric protein family expansions can 

rapidly create phenotypic diversity, potentially an evolutionary advantage.  
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6.3. Chromosomal rearrangements mediated by specific sequences.   

  Outside of the telomeric regions, few genomic rearrangements are found relative 

to S. cerevisiae (Figure 6.2).  To discover these, we considered consecutive unambiguous 

matches, marking all changes in gene spacing, gene orientation, and off-synteny matches 

between scaffolds and orthologous S. cerevisiae chromosomes.  We found that changes in 

gene spacing are typically associated with transposon insertions and associated novel 

genes, as well as tandem duplications.  Virtually all changes in gene orientation typically 

affect between 2 and 10 consecutive ORFs and can be traced to one of 16 multi-gene 

inversions.  The majority of off-synteny matches involve a single ORF and only 20 

involve more than 2 consecutive ORFs.  Virtually all single-gene off-synteny matches 

were contained within ancient duplication blocks of Saccharomyces as described in 70 and 

http://acer.gen.tcd.ie/~khwolfe/yeast/nova/.  These probably represent previously 

duplicated genes that were differentially lost in different species, rather than a DNA 

Figure 6.2.  The six types of genome rearrangements that separate the species.  
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break in one of the two lineages, as was previously noted in 71.  Off-synteny matches that 

involve more than two genes from the same chromosome correspond to one of 20 

chromosomal exchanges.  

S. paradoxus shows no reciprocal translocations, 4 inversions and 3 segmental 

duplications. S. mikatae shows 4 reciprocal translocations and 13 inversions. S. bayanus 

has 5 reciprocal translocations and 3 inversions. The results confirmed four recently 

reported reciprocal translocations in these species, identified by pulsed-field gel 

electrophoresis72, and identified four additional reciprocal translocations that had been 

missed.  The sequence at the chromosomal breakpoints suggested the possible 

mechanism that underlie the rearrangements. Strikingly, the 20 inversions are all flanked 

by tRNA genes in opposite transcriptional orientation and usually of the same isoacceptor 

type; the origins of inversions in recombination between tRNA genes has not previously 

been noted. The reciprocal translocations occurred between Ty elements in seven cases 

and between highly similar pairs of ribosomal protein genes in two cases; the implication 

of Ty elements in reciprocal translocation is consistent with previous reports44,71-73. One 

segmental duplication involves ‘donor’ and ‘recipient’ regions that are descendants of an 

ancient duplication in the yeast genome70. Differential gene loss of anciently duplicated  

genes has been previously reported74, but this is the first observation of a recent re-

duplication event within anciently duplicated regions.  

6.4. Small number of novel genes separate the species 

We found a very small number of genes unique to one species and absent in the 

others. We noted above that S. cerevisiae contains 18 genes for which we could not 

identify orthologs in any of the other species, of which 7 encode ≥ 200 aa. These may be 

species-specific genes in S. cerevisiae, but alternatively could simply reflect gaps in the 

available draft genome sequences.   

This uncertainty does not arise, however, in the reverse direction in identifying 

genes in the related species that lack an ortholog in S. cerevisiae. We found a total of 35 

such ORFs encoding ≥ 200 aa (with the minimum length chosen to ensure that these are 

likely to represent valid genes). The list includes 5 genes unique to S. paradoxus, 8 genes 

unique to S. mikatae (two of which are 99% identical) and 19 genes unique to S. bayanus 
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(three of which form a gene family with ≥ 90% pairwise identity). There is also one gene 

represented by orthologous ORFs found in the latter two species only and one 

represented by orthologous ORFS in all three related species.  

These species-specific ORFs are notable with respect to both function and 

location. The majority (63%) can also be assigned biological function on the basis of 

strong protein-sequence similarity with genes in other organisms. Most involve sugar 

metabolism and gene regulation (including one encoding a silencer protein). The majority 

(69%) are found in telomeric regions and an additional set (17%) are immediately 

adjacent to Ty elements; these locations are consistent with rapid genome evolution.  

A curious coincidence was noted in the region between YFL014W and YFL016W 

in S. cerevisiae. In the orthologous regions in all four species, we find a species-specific 

ORF in every case (165, 111, 136 and 228 aa), but these four ORFs show little similarity 

at the protein level. The amino acid sequence has been disrupted by frame-shifting indels, 

but a long ORF has been maintained in each case. The explanation for this phenomenon 

is unclear, but may prove interesting. 

6.5. Slow evolution suggests novel gene function.  

With sequence alignments at millions of positions across the four species, it is 

possible to obtain a precise estimate of the rate of evolutionary change in the tree 

connecting the species.  

One notable observation is the difference in substitution rate between S. 

cerevisiae and S. paradoxus (Figure 6.3).  Using S. bayanus as an outgroup, the 

substitution rate is about 67% lower in the lineage leading to S. paradoxus.  This 

observation is consistent regardless of the measure of evolutionary change:  mutations, 

Figure 6.3. Slower mutation rate of S. paradoxus observed in genes and in intergenic regionsl 
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insertions, deletions measured across intergenic regions, genes or degenerate nucleotides 

in coding sequence all point to the same discrepancy.  Hence, we can conclude that S. 

paradoxus is evolving at a slower rate than S. cerevisiae or S. mikatae.  This could be due 

to generation time, but also life cycle throughout the year.  Wild-type species remain 

dormant most of the year in spores, until the next blooming.  This causes fewer cell 

divisions, hence fewer errors in replicating the DNA.  

We can also observe differences in the rate of change of individual genes.  One 

case stands out as an extreme outlier: the mating-type gene MATA2.  The gene shows 

perfect 100% conservation at the amino acid level over its entire length (119 aa) across 

all four species. More strikingly, the gene shows perfect 100% conservation at the 

nucleotide level as well (357 bp). This differs sharply for the typical pattern seen for 

protein-coding genes, which show relaxed constraint in third positions of codons.  

Notably, the MATA2 gene is the only one of the four mating-type genes (the others being 

MATα1, MATα2 and MATA1) whose biochemical function remains unknown despite 

two decades of research75. An important clue may be that the sequence of MATA2 is 

identical in all four species to the 3’-end of the MATα2 gene. Perfect conservation at the 

nucleotide-level and identity to the terminus of MATα2 suggests that MATA2 may 

function not only by encoding a protein, but by encoding an anti-sense RNA or a DNA 

site.  Hence, the lack of evolutionary change can suggest additional biological functions 

responsible for the pressure to conserve nucleotide sequence.  

6.6. Evidence and mechanisms of rapid protein change.   

Similarly, the unusually high rate of change can be biologically meaningful.  The 

gene analysis described in chapter 2 rejected only a single ORF (YBR184W) that is 

clearly encoding a functional protein.  The region containing YBR184W corresponds to a 

large open reading frame in all four species (524, 558, 554 and 556 amino acids, 

respectively), but the alignment shows unusually low sequence conservation. The 

sequence has only 32% nucleotide identity and 13% amino acid identity across the four 

species (Figure 6.4). Pairwise alignments across the species show numerous insertions 

and deletions, explaining why the gene failed the RFC test.  (Interestingly, multiple 

alignment of all four species simultaneously improves the alignment sufficiently that the 

gene passes the RFC test; this suggests a way to improve the test.) 
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The rapid divergence is suggestive of a gene under strong positive selection. We 

tested this notion by calculating the Ka/Ks ratio (the normalized ratio of amino-acid-

altering substitutions to silent substitutions), a traditional test for positive selection76. 

Figure 6.4. Multiple alignment of YBR184W shows only three conserved protein domains.   
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Whereas typical genes in S. cerevisiae show a Ka/Ks ratio of 0.11 ± 0.02, YBR184W has 

a ratio of 0.689. This ratio ranks as the third highest observed among all yeast genes (If 

three small domains with high conservation are excluded, the ratio rises to 0.774).  The 

two genes with higher Ka/Ks ratio are YAR068W, a putative membrane protein, and 

YER121W, whose expression changes under stress.   

The protein encoded by YBR184W has not been extensively studied, but 

expression studies show that the gene is induced during sporulation77 and sequence 

analysis shows that it is similar to the gene YSW1 that encodes a spore-specific protein. 

This is consistent with the observation that many of the best studied examples of positive 

selection in other organisms are genes related to gamete function.  The change might 

promote speciation by imposing constraints on mating partner selection.  

The vast majority of nucleotide changes in protein coding regions are silent or 

affect individual amino acids.  However, a small number of events suggest additional 

mechanisms of rapid protein change.  These events include closely spaced compensatory 

indels that affect the translation of small contiguous amino acid stretches.  They also 

include the loss and gain of stop codons (by a nucleotide substitution or a frame-shifting 

indel) that may result in the rapid change of protein segments or the translation of 

previously non-coding regions78.  Such events are observed more frequently near 

telomeric regions and may affect silenced genes or recently inactivated pseudogenes.   

Additionally, we found a small number of differences in the length of orthologous 

proteins.  These typically involve changes in the copy number of tri-nucleotide repeats, 

such as (CAA)n that encodes hydrophobic stretches often involved in protein-protein 

interactions.  The most drastic example is seen for the TFP1 gene, which encodes a 

vacuolar ATPase.  The S. cerevisiae gene contains an insertion of 1400 bp that is absent 

in the three related species.  The insertion corresponds to the recent horizontal transfer of 

a known post-translationally self-splicing intein, VMA179. 

6.7. Conclusion.  

When comparing genomes, similarities and differences alike can reveal biological 

meaning.  In comparing closely related species, the precise ways in which genomes 

change can reveal important biological insights.  From the large-scale chromosomal 
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changes, to the substitutions of individual nucleotides, we find specific rules and 

constraints in the ways genomes evolve.  Precise signals seem to govern how genomes 

are read, but also how they change.  Evolutionary fitness may come from the combination 

of a fit genome that outperforms competition in the present, but also a modular genome 

that enables rapid evolution in times of extreme environmental pressure.  The ability to 

rapidly carry out advantageous changes may be an inherent requirement in creating 

complexity via modularity.  Evolutionary traits may be selected by reversible changes 

that allowed survival in the past, and will allow survival in the future. Each of the 

similarities and differences observed merits further experimental study. Understanding 

how genomes are written, and how they change, will be central to our understanding of 

the ever-changing book of life.   
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CONCLUSION 

C.1. Summary 

In this thesis, we explored the ability to extract a wide range of biological 

information from genome comparison among related organisms. Our results show that 

comparative analysis with closely related species can be invaluable in annotating a 

genome. It reveals the way different regions change and the constraints they face, 

providing clues as to their use.  Even in a genome as compact as that of S.cerevisiae, 

where genes are easily detectable and rarely spliced, much remains to be learned about 

the gene content.  We found that a large number of the annotated ORFs are dubious, 

adjusted the boundaries of hundreds of genes, and discovered more than 50 novel ORFs 

and 40 novel introns.  Moreover, our comparisons have enabled a glimpse into the 

dynamic nature of gene regulation and co-regulated genes by discovering most known 

regulatory motifs as well as a number of novel motifs.  The signals for these discoveries 

are present within the primary sequence of S.cerevisiae, but represent only a small 

fraction of the genome.  Under the lens of evolutionary conservation, these signals stand 

out from the non-conserved noise.  Hence, in studying any one genome, comparative 

analysis of closely related species can provide the basis for a global understanding of a 

wide range of functional elements.  

Our results demonstrate the central role of computational tools in modern biology.  

The analyses presented in this thesis have revealed biological findings that can not be 

discovered by traditional genetic methods, regardless of the time or effort spent.  Isolated 

deletion of every single yeast gene has been carried out without resolving the debate on 

the number of functional genes.  Promoter analysis of any single gene could not reveal 

the subtle regulatory signals that become apparent at the genome-wide level.  The 

approach presented is general, and has the advantage that one can increase its power by 

increasing the number of species studied.  As sequencing costs lower and sequencing 

capacity increases, obtaining additional genomes becomes only a question of time.  The 

comparison of multiple related species may present a new paradigm for understanding the 

genome of any single species.  In particular, our methods are currently being applied to a 

kingdom-wide exploration of fungal genomes, and the comparative analysis of the human 

genome with that of the mouse and other mammals.  
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C.2. Extracting signal from noise.  

For S. cerevisiae, our results show that comparative genome analysis of a handful 

of related species has substantial power to separate signal from noise to identify genes, 

define gene structure, highlight rapid and slow evolutionary change, recognize regulatory 

elements and reveal combinatorial control of gene regulation. The power is comparable 

or superior to experimental analysis, in terms of sensitivity and precision.  

In principle, the approach could be applied to any organism by selecting a suitable 

set of related species. The optimal choice of species depends on multiple considerations, 

largely related to the evolutionary tree connecting the species. These include the 

following: 

(1) The branch length t between species should be short enough to permit 

orthologous sequence to be readily aligned. The yeasts studied here differ by t = 0.23-

0.55 substitutions per site and are readily aligned.  The strong conservation of synteny 

(covering more than 90% of S. cerevisiae chromosomes belong in synteny blocks) 

allowed the unambiguous correspondence of the vast majority of genes.  

(2) The total branch length of the tree should be large enough that non-functional 

sites will have undergone substantially more drift than functional sites, thereby providing 

an adequate degree of signal-to-noise enrichment (SNE). For this analysis, the multiple 

species studied provide a total branch length of 0.83 and a probability of nucleotide 

identity across all four species in non-coding regions of 49%. The SNE is thus ~2-fold 

(=1/0.49) for highly constrained nucleotides and correspondingly higher for composite 

features involving many nucleotides. 

(3) The species should represent as narrow a group as possible, subject to the 

considerations above. Because the comparative analysis above seeks to identify genomic 

elements common to the species, it can explain only aspects of biology shared across the 

taxon.  In the present case, the analysis identifies elements shared across Saccharomyces 

sensu stricto, a closely related set of species such that the vast majority of genes and 

regulatory elements are shared.  

With these considerations in mind, the question remains as to what is the “right” 

number of species for comparative analysis.  Similarly, one can ask, given a set of 
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previously sequenced species, what is the optimal choice for the next species to sequence.  

The answer of course depends on the goal at hand.  In discovering genes, the number of 

species required depends on the length of the genes sought.  In discovering motifs, the 

number of species depends on the motif length, its allowed degeneracy, and the total 

number of conserved instances.  And in each case, the evolutionary distance of the 

species compared, but also the topology of the phylogenetic tree, will determine our 

ability to extract signal from noise.  We found that genome-wide methods could increase 

the power of comparative analysis that is based on a handful of species.  The answer in 

the general case merits a much more detailed analysis.  

C.3. Analysis of mammalian genomes 

What are the implications for the understanding of the human genome?  

The present study provides a good model for evolutionary distances (substitutions 

per site in intergenic regions) relevant to the study of the human.  The sequence 

divergence between S. cerevisiae and the most distant relative S. bayanus (11% indels 

and 62% nucleotide identity in aligned positions) is similar to that between human and 

mouse (12% indels and 66% nucleotide identity in aligned positions).  

An important difference between yeast and human is the inherent signal-to-noise 

ratio (SNR) in the genome. Yeast has a high SNR, with protein-coding regions 

comprising ~70% of the genome coding for protein or RNA genes and regulatory 

elements comprising perhaps ~15% of the intergenic regions. The human has a much 

lower SNR, with the corresponding figures being perhaps ~2% and ~3%19. A lower SNR 

must be offset by a higher SNE. Some enrichment can also be obtained by filtering out 

the repeat sequences that comprise half of the human genome. Greater enrichment can be 

accomplished by increasing the number of species studied, taking advantage both of 

nucleotide level divergence and frequently occurring genomic deletion19.  

Such considerations indicate that it should be possible to use comparative 

analysis, such as explored here for yeast, to directly identify many functional elements in 

the human genome common to mammals.  More generally, comparative analysis offers a 

powerful and precise initial tool for interpreting genomes. 
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C.4. The road ahead 

In this thesis, we explored the ability of computational comparative genomics to 

extract biological signals that govern genes, regulation, and evolution.  The nature of 

these signals however had been previously established experimentally.  Knowing that 

genes were translated into amino acids every three nucleotides was central in our test of 

reading frame conservation.  Knowing that regulatory motifs appear in multiple 

intergenic regions was crucial to our genome-wide discovery methods.  Knowing the 

kinds of functional sequences to look for allowed us to examine the ways that they 

change.  In each case, our methods relied on well-posed questions based on currently 

established biological knowledge.  

In the future however, it will be important to formulate new hypotheses from 

genomic data.  We cannot begin to imagine the types of information encoded in the 

human genome.  The basis for intelligence, psychology, immunity, development, 

emotions are all encoded within our cells.  New biological paradigms will be needed to 

explore novel aspects of biology, and their very discovery will reside in genome-wide 

studies.  Development of new technologies, new statistical methods, new computational 

tools will be needed.  An explosion of biological data, but also an explosion in novel 

experimental techniques has already started.  And the only way to proceed is a constant 

marriage between biology and computer science.   
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APPENDIX 

Counting combinations:  The number of ways to choose k items without 

replacement from a total of n is given by (n choose k) :  
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Binomial distribution:  The probability of obtaining k successes out of n trials 

given a probability p of success for any one trial is given by:  
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Hypergeometric distribution:  When choosing a random subset of size r from n 

items of which m belong in a particular category, the probability that k of the selected 

items belong to that category is given by:  
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Standard normal distribution (or Gaussian distribution):  The sum of a large 

number of independent variables follows a normal distribution of density function:  
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Computing z-scores: Any probability p can be represented as the standard 

deviations away from the mean of a standard normal distribution corresponding to tail 

area p.  
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