Computational Fluid Dynamics (CFD, CHD)* PDE (Shocks 1st); Part I: Basics, Part II: Vorticity Fields

Rubin H Landau

Sally Haerer, Producer-Director

Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu

with Support from the National Science Foundation

Course: Computational Physics II

Problem: Placement of Boulders for Migrating Salmon

Wake Block "Force" of River?

- Deep, wide, fast-flowing streams
- "Boulder" = long rectangular beam, plates
- Objects not disturb surface/bottom flow
- Problem: large enough wake for 1m salmon

Theory: Hydrodynamics

Assumptions; Continuity Equation

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \vec{\nabla} \cdot \mathbf{j} = 0 \tag{1}$$

$$\mathbf{j} \stackrel{\text{def}}{=} \rho \mathbf{v}(\mathbf{x}, t) \tag{2}$$

- (1): Continuity equation
- 1st eqtn hydrodynamics
- Incompressible fluid

- $\Rightarrow \rho = \text{constant}$
- Friction (viscosity)
- Steady state, $v \neq v(t)$

Navier-Stokes: 2nd Hydrodynamic Equation

Hydrodynamic Time Derivative

$$\frac{D\mathbf{v}}{Dt} \stackrel{\text{def}}{=} (\mathbf{v} \cdot \vec{\nabla})\mathbf{v} + \frac{\partial \mathbf{v}}{\partial t}$$
 (1)

- For quantity within moving fluid
- Rate of change wrt stationary frame
- Velocity of material in fluid element
- Change due to motion + explicit t dependence
- $D\mathbf{v}/Dt$: 2nd O $\mathbf{v} \Rightarrow$ nonlinearities
- ullet \sim Fictitious (inertial) forces
- Fluid's rest frame accelerates

Now Really the Navier-Stokes Equation

Transport Fluid Momentum Due to Forces & Flow

$$\frac{D\mathbf{v}}{Dt} = \nu \nabla^2 \mathbf{v} - \frac{1}{\rho} \vec{\nabla} P(\rho, T, \mathbf{x}) \qquad \text{(Vector Form)} \tag{1}$$

$$\frac{\partial v_x}{\partial t} + \sum_{j=x}^{z} v_j \frac{\partial v_x}{\partial x_j} = \nu \sum_{j=x}^{z} \frac{\partial^2 v_x}{\partial x_j^2} - \frac{1}{\rho} \frac{\partial P}{\partial x} \qquad (x \text{ component})$$
 (2)

- ν = viscosity, P = pressure
- Recall $d\mathbf{p}/dt = \mathbf{F}$
- $D\mathbf{v}/Dt \stackrel{\text{def}}{=} (\mathbf{v} \cdot \vec{\nabla})\mathbf{v} + \partial \mathbf{v}/\partial t$
- v · ∇v: transport via flow
- v · ∇v: advection
- $\vec{\nabla} P$: change due to ΔP

- $\nu \nabla^2 \mathbf{v}$: due to viscosity
- $P(\rho, T, x)$: equation state
- Assume = P(x)
- Steady-state $\Rightarrow \partial_t v_i = 0$
- Incompressible $\Rightarrow \partial_t \rho = 0$

Resulting Hydrodynamic Equations

Assumed: Steady State, Incompressible, P = P(x)

$$\vec{\nabla} \cdot \mathbf{v} \equiv \sum_{i} \frac{\partial V_{i}}{\partial x_{i}} = 0 \quad \text{(Continuity)} \tag{1}$$

$$(\mathbf{v} \cdot \vec{\nabla})\mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{1}{\rho} \vec{\nabla} P$$
 (Navier–Stokes) (2)

- (1) Continuity equation: Incompressibility, in = out
- Stream width \gg beam z dimension $\Rightarrow \partial_z v \simeq 0 \Rightarrow$

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0 \tag{3}$$

$$\nu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} \right) = v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + \frac{1}{\rho} \frac{\partial P}{\partial x}$$
 (4)

$$\nu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2}\right) = v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + \frac{1}{\rho} \frac{\partial P}{\partial y}$$
 (5)

Boundary Conditions for Parallel Plates

- Constant stream velocity +
- Low V_0 , high viscosity \Rightarrow
- Laminar: smooth, no cross
- ⇒ streamlines of motion
- Thin plates ⇒ laminar flow

- Upstream unaffected
- Solve rectangular region
- L, H ≪ R_{stream} ⇒ uniform down
- Far top, bot ⇒ symmetry

Analytic Solution for Parallel Plates (See Text)

Bernoulli Effect: Pressure Drop Through Plates

$$v_{x}(y) = \frac{1}{2\rho\nu} \frac{\partial P}{\partial x} (y^{2} - yH) \tag{1}$$

$$\frac{\partial P}{\partial x}$$
 = known constant (2)

$$V_0 = 1 \text{ m/s}, \rho = 1 \text{ kg/m}^3, \nu = 1 \text{ m}^2/\text{s}, H = 1 \text{ m}$$
 (3)

$$\Rightarrow \frac{\partial P}{\partial x} = -12, \qquad v_x(y) = 6y(1-y) \tag{4}$$

Finite-Difference Navier–Stokes Algorithm + SOR

Rectangular grid x = ih, y = jh

• 3 Simultaneous equations \rightarrow 2 ($v^y \equiv 0$)

$$v_{i+1,j}^{x} - v_{i-1,j}^{x} + v_{i,j+1}^{y} - v_{i,j-1}^{y} = 0$$
 (1)

$$v_{i+1,j}^{x} + v_{i-1,j}^{x} + v_{i,j+1}^{x} + v_{i,j-1}^{x} - 4v_{i,j}^{x}$$
 (2)

$$= \frac{h}{2} v_{i,j}^{x} \left[v_{i+1,j}^{x} - v_{i-1,j}^{x} \right] + \frac{h}{2} v_{i,j}^{y} \left[v_{i,j+1}^{x} - v_{i,j-1}^{x} \right] + \frac{h}{2} \left[P_{i+1,j} - P_{i-1,j} \right]$$

Rearrange as algorithm for Successive Over Relaxation

$$4v_{i,j}^{x} = v_{i+1,j}^{x} + v_{i-1,j}^{x} + v_{i,j+1}^{x} + v_{i,j-1}^{x} - \frac{h}{2}v_{i,j}^{x} \left[v_{i+1,j}^{x} - v_{i-1,j}^{x}\right] - \frac{h}{2}v_{i,j}^{y} \left[v_{i,j+1}^{x} - v_{i,j-1}^{x}\right] - \frac{h}{2}\left[P_{i+1,j} - P_{i-1,j}\right]$$

• Accelerate convergence + SOR; $\omega > 2$ unstable

(3)

End Part I: Basics

Part II: Vorticity Form of Navier-Stokes Equation

2 HD Equations in Terms of Stream Function $\mathbf{u}(\mathbf{x})$

$$\vec{\nabla} \cdot \mathbf{v} = 0 \qquad \text{Continuity} \tag{1}$$

$$(\mathbf{v} \cdot \vec{\nabla})\mathbf{v} = -\frac{1}{\rho} \vec{\nabla} P + \nu \nabla^2 \mathbf{v}$$
 Navier–Stokes (2)

- Like EM, simpler via (scalar & vector) potentials
- Irrotational Flow: no turbulence, scalar potential
- Rotational Flow: 2 vector potentials; 1st stream function

$$\mathbf{v} \stackrel{\text{def}}{=} \vec{\nabla} \times \mathbf{u}(\mathbf{x}) \tag{3}$$

$$=\hat{\epsilon_x}\left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}\right) + \hat{\epsilon_y}\left(\frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x}\right) \tag{4}$$

• $\vec{\nabla} \cdot (\vec{\nabla} \times \mathbf{u}) \equiv 0 \Rightarrow$ automatic continuity equation

2 HD Equations in Terms of Stream Function (cont)

2-D flow: *u* = Constant Contour Lines = Streamlines

$$\mathbf{v} \stackrel{\mathrm{def}}{=} \vec{\nabla} \times \mathbf{u}(\mathbf{x}) \tag{1}$$

$$=\hat{\epsilon_x}\left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}\right) + \hat{\epsilon_y}\left(\frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x}\right) \tag{2}$$

$$\mathbf{v}_z = 0 \Rightarrow \mathbf{u}(\mathbf{x}) = u\hat{\epsilon_z} \tag{3}$$

$$\Rightarrow v_x = \frac{\partial u}{\partial y}, v_y = -\frac{\partial u}{\partial x}$$
 (4)

Introduce Vorticity $\mathbf{w}(\mathbf{x}) \sim \vec{\omega}$

Vortex: Spinning, Often Turbulent Fluid Flow

$$\mathbf{w} \stackrel{\text{def}}{=} \vec{\nabla} \times \mathbf{v}(\mathbf{x}) \tag{1}$$

$$w_z = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \tag{2}$$

• Measure of \vec{v} 's rotation

• $\mathbf{w} = 0 \Rightarrow \text{uniform}$

RH rule fluid element

Moving field lines

• $\mathbf{w} = 0 \Rightarrow \text{irrotational}$

Relate to stream function:

Introduce Vorticity $\mathbf{w}(\mathbf{x}) \sim \vec{\omega}$

\sim Poisson's equation $\nabla^2 \phi = -4\pi \rho$

$$\mathbf{w} \stackrel{\mathrm{def}}{=} \vec{\nabla} \times \mathbf{v}(\mathbf{x})$$

$$\mathbf{w} = \vec{\nabla} \times \mathbf{v} = \vec{\nabla} \times (\vec{\nabla} \times \mathbf{u}) = \vec{\nabla}(\vec{\nabla} \cdot \mathbf{u}) - \nabla^2 \mathbf{u}$$
 (2)

yet
$$\mathbf{u} = u(x, y)\hat{\epsilon}_z \Rightarrow \vec{\nabla} \cdot \mathbf{u} = 0$$
 (3)

$$\Rightarrow \vec{\nabla}^2 \mathbf{u} = -\mathbf{w} \tag{4}$$

Like Poisson with ea w component = source

(1)

Vorticity Form of Navier-Stokes Equation

Take Curl of Velocity Form

$$\vec{\nabla} \times \left[(\mathbf{v} \cdot \vec{\nabla}) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{1}{\rho} \vec{\nabla} P \quad \text{(Navier–Stokes)} \right]$$
 (1)

$$\nu \nabla^2 \mathbf{w} = [(\vec{\nabla} \times \mathbf{u}) \cdot \vec{\nabla}] \mathbf{w}$$
 (2)

• In 2-D + only z components:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -w \tag{3}$$

$$\nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) = \frac{\partial u}{\partial y} \frac{\partial w}{\partial x} - \frac{\partial u}{\partial x} \frac{\partial w}{\partial y}$$
 (4)

- Simultaneous, nonlinear, elliptic PDEs for u & w
- $\bullet \sim$ Poisson's + wave equation + friction + variable ρ

Relaxation Algorithm (SOR) for Vorticity Equations

$$x = ih, \quad y = jh$$

CD Laplacians, 1st derivatives

$$u_{i,j} = \frac{1}{4} \left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} + h^2 w_{i,j} \right)$$

$$w_{i,j} = \frac{1}{4} (w_{i+1,j} + w_{i-1,j} + w_{i,j+1} + w_{i,j-1}) - \frac{R}{16} \left\{ [u_{i,j+1} - u_{i,j-1}] \right\}$$
(1)

$$\times [w_{i+1,j} - w_{i-1,j}] - [u_{i+1,j} - u_{i-1,j}][w_{i,j+1} - w_{i,j-1}]$$
 (2)

$$R = \frac{1}{\nu} = \frac{V_0 h}{\nu} \quad \text{(in normal units)} \tag{3}$$

- $R = \text{grid Reynolds number } (h \rightarrow R_{pipe});$ measure nonlinear
- Small R: smooth flow, friction damps fluctuations
- Large R (≈ 2000): laminar → turbulent flow
- Onset of turbulence: hard to simulate (need kick)

Boundary Conditions for Beam

- Well-defined solution of elliptic PDEs requires u, w BC
- Assume inlet, outlet, surface far from beam
- Freeflow: No beam
- NB $w = 0 \Rightarrow$ no rotation
- Symmetry: identical flow above, below centerline, not thru

Boundary Conditions for Beam (cont)

See Text for More Explanations

- Centerline: = streamline, u = const = 0 (no v_{\perp}
- No flow in, out beam to it $\Rightarrow u = 0$ all beam surfaces
- Symmetry \Rightarrow vorticity w = 0 along centerline
- Inlet: horizontal fluid flow, $v = v_x = V_0$:
- Surface: Undisturbed ⇒ free-flow conditions:
- Outlet: Matters little; convenient choice: $\partial_x u = \partial_x w$
- Beamsides: $v_{\perp} = u = 0$; viscous $\Rightarrow v_{\parallel} = 0$
- Yet, over specify BC ⇒ only no-slip vorticity w:
- Viscosity $\Rightarrow v_x = \frac{\partial u}{\partial y} = 0$ (beam top)
- Smooth flow on beam top $\Rightarrow v_y = 0 + \text{no } x \text{ variation}$:

$$\frac{\partial v_y}{\partial x} = 0 \implies w = -\frac{\partial v_x}{\partial y} = -\frac{\partial^2 u}{\partial y^2} \tag{1}$$

Implementation & Assessment:SOR on a Grid

- Basic soltn vorticity form Navier-Stokes: Beam.py
- NB relaxation = simple, BC ≠ simple
- Separate relaxation of stream function & vorticity
- Explore convergence of up & downstream u
- Determine number iterations for 3 place with $\omega = 0, 0.3$
- Change beam's horizontal position so see wave develop
- Make surface plots of u, w, v with contours; explain
- Is there a resting place for salmon?

Results

