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 Areas of Research 

 Biological systems modeling 

 Molecular systems 

representation and analysis 

 Geographical Information 

Systems 

 Biometric analysis and 

synthesis 

 Granular-type materials 

simulation 

 

 

 Topological properties of data 

sets 

 Terrain rendering and surface 

triangulation 

 Path planning and obstacle 

avoidance 

 Robotics and Navigation 

 Autocorrelation analysis  

 Spatial-temporal models 

 Nearest neighbor properties 

 Terrain reconstruction and 

triangulation 

 



Areas of Interests  

Biometric research Porous materials  

Dynamic data 

structures (with I. 

Kolingerova) 

Coral models (with 

J. Kaandorp) 

Terrain modeling  

Lipid bi-layers and molecular 

modeling (with N.N. 

Medvedev) 



Voronoi Diagrams – A Brief Overview 
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Voronoi diagram and Delaunay Tessellation 

Voronoi diagram is one of the fundamental 

computational geometry data structures that 

stored proximity information for a set of 

obejcts. It’s dual structure, often used in 

computer graphics, is Delaunay Tessellation. 

 

A generalized Voronoi diagram (GVD) for a set of 

objects  in space is the set of generalized 

Voronoi regions 

 

 

 

where d(x,P) is a distance function between a 

point x and a site P  in the d-dimensional 

space. 
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Delaunay Tessellation 

 A generalized Delaunay 

tessellation (triangulation in 

2d)  is the dual of the 

generalized Voronoi diagram 

obtained by joining all pairs 

of sites whose Voronoi 

regions share a common 

Voronoi edge according to 

some specific rule. 

 

 



Delaunay simplex  (tetrahedron in 3D) defines a simplicial 

configuration of spheres and  a void (empty space)  between spheres. 

Delaunay Triangle and Void   

Empty volume 



Voronoi diagram and Delaunay triangulation in 

2D 



Under assumptions that no four sites from the object 

(generator) set S are cocircular: 

 Voronoi vertex is the intersection of 3 Voronoi edges and a 

common point of 3 Voronoi regions 

 Voronoi vertex is equidistant from 3 sites. It lies in the 

center of a circle inscribed between 3 cites 

 Empty circle property This inscribed circle is empty, i.e. it 

does not contain any other sites 

 Nearest-neighbor property If Q is the nearest neighbor of 

P then their Voronoi regions share an edge (to find a 

nearest neighbor it is sufficient to check only neighbors in 

the VD) 

Main properties of the Voronoi Diagram 



Under assumptions that no three sites from the set S 

(generator) lie on the same straight line: 

 The straight-line dual of the Voronoi diagram is a 

triangulation of S 
  The circumcircle of any Delaunay triangle does not contain 
any points of  S in its interior 

    If each triangle of a triangulation of the convex hull of  S 
satisfies the empty circle property, then this triangulation is the 
Delaunay triangulation of S .  

 If Q is the nearest neighbor of P then their Voronoi regions 

share an edge (to find a nearest neighbor it is sufficient to 

check only neighbors in the VD). 

Main properties of the Delaunay Triangulation 



The Optimal Path Planning Problem  
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The Problem 

• Given two locations A and B and the geographical features of the 
underlying terrain, what is the optimal route for a mobile agent 
between these two locations? 

• When the nature of the terrain is allowed to vary, the robot has to make a 
decision which path is the most suitable based on the set of priorities.   

• We concentrate on marine applications, where robot is conceived as a ship 
sailing from one port to another.  The decision making process can become 
very complex and combines AI, uncertainty theory and multi-varied logic 
with temporal-spatial data representation. 

• The problem arises in such areas as Robotics, Risk Planning, Route 
Scheduling,  Navigation, and Processes Modeling.  

The risk areas are defined by cluster analysis performed on the incident 
database of the Maritime Activity and Risk Investigation System 
(MARIS). 
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The Geometry-based approach 

 

 Design of a new Delaunay triangulation based clustering method to identify 

complicated cluster arrangements. 

  Development of an efficient Delaunay triangulation and  visibility graph 

based method for determining clearance-based shortest path between 

source and destination in the presence of simple, disjoint, polygonal 

obstacles. 

  Introduction of a new method for determining optimal path in a      

weighted planar subdivision representing a varied terrain.  

 This research was carried out at the SPARCS Laboratory, University of 

Calgary, by graduate students Russel Apu, Priyadarshi Bhattachariya and 

Mahmudul Hasan.  
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System Flowchart 

Incident locations  
from MARIS database 

Cluster analysis 

High risk areas  

Optimal path planning  

Landmass layer 

Optimal path 

Sea-ice layer 

Polygon Fitting 



Marine Risk Analysis 

• Identification of high-risk areas in the sea based on 
incident and traffic data from the Maritime Activity and 
Risk Investigation System (MARIS), maintained primarily 
by the University of Halifax. 

Incident  

data 

Clustering 

Algorithm 

Marine 

Route 

Planning  
High-risk  

Areas  

Location of  

SAR Bases Ship route  

intersection data 



Clustering: the CRYSTAL Algorithm  
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• Clustering is the unsupervised 

classification of patterns 

(observations, data items or 

feature vectors) into groups 

(clusters).  

 

       – A.K. Jain, M. N. Murty,  

               P. J. Flynn, Data Clustering:  

               A Review 

Clustering a collection of 
points 

Definition of Clustering  



24 

Clustering – desired properties 

• Linear increase in processing time with increase in size of dataset 
(scalability). 

 

• Ability to detect clusters of different shapes and densities. 

 

• Minimal number of input parameters. 

 

• Robust with regard to noise. 

 

• Insensitive to data input order. 

 

• Portable to higher dimensions. 

Osmar R. Zaΐane, Andrew Foss, Chi-Hoon Lee, Weinan Wang, “On Data Clustering Analysis: Scalability, 

Constraints and Validation”, Advances in Knowledge Discovery and Data Mining, Springer-Verlag, 2002. 
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Approaches to clustering 

• Hierarchical clustering (Chameleon, 1999) 

•  Density-based clustering (DBScan, 1996) 

•  Grid-based clustering (Clique, 1998) 

• Model-based clustering (Vladimir, Poss, 1996) 

•  Partition-based clustering (Greedy Elimination Method, 2004) 

•  Graph-based clustering (Autoclust, 2000) 

 

Our algorithm 

falls in this 

category 



Hierarchical Clustering 

 Creates a tree structure to determine the clusters in a 

dataset (top-down or bottom-up). Bottom-up: consider 

each data element as a separate cluster and then 

progressively merge clusters based on similarity until some 

termination condition is reached (agglomerative).         

Top-down: consider all data elements as a single cluster 

and then progressively divides a cluster into parts 

(divisive).  

 Hierarchical clustering does not scale well and the 

computational complexity is very high (CHAMELION). 

The termination point for division or merging for divisive 

and agglomerative clustering respectively is extremely 

difficult to determine accurately. 

 



Density-based clustering 

• In density-based clustering, regions with sufficiently high 

data densities are considered as clusters. It is fast but it is 

difficult to define parameters such as epsilon-neighborhood 

or minimum number of points in such neighborhoods to be 

considered a cluster.  

• These values are directly related to the resolution of the data. 

If we simply increase the resolution (i.e. scale up the data), 

the same parameters no longer produce the desired result. 

• Advanced methods such as TURN consider the optimal 

resolution out of a number of resolutions and are able to 

detect complicated cluster arrangements but at the cost of 

increased processing time. 

 



Grid-based clustering 

• Grid-based clustering performs clustering on cells that 

discretize the cluster space. Because of this discretization, 

clustering errors necessarily creep in. 

•  The clustering results are heavily dependent on the grid 

resolution. Determining an appropriate grid resolution for a 

dataset is not a trivial task. If the grid is coarse, the run-

time is lower but the accuracy of the result is questionable. 

If the grid is too fine, the run-time increases dramatically. 

Overall, the method is unsuitable for spatial datasets. 

 



Model-based clustering 

• In model-based clustering, the assumption is that a mixture of 

underlying probability distributions generates the data and each 

component represents a different cluster . It tries to optimize the 

fit between the data and the model.  Traditional approaches 

involve obtaining (iteratively) a maximum likelihood estimate of 

the parameter vectors of the component densities. Underfitting 

(not enough groups to represent the data) and overfitting (too 

many groups in parts of the data) are common problems, in 

addition to excessive computational requirements. 

• Deriving optimal partitions from these models is very difficult . 

Also, fitting a static model to the data often fails to capture a 

cluster's inherent characteristics. These algorithms break down 

when the data contains clusters of diverse shapes, densities and 

sizes. 

 



Partition based clustering  

1. Place K points into the space represented by the data points 
that are being clustered. These points represent initial group 
centroids. 
 

2. Partition the data points such that each data point is assigned 
to the centroid closest to it. 

 

3. When all data points have been assigned, recalculate the 
positions of the K centroids. 
 

4. Repeat Steps 2 and 3 until the centroids no longer move.  

 



Disadvantages  

• Number of clusters have to be 
prespecified. 

 

• Clustering result is sensitive to 
initial positioning of cluster 
centroids. 

 

• Able to detect clusters of convex 
shape only. 

 

• Clustering result is markedly 
different from human perception 
of clusters. 

Greedy Elimination Method (K = 5) 



Recent Papers 

Z.S.H. Chan, N. Kasabov: 

“Efficient global clustering using the 

Greedy Elimination Method”, 

Electronics Letters, 40(25), 2004. 

 

 

Aristidis Likas, Nikos Vlassis, Jakob J. 

Verbeek: 

“The global k-means clustering 

algorithm”, 

Pattern Recognition, 36(2), 2003. 

Global K-Means (K = 5) 
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Summary of shortcomings of existing methods 

• Able to detect only convex clusters. 
 

• Require prior information about dataset. 
 

• Too many parameters to tune. 
 

• Inability to detect elongated clusters or complicated  

     arrangements such as cluster within cluster, clusters connected 
by bridges or sparse clusters in presence of dense ones. 
 

• Not robust in presence of noise. 
 

• Not practical on large datasets. 



Graph-based clustering – a chosen approach 

• The graph-based clustering algorithms based on the triangulation 

approach have proved to be successful. However, most algorithms 

based on the triangulation derive clusters by removing edges from the 

triangulation that are longer than a threshold (Eldershaw,Kang,Imiya). 

But distance alone cannot be used in separating clusters. The technique 

succeeds only when the intra-cluster distance is sufficiently high. It 

fails in case of closely lying high density clusters or clusters connected 

by bridges.  

• We utilize a number of unique properties of Delaunay triangulation , as 

it is an ideal data structure for preserving proximity information and 

effectively eradicates the problem of representing spatial adjacency 

using the traditional line-intersection model . It can be constructed in 

O(nlogn) time and has only O(n) edges.  



Triangulation based clustering 
 Construct the Delaunay triangulation of 

the dataset.  

 

 Remove edges based on certain criteria 
with connected components eventually 
forming clusters. 

 
 Vladimir Estivill-Castro, Ickjai Lee, “AUTOCLUST: 

Automatic Clustering via Boundary Extraction for 
Mining Massive Point-Data Sets”, Fifth International 
Conference on Geocomputation, 2000. 

 

 G. Papari, N. Petkov, “Algorithm That Mimics 
Human Perceptual Grouping of Dot Patterns”, 
Lecture Notes in Computer Science, 3704, 2005, pp. 
497-506. 

 

 Vladimir Estivill-Castro, Ickjai Lee, “AMOEBA: 
Hierarchical clustering based on spatial proximity 
using Delaunay Diagram”, 9th International 
Symposium on Spatial Data handling, 2000. 

Sparse 

graph 

Connected 

components 



Disadvantages 

• The use of global density measures such as mean edge length 
is misleading and often precludes the identification of sparse 
clusters in presence of dense ones. 

 

• The decision of whether to remove an edge or not is usually a 
costly operation. Also, deletion of edges may result in loss of 
topology information required for identification of later 
clusters. As a result, algorithms often have to recuperate some 
of the lost edges later on. 
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CRYSTAL - Description 

• Initialization phase: Generates the Voronoi diagram of the data points and sorts 

them in increasing order of the area of their Voronoi cells. This ensures that 

clustering starts with the densest clusters. 

 

• Grow cluster phase: Scans the sorted vertex list L and for each vertex Vi € L not 

yet visited, attempts to grow a cluster. The Delaunay triangulation is utilized as 

the underlying graph on which a breadth-first search is carried out. The cluster 

growth stops at a point identified as a boundary point but continues from other 

non-boundary points. Several criteria are employed to effectively determine the 

cluster boundary.  

 

• Noise removal phase: Identifies noise as sparse clusters or clusters that have very 

few elements. They are removed at this stage. 



Merits of CRYSTAL 

• The growth model adopted for cluster growth allows spontaneous 
detection of elongated and complicated cluster shapes. 
 

• The algorithm avoids the use of global parameters and makes no 
assumptions about the data. 
 

• The clusters fail to grow from noise points or outliers. Thus noise 
can be easily eliminated without any additional processing overhead. 
 

• The algorithm works very fast in practice as the growth model 
ensures that identification of different cases like cluster within 
cluster or clusters connected by bridges do not require any 
additional processing logic and are handled spontaneously. 
 

• It requires no input parameter from user and the clustering output 
closely resembles human perception of clusters. 



CRYSTAL – Geometric Algorithms 

 Triangulation phase:  

        Forms the Delaunay Triangulation of the data points and sorts the vertices 

        in the order of increasing average length of incident edges. This ensures 

        that, in general, denser clusters are identified before sparser ones. 

 

 Grow cluster phase:  

        Scans the sorted vertex list and grows clusters from the vertices in that 

        order, first encompassing first order neighbors, then second order 

        neighbors and so on. The growth stops when the boundary of the cluster 

        is determined. A sweep operation adds any vertices to the cluster that may 

        have been left out. 

 

 Noise removal phase:  

       The algorithm identifies noise as sparse clusters. They can be easily 
eliminated by removing clusters which are very small in size or which have 
a very low spatial density. 



Average cluster edge length 

= Average of the length of edges incident on the vertex 

=  Edge Length between the two vertices (d) d 

d1 

d2 
=  (d1 + d2) / 2 

In general, (Sum of edge lengths) / (Number of elements in 

cluster – 1) 



Detecting a cluster boundary 

Vertex Vi 

Mean of incident  

edge lengths of Vi  

>  

1.6 * Average cluster  

edge length? 

Boundary  

vertex  

Inner  

point of  

the cluster  

Boundary 

vertex 



Enqueue( Q, vk ) 

C ← vk 

tot_dist ← 0 

avg ← AvgadjEdgeLen( vk ) 
AvgadjEdgeLen( vi ) –  

Average of the length of  

edges incident on a vertex vi d ← Head( Q ) 

L ← 1st-order neighbors of  d sorted by edge length 

For all Li є L do 

    C ← C U Li 

     tot_dist ← tot_dist + EdgeLen( d, Li ) 

   avg ← tot_dist / (Size( C ) - 1) 
    If Not a boundary vertex and Not connected to  

                                               a boundary vertex then  

          Enqueue( Q, Li )  

    End If 

End For 

EdgeLen( vi , vj ) –  

Euclidean distance  

between vertices vi and vj 

Dequeue(Q) 

Q = Φ ? 
Y Perform sweep and  

consider next vertex 
N 

Grow cluster 

phase 



Sweep 

• Scan the vertices added to cluster. 
 

• For each vertex, inspect if there are any 1st order neighbors for which  

       edge length  < 1.6 * average cluster edge length.  

       If so, add that vertex to the cluster and update the average cluster edge 
length. 

 The average cluster edge length towards the end of Grow Cluster phase 

better represents the local density than at the starting phase of cluster 

growth.  
 

 This operation ensures that any data points that were left out at the initial 

stages of the cluster growth are put back into the cluster.       

Description: 
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Boundary detection 

A  vertex is considered to be a boundary vertex of the cluster if any one of 

the following is true: 

 

• Voronoi cell area of the vertex in the Voronoi diagram is                                                         
> Th * {average Voronoi cell area of cluster} 

 

• The maximum of the Voronoi cell areas of the neighbors of the vertex 
(including itself) > Th * {average Voronoi cell area of cluster} 

 

• The vertex is connected to another vertex in the Delaunay Triangulation which 
is already present in the cluster so that  the edge length is > Th * {average 

cluster edge length} 

 

The value of Th is empirically determined. 
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Example Processing 
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Sample output 

Original dataset (n = 8,000) 

CRYSTAL output (Th = 2.4) 



Comparison 

1G. Papari, N. Petkov, “Algorithm That 

Mimics Human Perceptual Grouping of Dot 

Patterns”, Lecture Notes in Computer 

Science, 3704, 2005, pp. 497-506. 

Reduced 

Delaunay Graph 

from 1 

CRYSTAL 

output 

Discontinuity 



Comparison 

CRYSTAL 

G. Papari, N. Petkov, “Algorithm That Mimics Human 

Perceptual Grouping of Dot Patterns”, Lecture Notes in 

Computer Science, 3704, 2005, pp. 497-506. 



A 

B 

C 

D 

E 

F 

G 

H 

A K-Means k = 9 

B CURE k = 9, α = 0.3 and 10 

representative points per 

cluster 

C ROCK θ = 0.975 and k = 1000 

D CHAMELEON K-NN = 10, MinSize = 

2.5%, k = 9 

E DBSCAN є = 5.9, MinPts = 4 

F DBSCAN є = 5.5, MinPts = 4 

G WaveCluster Resolution = 5, Г = 1.5 

H WaveCluster Resolution = 5, Г = 

1.999397 

Clustering results on t7.10k dataset 

Osmar R. Zaΐane, Andrew Foss, Chi-Hoon Lee, Weinan 

Wang, “On Data Clustering Analysis: Scalability, 

Constraints and Validation” 
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CRYSTAL output 

t7.10k dataset (9 visible clusters, n = 10,000) 



CRYSTAL on t7.10k dataset (Г = 1.8) 

CRYSTAL output 
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More examples 

Original dataset Crystal output (Th = 2.5) 

Original dataset Crystal output (Th = 2.4) 



Time Comparison 

Cluster size Vs CPU time in seconds  

(550 MHz processor , 128 MB memory) 

Cluster size (in 1000) Vs CPU time 

in milli-seconds  

(3 GHz processor , 512 MB memory) 
Vladimir Estivill-Castro, Ickjai Lee, 

“AUTOCLUST: Automatic Clustering via 

Boundary Extraction for Mining Massive Point-

Data Sets”, Fifth International Conference on 

Geocomputation, 2000. 

CRYSTAL 



Demonstration  

  t7.10k dataset 



Demonstration 

Cluster within cluster 

Sparse and dense clusters 



 Computational Geometry Algorithms 

for Clearance-based Path Planning 
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The problem  

Plan an optimal collision-free path for a mobile agent moving on the plane 

amidst a set of convex, disjoint, polygonal obstacles  {P1, … , Pm}, given start 

and goal configurations s and g. 

By optimal, we mean the path should be: 

 

 Short – not containing unnecessary long detours. 

 Having some clearance – not getting too close to an obstacle. 

 Smooth – not containing sharp turns. 



Existing approaches 

Roadmap based techniques 

The potential field approach  

The cell decomposition method  
Roadmap creates a map (partitioning) of the plane to navigate 

the robot 

Potential field approach fills the free area with a potential 

field in which the robot is attracted towards its goal 

position while being repelled from obstacles 

Cell-decomposition method utilized grid and computes its 

intersections with obstacles to compute the path. 

  



Disadvantages of existing approaches 

Potential field method: the robot may get stuck 

 at a local minimum. The reported paths can 

 be arbitrarily long. 

Cell decomposition: path is not optimal because of the 

connectivity limitations in a grid, very difficult to  

correctly estimate the grid resolution. 

Roadmap approaches (chosen approach): 

 Probabilistic roadmap 

 Visibility graph based 

 Voronoi diagram based 

 



Existing roadmap approaches 

• Probabilistic roadmap is created by generating random points in the 

plane and connecting these points to the k−nearest neighbours taking 

care that the connecting edges do not cross any obstacle. The method 

is fast but the reported path is very often of poor quality because of the 

randomness inherent in the graph representing the free space 

connectivity. Also, a path may never be detected even if one exists.  

• A visibility graph is a roadmap whose vertices are the vertices of the 

obstacles themselves and there is an edge between every pair of 

vertices that can see each other. A visibility graph is a graph of 

intervisible locations. However, the path planning based on quering 

visibility graph is very slow, and  incorporating the clearance is very 

difficult. 

 



Voronoi diagram based roadmap 

(a) Shortest path from Voronoi diagram based roadmap (based on VD edges) 

(b) Shortest path using developed  algorithm (Cmin = 0). 

(c) Clearance based path using proposed algorithm (Cmin = 2). Zoomed path on right. 
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Tools: Visibility graphs 

• Used to plan shortest paths. Constructed in O (n2 log n) time, where n is the 

total number of obstacle vertices. 

 

• Output-sensitive O (n log n + k) algorithm exists for construction where k is 

the number of edges in visibility graph. 

 

Resulting 

paths have 

no clearance 
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Tools: Voronoi diagram 

• Can be constructed in O (n log n) 

time where n is the number of 

obstacle vertices.  

 

• Computes a path that has maximum 

clearance from obstacles. 

Path can be 

arbitrarily long 

depending on spacing 

between obstacles 



VD and visibility graph roadmaps 
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Clearance “hybrid” tool: the VV(c)-Diagram 

   The Visibility-Voronoi diagram (Wein, 2005) for clearance ‘c’ is a 

      hybrid between the visibility graph and Voronoi diagram 
 

   Evolves from the visibility graph to the Voronoi diagram as ‘c’ 

      increases 

Visibility-Voronoi diagram of a pair of 

obstacles 
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The VV(c)-Diagram – Cont’d 

Pros: 
 

• Generates smooth paths 
 

• Paths maintain some amount of clearance from obstacles 

Cons: 
 

 In case obstacles are very close to one another, dilation of obstacles may lead 

to unstable situations because of overlapping. 
 

 It takes O (n2 log n) time to construct the visibility-Voronoi diagram and hence 

the method is impractical for large spatial datasets. 
 

 The path is not the shortest possible for the required clearance value as length 

of path is compromised in lieu of smoothness. 



Our approach  

 We provide an algorithm based on Voronoi diagram to compute an 

optimal path between source and destination in the presence of simple 

disjoint polygonal obstacles. 

 We evaluate the quality of the path based on clearance from obstacles, 

overall length and smoothness.  

 We provide a detailed description of the algorithm for Voronoi 

diagram maintenance and dynamic updates.  

 Experimental results demonstrate superior performance of the method 

in relation to other path planning algorithms. 
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Our approach: advantages 

• Runs in just O (n log n) time where n is the number of 

obstacle vertices. 

 

• Generates paths that are near-optimal with respect to the 

amount of clearance required. By optimal, we mean the 

path is the shortest possible while maintaining the 

necessary clearance. 

 

• Since the refinement method is iterative, a tradeoff can be 

obtained between the optimality and processing time. 



Key features 

• Inserting the source and destination dynamically has two major 

advantages over simply connecting them to the nearest Voronoi vertex. 

There is no possibility of the connecting edges crossing an obstacle as 

they are contained inside the Voronoi cell. Also, multiple queries do 

not require diagram reconstruction. 

• We next remove all those edges in the resulting diagram that have a 

clearance less then the minimum clearance required (Cmin, set by 

user). This guarantees we can report only paths with necessary 

clearance. 

• We apply Dijkstra’s algorithm to determine shortest path in the 

roadmap and refine the path through removing unnecessary turns. 

• We next utilize Steiner points along the edges of this path to perform  

corner-cutting to convert  to an optimal path 
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Flow diagram of the Voronoi diagram based algorithm  



Voronoi diagram based path -illustration 

Voronoi diagram  Roadmap extracted  



Dynamic point removal in Voronoi diagram 



Corner cutting using iterative Steiner point method 

Iterative refinement  Steiner point S  
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Output by stages 

Path from Voronoi diagram based roadmap Path obtained after RemoveRedundancy 

Path obtained after corner-cutting 
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Clearance-based path 

Shortest path obtained from  
Voronoi diagram based roadmap 

Shortest path after iterative 
refinement (Cmin= 0) 

Top-left corner: 81.435 degrees latitude and −90.405 degrees longitude.  
Bottom-right corner: 70.528 degrees latitude and −78.312 degrees longitude 



Algorithm efficiency 
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Examples: Varying clearance 

Clearance = 10 units Clearance = 15 units Clearance = 20 units 

Clearance = 25 units Clearance = 30 units Clearance = 35 units 
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More examples 

Clearance = 12 

Clearance = 0 

Clearance = 7 

Clearance = 0 

Clearance = 8 

Clearance = 0 
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Value of minimum clearance required increases 

More examples 



80 

Geraerts, 2004 

Our approach   

Cmin = 12 

Cmin = 0 

More examples 
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Clearance-based optimal path statistics 
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Processing time of developed method vs. visibility graph 

approach 



Demonstration 

Clearance-based path demo  



 Optimal Path in a weighted terrain 
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The more complex problem 

    Given start and goal configurations ‘s’ and ‘g’, the problem is to 

determine optimal path of a mobile agent in a plane subdivided 

into non-overlapping polygons, with the ‘cost per unit distance’ 

traveled by the agent being homogeneous and isotropic within 

each polygon. 

    

    An optimal path is defined as a path Pi for which  

    Σ (wi * |ei|) <= Σ (wj * |ej|) for all j ≠ i, where wi is weight of 

edge ei and |ei| is the Euclidean length of edge ei (Mitchell, 

Papadimitriou, 1991). 
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Existing approaches 

• Continuous Dijkstra method – has very high computational complexity; 

difficult to implement 

• Grid based approach – accuracy limited to connectivity of a grid; path is 

usually jagged and ugly (far from optimal) 

• Region graph approach – obtained path may not be optimal as the underlying 

graph is based on region adjacency which may not have anything to do with 

path optimality 

• Building a pathnet graph – computational complexity is O (n3) where n is the 

number of region vertices. This is too high for spatial datasets; sensitive to 

numerical errors 

• Edge subdivision method – computational complexity and accuracy depends 

on placement of Steiner points; Can generate high quality approximations 

 
Our algorithm 

falls under 

this category 
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The approach 

Concepts: 
 

• Places Steiner points on region boundaries. 

• Constructs a discrete graph with vertices that are either vertices of obstacles 

or Steiner points. 

Original features: 
 

 Uses the region space as it is without triangulating it. This implies lesser 

bending points for the path that lead to higher optimality. 

 Applies a rotational sweep technique to generate the discrete graph. 

 Uses grid-based refinement techniques to further optimize the path. 

 



88 

Flow chart 

Overlay 

layers 

Data layers 
weighted planar 

subdivision 

W = 3 

W = 2 

W = 5 

2 

3 

2 

5 

Add Steiner  
points  

on region  
boundaries 

Construct 
Discrete graph  

(rotational sweep) 

Assign weights to edges.  
Edges common to two  

regions are assigned minimum  
of the two weights. 

Connect source and  
goal to discrete  

graph   
(rotational sweep) 

Compute optimal  
path  

between  
source and goal  

Optimize path  
using refinement  

techniques 
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Optimal path in weighted region 

Low risk 

(avoids 

detour)) 

High risk 

(avoids 

area)) 
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Path follows 
shipping lanes 

wherever 
possible 

 

Top-left corner: 72.37 degrees latitude and 
-102.69 degrees longitude 

Bottom-right corner: 69.63 degrees 
latitude and -96.17 degrees longitude 
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More examples 

Artificially generated dataset 
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Different start-goal pairs 
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Underlying hierarchical data structure  



Demonstration 

Path planning in a varied terrain 



 Application to Marine GIS 



Goals of system utilization for marine GIS 

 Finding intersections among ship routes. 

 

 Identification of high-risk areas based on incident and 
intersection data. 

 

 Finding an optimal minimum-risk path subject to various 
constraints like total distance traveled, environment and 
weather conditions. 

 

 Analysis of incidents and route intersections to identify any 
correlation between the two. 

 

 



Flow Diagram 
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Steps performed 

• Decide on the area under observation. This can be a simple bounding box. 

 

• Determine the ship routes that cross that area. 

 

• Find intersections between routes. 

 

• Consider all incident locations in the area. 

 

• Determine the Delaunay Triangulation of the intersections/incident locations. 

 

• Using the proximity information in the Delaunay Triangulation determine the 
clusters (high-risk areas). The minimum cluster size can be controlled by user. 

 



Steps performed 

• Represent the clusters as Convex Polygonal regions. 

 

• Determine the Reduced Visibility Graph for the set of convex polygonal regions 

 

• Accept the source and destination from user. 

 

• Add to the Visibility Graph, the visibility edges for these two points. 

 

• Apply Dijkstra's Algorithm on the edges in the Reduced Visibility Graph to find the 
shortest path between the source and destination. 



CG Algorithms 

Snapshot from program 

Snapshot from program 

   Line Intersection Algorithm - 

    

   O ((n+k)*logn) where k is the number of intersections.  

    

   A vertical sweep has been used. 

   Processing at every event point is O (L) where L is the number of  segments in the status 

   structure at that point.  

 

   The algorithm takes care of all degenerate cases. In case of horizontal lines, the left end 

   point has been taken as the upper endpoint. In case of collinear lines, intersection point is 

   reported only once. 

 

  Delaunay Triangulation - O(nlogn)  

 

  The winged-edge data structure has been used for representation. The incremental  

  method of construction has been used as it offers maximum flexibility and the 

  advantages of local modification. 



CG Algorithms 

Snapshot from program 

Destination 

Source 

? 
Obstacle 

 

Clustering algorithm – Based on analysis of edge lengths in 

the Delaunay Triangulation. 

 

Convex Hull algorithm - Graham's scan with a 

complexity of O(nlogn). 

 

Visibility Graph – O(n2logn) algorithm using rotational 

sweep. 

 

But are all visibility edges required to find the shortest path in 

case obstacles are convex polygons? 

 

 

 The shortest path between any two points that avoids a set of 
polygonal obstacles is piecewise linear and has vertices which 
are either vertices of the obstacles or the start and end vertices. 

 

 It can be proved that the shortest path will consist of only those 
visibility edges that are common tangents between a  pair of 
simple disjoint polygons. 



CG Algorithms 

Snapshot from program 

Minimum cluster size set to 5 

  Finding the tangential common segments 

    between a pair of convex polygons is done in 

    O(n1 + n2) where n1 and n2 are the 

    number of vertices in the convex 

    polygons.  

 

    Finding whether the common tangents 

    cross any obstacle edge takes O(n) time 

    where n is the number of obstacle edges. 

     

   Thus the  overall time for constructing the 

Reduced  Visibility Graph is O(n2) . 



CG Algorithms 

• How to find common tangents between a pair of convex polygons? 

Check whether the vertex V2 is on same side of e1 and e2. If V2 is on same side, then  the 

visibility edge V1V2 is not a common tangent with respect to convex hull C1. Finding on which 

side of a line a point is can be done using cross product. 

e1 

e2 V2 

C

1 

C

2 

V1 



CG Algorithms 

Dijkstra's Algorithm - Takes O(V2 + E) = O(V2) time where V is the Number of vertices 

in the Reduced Visibility Graph. This can be reduced to O(VlogV) by using a balanced 

binary tree in place of a list for storing the vertices. 

Snapshots from program 



Description of System 

• The program has been implemented in Java using Eclipse SDK.  

 

• The user is provided with the option of either reading the ship routes from a 
file or entering them on the screen by clicking on the left mouse button. 
Clicking on the right mouse button would indicate that the route has been 
entered and the user wants to enter the next route. An option has been 
provided to save the user-entered routes to a text file. 

 
         



Snapshots  



Snapshots of System  



Snapshots of System 
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Summary 

• A Delaunay triangulation based clustering algorithm has been developed 
which is able to detect complicated cluster arrangements and is robust in the 
presence of noise. 

 

• The clearance-based optimal path finding algorithm has been experimentally 
observed to be successful at reporting high quality optimal paths.  

 

• The geomery-based  solution to the weighted region problem has been 
successfully applied in planning the route of a ship amidst landmass, sea-ice 
and high-risk areas. 
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Future Research Directions 

• Investigation into how to completely automate the 

clustering process. 

• Incorporation of learning and AI methods in path planning 

process 

• Adding temporal analysis to spatial data 

• Conducting user-studies on system features and interface 
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Thank you for your attention! 
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Only distance may not be enough 
Inter-cluster distance not greater than intra-cluster distance: 
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Time Comparison 

Cluster size Vs CPU time in seconds  

(550 MHz processor , 128 MB memory) 

Cluster size (in 1000) Vs CPU time 

in milli-seconds  

(3 GHz processor , 512 MB memory) 
Vladimir Estivill-Castro, Ickjai Lee, 

“AUTOCLUST: Automatic Clustering via 

Boundary Extraction for Mining Massive Point-

Data Sets”, Fifth International Conference on 

Geocomputation, 2000. 

CRYSTAL 
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Grow-cluster phase is O (n) 
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Resolution Vs. Number of vertices 

Resolution Vs. Time consumed (sec) 
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Data sources 
Sea-ice layer:  

National Atlas of the United States, http://www.nationalatlas.gov/atlasftp.html, 

(last modified date - 2006) 

 

Landmass: 

Census 2000 TIGER/Line Data, 
http://www.esri.com/data/download/census2000/tigerline/index.html, 2000 

 

Risk-areas: 

Maritime Activity and Risk Investigation system (MARIS) 

     http://www.marin-research.ca/english/index.html, (last updated - 2006) 

 


