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Problem: Placement of Boulders for Migrating Salmon
Wake Block “Force” of River?
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@ Deep, wide, fast-flowing streams
@ “Boulder” = long rectangular beam, plates

@ Objects not disturb surface/bottom flow

@ Problem: large enough wake for 1m salmon




Theory: Hydrodynamics

Assumptions; Continuity Equation
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@ (1): Continuity equation @ = p = constant
@ 1st eqtn hydrodynamics @ Friction (viscosity)
@ Incompressible fluid @ Steady state, v # v(t)




Navier—Stokes: 2nd Hydrodynamic Equation

g‘lf = (v-Vv+ o (1)
@ For quantity within moving fluid
@ Rate of change wrt stationary frame
@ Velocity of material in fluid element
@ Change due to motion + explicit t dependence
@ Dv/Dt: 2nd O v = nonlinearities

@ ~ Fictitious (inertial) forces

@ Fluid’s rest frame accelerates




Now Really the Navier—Stokes Equation

Transport Fluid Momentum Due to Forces & Flow

A T 16”(/1., T.x)  (Vector Form) (1)
Dt P

O | N~ O 2 v, 10P

T /z:; i = u; o3 ~ X (x component) 2)

v = viscosity, P = pressure

@ vV2v: due to viscosity
Recall dp/dt = F

@ P(p, T,x): equation state

) @ Assume = P(x)
v - Vv: transport via flow

v - Vv: advection

(*)
o
@ Dv/Dt & (v-V)v+0v/ot
o
o
@ VP :change due to AP

@ Steady-state = 6vi=0
@ Incompressible = 9,0 =0
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Resulting Hydrodynamic Equations

Assumed: Steady State, Incompressible, P = P(x)

v=y S0 —0 (Continuty

(V- V)V =vV3v — 1; VP (Navier—Stokes)

@ (1) Continuity equation: Incompressibility, in = out
@ Stream width >> beam z dimension = 9,v~0 =
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Boundary Conditions for Parallel Plates

Physics Determines BC = Unique Solution
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symmetry pléne‘

@ Constant stream velocity + @ Upstream unaffected

@ Low Vj, high viscosity = @ Solve rectangular region
@ Laminar: smooth, no cross @ L, H < Rstream = uniform
@ = streamlines of motion down

@ Thin plates = laminar flow @ Far top, bot = symmetry




Analytic Solution for Parallel Plates (See Text)

Bernoulli Effect: Pressure Drop Through Plates
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% = known constant (2)
Vo =1m/s,p=1kg/m®, v =1m?/s,H=1m (3)
oP
= ox =12 wly) = 6y(1-y) (4)




Finite-Difference Navier—Stokes Algorithm + SOR

Rectangular grid x = ih, y = jh

@ 3 Simultaneous equations — 2 (v = 0)
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@ Rearrange as algorithm for Successive Over Relaxation
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@ Accelerate convergence + SOR; w > 2 unstable




End Part |: Basics
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Part II: Vorticity Form of Navier—Stokes Equation

2 HD Equations in Terms of u(x)
V.v =0  Continuity (1)
(v-V)v = — %ﬁP +vV?v  Navier-Stokes )

@ Like EM, simpler via (scalar & vector) potentials

@ Irrotational Flow: no turbulence, scalar potential

@ Rotational Flow: 2 vector potentials; 1st stream function

. (Buz
= €x
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@ V- (V xu)=0 = automatic continuity equation
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2 HD Equations in Terms of

2-D flow: u = Constant Contour Lines =
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@ Measure of V's rotation

@ RH rule fluid element

@ w=0 = irrotational

@ w =0 = uniform
@ Moving field lines

@ Relate to stream function:




yet U =u(x,y)& = V-u=0 3)

= Viu=-w (4)

@ Like Poisson with ea w component = source




Vorticity Form of Navier—Stokes Equation

Take Curl of Velocity Form

V x [(v V)V = vVPv— %6;9 (Navier—Stokes)} (1)

vWAW = [(V x u) - V]w )

@ In 2-D + only z components:
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@ Simultaneous, nonlinear, elliptic PDEs for u & w

@ ~ Poisson’s + wave equation + friction + variable p




Relaxation Algorithm (SOR) for Vorticity Equations

x=ih, y=jh

@ CD Laplacians, 1st derivatives
1
ui,j_4(ul+1j+ul1/+ulj+1+ulj1+hvvlj> (1)
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@ R =grid Reynolds number (h — Rpjpe); measure nonlinear
@ Small R: smooth flow, friction damps fluctuations

@ Large R (~ 2000): laminar — turbulent flow

@ Onset of turbulence: hard to simulate (need kick)




Boundary Conditions for Beam

Surface G
vy=du/dy=Vg w=0

v v
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@ Well-defined solution of elliptic PDEs requires u, w BC
@ Assume inlet, outlet, surface far from beam
@ Freeflow: No beam

@ NB w =0 = no rotation

@ Symmetry: identical flow above, below centerline, not thru




Boundary Conditions for Beam (cont)

See Text for More Explanations

@ Centerline: = streamline, u = const =0 (no v

@ No flow in, out beam to it = u = 0 all beam surfaces
@ Symmetry = vorticity w = 0 along centerline

@ Inlet: horizontal fluid flow, v = vy, = V:

@ Surface: Undisturbed = free-flow conditions:

@ Outlet: Matters little; convenient choice: dxu = Oxw
@ Beamsides: v, = u = 0;viscous = v =0

@ Yet, over specify BC = only no-slip vorticity w:

@ Viscosity = vy = % =0 (beam top)

@ Smooth flow on beam top = v, = 0 + no x variation:

vy, 9w Pu
Wf0:>wf—8yf—a—y2 (1)




Implementation & Assessment:SOR on a Grid

Basic soltn vorticity form Navier—Stokes: Beam.py

NB relaxation = simple, BC # simple

Separate relaxation of stream function & vorticity
Explore convergence of up & downstream u

Determine number iterations for 3 place with w = 0,0.3
Change beam’s horizontal position so see wave develop
Make surface plots of u, w, v with contours; explain

Is there a resting place for salmon?



Results
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