Computational Complexity

Lecture 13

March 18, 2020
Universiteit van Amsterdam

Plan for today

Have a look at Impagliazzo's Five Worlds

- To do so, we need to look at average-case complexity and one-way functions

Worst-case complexity (recap)

A problem $L \subseteq\{0,1\}^{*}$ can be solved in worst-case running time $T(n)$ if there exists an algorithm A that solves L and that halts within time $T(|x|)$ for each $x \in\{0,1\}^{*}$.

- In other words, the worst-case running time $T(n)$ is the maximum of the running times for all inputs of size n.

Distributional problems

A distributional problem $\langle L, \mathcal{D}\rangle$ consists of a language $L \subseteq\{0,1\}^{*}$ and a sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of probability distributions, where each \mathcal{D}_{n} is a probability distribution over $\{0,1\}^{n}$.

The class distP / avgP

$\langle L, \mathcal{D}\rangle$ is in the class distP (or avgP) if there exists a $\mathrm{TM} \mathbb{M}$ that decides L and a constant $\epsilon>0$ such that for all $n \in \mathbb{N}$:

$$
\underset{x \in \in_{\mathrm{R}} \mathcal{D}_{n}}{\mathbb{E}}\left[\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}\right] \text { is } O(n)
$$

- The ϵ is there for technical reasons-to invert a polynomial to $O(n)$.

Polynomial-time computable distributions

A sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of distributions is P-computable if there exists a polynomial-time TM that, given $x \in\{0,1\}^{n}$, computes:

$$
\mu_{\mathcal{D}_{n}}(x)=\sum_{\substack{y \in\{0,1\}^{n} \\ y \leq x}} \operatorname{Pr}_{n}[y],
$$

where $y \leq x$ if the number represented by the binary string y is at most the number represented by the binary string x.

Polynomial-time samplable distributions

A sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of distributions is P-samplable if there exists a polynomial-time $T M \mathbb{M}$ such that for each $n \in \mathbb{N}$, the random variables $\mathbb{M}\left(1^{n}\right)$ and \mathcal{D}_{n} are equally distributed.

The class distNP and sampNP

A problem $\langle L, \mathcal{D}\rangle$ is in distNP if $L \in N P$ and \mathcal{D} is P-computable. A problem $\langle L, \mathcal{D}\rangle$ is in sampNP if $L \in N P$ and \mathcal{D} is P -samplable.

- The questions "distNP = distP?" and "sampNP = distP?" are average-case analogues of the question " $N P=P$?"

One-way functions (OWFs)

A polynomial-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function if for every polynomial-time probabilistic TM \mathbb{M} there is a neglegible function $\epsilon: \mathbb{N} \rightarrow[0,1]$ such that for every $n \in \mathbb{N}$:

$$
\operatorname{Pr}_{\substack{x \in \mathbb{R}^{\{0,1)^{n}} \\ y=f(x)}}\left[\mathbb{M}(y)=x^{\prime} \text { such that } f\left(x^{\prime}\right)=y\right]<\epsilon(n)
$$

where a function $\epsilon: \mathbb{N} \rightarrow[0,1]$ is neglegible if $\epsilon(n)=\frac{1}{n^{\omega(1)}}$, that is, for every c and sufficiently large $n, \epsilon(n)<\frac{1}{n^{c}}$.

- Conjecture: there exist one-way functions (implying $P \neq N P$)
- OWFs can be used to create private-key cryptography

Impagliazzo's Five Worlds (1995)

Five possible situations regarding the status of various complexity-theoretic assumptions:

- Algorithmica
- Heuristica
- Pessiland
- Minicrypt
- Cryptomania

Russell Impagliazzo. A personal view of average-case complexity. In: Proceedings of the 10th Annual IEEE Conference on Structure in Complexity Theory, pp. 134-147, 1995.

Algorithmica

$$
P=N P(\text { or } N P \subseteq B P P)
$$

- Say, SAT is linear-time solvable
- This is a computational utopia
- There exist efficient algorithms for creative tasks, e.g., writing proofs
- Essentially no cryptography possible (private-key nor public-key)

Heuristica

$P \neq N P$, but distNP, sampNP $\subseteq \operatorname{dist} P$

- Breakthroughs of $\mathrm{P}=$ NP work almost all the time
- So cryptography breaks too

Pessiland

distNP, sampNP $\nsubseteq \operatorname{distP}$ (so $P \neq N P$)

- One-way functions do not exist
- No computational breakthroughs, and most cryptography schemes do not work

Minicrypt

One-way functions exist (so $P \neq N P$ and distNP $\nsubseteq \operatorname{distP}$)

- No "P = NP"-type breakthroughs
- Private-key cryptography works
- All "highly structured" problems in NP, such as integer factoring, are solvable in polynomial-time
- Public-key cryptography might not work

Cryptomania

Factoring large integers takes exponential time on average (or a corresponding result for a similar problem)

- No general-purpose efficient algorithms ($P \neq N P$)
- Private-key and public-key cryptography works

Impagliazzo's Five Worlds (1995)

Five possible situations regarding the status of various complexity-theoretic assumptions:

- Algorithmica - efficient general-purpose algorithms
- Heuristica
- Pessiland - worst of all worlds
- Minicrypt
- Cryptomania - all kinds of cryptography possible
(Technically, these cases are not exhaustive-there are some "weirdland" scenarios.)

