Computational Fluid Dynamics: Sparse Linear systems

Aleksandar Donev

Courant Institute, NYU donev@courant.nyu.edu

February 2013

Outline

(1) Sparse Matrices
(2) Iterative Methods (briefly)

Banded Matrices

- Banded matrices are a very special but common type of sparse matrix, e.g., tridiagonal matrices

$$
\left[\begin{array}{cccc}
a_{1} & c_{1} & & 0 \\
b_{2} & a_{2} & \ddots & \\
& \ddots & \ddots & c_{n-1} \\
\mathbf{0} & & b_{n} & a_{n}
\end{array}\right]
$$

- There exist special techniques for banded matrices that are much faster than the general case, e.g, only $8 n$ FLOPS and no additional memory for tridiagonal matrices.
- A general matrix should be considered sparse if it has sufficiently many zeros that exploiting that fact is advantageous: usually only the case for large matrices (what is large?)!

Sparse Matrices

Graph representation:
\rightarrow NODES are variables (vertices) equations
\rightarrow Arcs (EDGES) are the non-zeros
UNDIRECTED GRAPH FOR SYMMETRIC MATRICES
$\left.\gg A=\operatorname{sparse}\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 4\end{array}\right],\left[\begin{array}{lllll}3 & 1 & 4 & 2 & 3\end{array}\right], 1: 5\right)$ A =
$(2,1)$
2
$(4,2)$
4
$(1,3) \quad 1$
$(4,3)$
5
$(2,4) \quad 3$
> nnz(A)
ans $=5$
>> whose A
A
4×4
120 double
sparse
$\gg A=$ sparse ([],[],[],4,4,5); \% Pre-allocate memory
$>A(2,1)=2 ; A(4,2)=4 ; A(1,3)=1 ; A(4,3)=5 ; A(2,4)=3$;

Sparse matrix factorization

>> B=sprand(4,4,0.25); \% Density of 25%
> full(B)
ans $=$

0	0	0	0.7655
0	0.7952	0	0
0	0.1869	0	0
0.4898	0	0	0

$\gg B=s p r a n d(100,100,0.1) ;$ spy (B)
$\gg X=$ gallery ('poisson', 10); spy (X)
$\gg[L, U, P]=\mathbf{l u}(B)$; spy (L)
$\gg \mathrm{p}=\operatorname{symrcm}(\mathrm{B})$; \% Symmetric Reverse Cuthill-McKee ol
$\gg P B P=B(p, p) ; \mathbf{s p y}(P B P)$;
$\gg[L, U, P]=\mathbf{l u}(P B P) ; \mathbf{s p y}(L)$;

Random matrix \mathbf{B} and structured matrix \mathbf{X}

The MATLAB function spy shows where the nonzeros are as a plot

$L U$ factors of random matrix \mathbf{B}

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix

LU factors of structured matrix \mathbf{X}

Fill-in is much smaller for the sparse matrix but still non-negligible.

Matrix reordering

Matrix reordering cannot do much for the random matrix \mathbf{B}, but it can help for structured ones!

Reducing fill-in by reordering \mathbf{X}

Fill-in was reduced by about 20\% (from 1000 nonzeros to 800) by the reordering for the structured \mathbf{X}, but does not help much for \mathbf{B}. The actual numbers are different for different classes of matrices!

L for permuted matrix X

U for permuted matrix X

Importance of Sparse Matrix Structure

- Important to remember: While there are general techniques for dealing with sparse matrices that help greatly, it all depends on the structure (origin) of the matrix.
- Pivoting has a dual, sometimes conflicting goal:
(1) Reduce fill-in, i.e., improve memory use: Still active subject of research!
(2) Reduce roundoff error, i.e., improve stability. Typically some threshold pivoting is used only when needed.
- Pivoting for symmetric non-positive definite matrices is trickier: One can permute the diagonal entries only to preserve symmetry, but small diagonal entries require special treatment.
- For many sparse matrices iterative methods (briefly covered next lecture) are required to large fill-in.

Why iterative methods?

- Direct solvers are great for dense matrices and can be made to avoid roundoff errors to a large degree. They can also be implemented very well on modern machines.
- Fill-in is a major problem for certain sparse matrices and leads to extreme memory requirements (e.g., three-d.
- Some matrices appearing in practice are too large to even be represented explicitly (e.g., the Google matrix).
- Often linear systems only need to be solved approximately, for example, the linear system itself may be a linear approximation to a nonlinear problem.
- Direct solvers are much harder to implement and use on (massively) parallel computers.

Stationary Linear Iterative Methods of First Order

- In iterative methods the core computation is iterative matrix-vector multiplication starting from an initial guess $\mathbf{x}^{(0)}$.
- Prototype is the linear recursion:

$$
\mathbf{x}^{(k+1)}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}
$$

where \mathbf{B} is an iteration matrix somehow related to \mathbf{A}.

- For this method to be consistent, we must have that the actual solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is a stationary point of the iteration:

$$
\begin{gathered}
\mathbf{x}=\mathbf{B} \mathbf{x}+\mathbf{f} \Rightarrow \mathbf{A}^{-1} \mathbf{b}=\mathbf{B A}^{-1} \mathbf{b}+\mathbf{f} \\
\mathbf{f}=\mathbf{A}^{-1} \mathbf{b}-\mathbf{B A}^{-1} \mathbf{b}=(\mathbf{I}-\mathbf{B}) \mathbf{x}
\end{gathered}
$$

- For this method to be stable, and thus convergent, the error $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}$ must decrease:
$\mathbf{e}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}-\mathbf{x}=\mathbf{B}\left(\mathbf{x}+\mathbf{e}^{(k)}\right)+(\mathbf{I}-\mathbf{B}) \mathbf{x}-\mathbf{x}=\mathbf{B} \mathbf{e}^{(k)}$

Convergence of simple iterative methods

- We saw that the error propagates from iteration to iteration as

$$
\mathbf{e}^{(k)}=\mathbf{B}^{k} \mathbf{e}^{(0)}
$$

- When does this converge? Taking norms,

$$
\left\|\mathbf{e}^{(k)}\right\| \leq\|\mathbf{B}\|^{k}\left\|\mathbf{e}^{(0)}\right\|
$$

which means that $\|\mathbf{B}\|<1$ is a sufficient condition for convergence.

- More precisely, $\lim _{k \rightarrow \infty} \mathbf{e}^{(k)}=\mathbf{0}$ for any $\mathbf{e}^{(0)}$ iff $\mathbf{B}^{k} \rightarrow \mathbf{0}$.
- Theorem: The method converges iff the spectral radius of the iteration matrix is less than unity:

$$
\rho(\mathbf{B})<1 .
$$

Spectral Radius

- The spectral radius $\rho(\mathbf{A})$ of a matrix \mathbf{A} can be thought of as the smallest consistent matrix norm

$$
\rho(\mathbf{A})=\max _{\lambda}|\lambda| \leq\|\mathbf{A}\|
$$

- The spectral radius often determines convergence of iterative schemes for linear systems and eigenvalues and even methods for solving PDEs because it estimates the asymptotic rate of error propagation:

$$
\rho(\mathbf{A})=\lim _{k \rightarrow \infty}\left\|\mathbf{A}^{k}\right\|^{1 / k}
$$

- The iterations of an iterative method can be terminated when:
(1) The residual becomes small,

$$
\left\|\mathbf{r}^{(k)}\right\| \leq \varepsilon\|\mathbf{b}\|
$$

This is good for well-conditioned systems.
(2) The solution $\mathbf{x}^{(k)}$ stops changing, i.e., the increment becomes small,

$$
[1-\rho(\mathbf{B})]\left\|\mathbf{e}^{(k)}\right\| \leq\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\| \leq \varepsilon\|\mathbf{b}\|
$$

which can be seen to be good if convergence is rapid, $\rho(\mathbf{B}) \ll 1$.

- Usually a careful combination of the two strategies is employed along with some safeguards.

Fixed-Point Iteration

- A naive but often successful method for solving

$$
x=f(x)
$$

is the fixed-point iteration

$$
x_{n+1}=f\left(x_{n}\right) .
$$

- In the case of a linear system, consider rewriting $\mathbf{A x}=\mathbf{b}$ as:

$$
\mathbf{x}=(\mathbf{I}-\mathbf{A}) \mathbf{x}+\mathbf{b}
$$

- Fixed-point iteration gives the consistent iterative method

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}
$$

Preconditioning

- The above method is consistent but it may not converge or may converge very slowly

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b} .
$$

- As a way to speed it up, consider having a good approximate solver

$$
\mathbf{P}^{-1} \approx \mathbf{A}^{-1}
$$

called the preconditioner (\mathbf{P} is the preconditioning matrix), and transform

$$
\mathbf{P}^{-1} \mathbf{A} \mathbf{x}=\mathbf{P}^{-1} \mathbf{b}
$$

- Now apply fixed-point iteration to this modified system:

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

which now has an iteration matrix $\mathbf{I}-\mathbf{P}^{-1} \mathbf{A} \approx \mathbf{0}$, which means more rapid convergence.

Preconditioned Iteration

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

- In practice, we solve linear systems with the matrix \mathbf{P} instead of inverting it:

$$
\mathbf{P} \mathbf{x}^{(k+1)}=(\mathbf{P}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}=\mathbf{P} \mathbf{x}^{(k)}+\mathbf{r}^{(k)}
$$

where $\mathbf{r}^{(k)}=\mathbf{b}-\mathbf{A} \mathbf{x}^{(k)}$ is the residual vector.

- Finally, we obtain the usual form of a preconditioned stationary iterative solver

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{r}^{(k)} .
$$

- Note that convergence will be faster if we have a good initial guess $\mathbf{x}^{(0)}$.

Some Standard Examples

$$
\text { Splitting: } \mathbf{A}=\mathbf{L}_{A}+\mathbf{U}_{A}+\mathbf{D}
$$

- Since diagonal systems are trivial to solve, we can use the Jacobi method

$$
\mathbf{P}=\mathbf{D}
$$

- Or since triangular systems are easy to solve by forward/backward substitution, we can use Gauss-Seidel method

$$
\mathbf{P}=\mathbf{L}_{A}+\mathbf{D}
$$

- Both of these converge for strictly diagonally-dominant matrices.
- Gauss-Seidel converges for positive-definite matrices (maybe slowly though!).

A Good Preconditioner

- Note that the matrix \mathbf{A} is only used when calculating the residual through the matrix-vector product $\mathbf{A x}^{(k)}$.
- We must be able to do a direct linear solver for the preconditioner

$$
\mathbf{P}(\Delta \mathbf{x})=\mathbf{r}^{(k)}
$$

so it must be in some sense simpler to deal with than \mathbf{A}.

- Preconditioning is all about a balance between fewer iterations to convergence and larger cost per iteration.
- Making good preconditioners is in many ways an art and very problem-specific:
The goal is to make $\mathbf{P}^{-1} \mathbf{A}$ as close to being a normal (diagonalizable) matrix with clustered eigenvalues as possible.

In the Real World

- Some general preconditioning strategies have been designed, for example, incomplete $L U$ factorization (MATLAB's cholinc).
- There are many more-sophisticated iterative methods (non-stationary, higher-order, etc) but most have the same basic structure:
At each iteration, solve a preconditioning linear system, do a matrix-vector calculation, and a convergence test.
- For positive-(semi)definite matrices the Preconditioned Conjugate Gradient method is good (MATLAB's pcg).
- For certain types of matrices specialized methods have been designed, such as multigrid methods for linear systems on large grids (PDE solvers in Numerical Methods II).

