
Dr. Marina Gavrilova

Associate Professor,

Department of Computer Science, University

of Calgary, Calgary, Alberta, Canada.

Computational Geometry Algorithms

for Clustering, Obstacle Avoidance

and Optimal Path Planning

2

• Research Interests

• Clustering and CRYSTAL

• Clearance-based optimal path

• Weighted terrain and resulting system

• Conclusions

Talk Overview

Research Activities and Interests

Activities in Brief

Founder and Co-Director:

 Biometric Technologies Laboratory, CFI

 SPARCS Laboratory for Spatial Analysis in
Computational Sciences, GEOIDE

Editor-in-Chief:

 International Journal LNCS Transactions on
Computational Sciences, Springer-Verlag

Guest Editor:

 Int. Journal of Computational geometry and
Applications

 IEEE Robotics and Automation Magazine RAM

Activities in Brief

Chair and Co-Founder:

 International Conference on Computational Sciences and
Applications since 2003

 International Workshop on Computational Geometry and
Applications (since 2001)

 Chair, the 3rd International Symposium on Voronoi
Diagrams and Applications 06

Author of new books:
S. Yanushkevich, M. Gavrilova, P. Wang and S. Srihari
"Image Pattern Recognition: Synthesis and Analysis in
Biometrics," Series in Machine Perception and Artificial
Intelligence, World Scientific 2007

 M. Gavrilova “Computational Intelligence: A Geometry-

Based Approach,” Series on Studies in Computational

Intelligence, Springer-Verlag, 2008 (upcoming)

 Areas of Research

 Biological systems modeling

 Molecular systems

representation and analysis

 Geographical Information

Systems

 Biometric analysis and

synthesis

 Granular-type materials

simulation

 Topological properties of data

sets

 Terrain rendering and surface

triangulation

 Path planning and obstacle

avoidance

 Robotics and Navigation

 Autocorrelation analysis

 Spatial-temporal models

 Nearest neighbor properties

 Terrain reconstruction and

triangulation

Areas of Interests

Biometric research Porous materials

Dynamic data

structures (with I.

Kolingerova)

Coral models (with

J. Kaandorp)

Terrain modeling

Lipid bi-layers and molecular

modeling (with N.N.

Medvedev)

Voronoi Diagrams – A Brief Overview

M. Moriguchu and

K. Sugihara, Japan

Deok-Soo Kim, Korea

C. Gold and

M. Dakowicz, UK

A. Mukhopadhyay,

S. Das, Canada L. Wang et. al. China

Tetsuo Asano, Japan

T. Taylor and I.

Vaisman, USA

James Dean Palmer, USA

P. Bhattacharya and

M. Gavrilova, Canada

Voronoi diagrams in selected applications (ISVD 2006)

Craig S. Kaplan, University of Waterloo, Canada

Voronoi diagrams in tiling (ISVD 2006)

Jos Leys, Belgium

http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/bighex.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/diminish.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/stained.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/weight.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/frac.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/diffraction.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/diffraction2.gif
http://www.cgl.uwaterloo.ca/~csk/projects/voronoi/fancygrid2.gif
http://www.josleys.com/show_image.php?galid=284&imageid=9043
http://www.josleys.com/show_image.php?galid=284&imageid=9051
http://www.josleys.com/show_image.php?galid=284&imageid=9033
http://www.josleys.com/show_image.php?galid=284&imageid=9046
http://www.josleys.com/show_image.php?galid=284&imageid=9043

Voronoi diagram and Delaunay Tessellation

Voronoi diagram is one of the fundamental

computational geometry data structures that

stored proximity information for a set of

obejcts. It’s dual structure, often used in

computer graphics, is Delaunay Tessellation.

A generalized Voronoi diagram (GVD) for a set of

objects in space is the set of generalized

Voronoi regions

where d(x,P) is a distance function between a

point x and a site P in the d-dimensional

space.

 }{\,,, PSQQdPdPVor xxx

Delaunay Tessellation

 A generalized Delaunay

tessellation (triangulation in

2d) is the dual of the

generalized Voronoi diagram

obtained by joining all pairs

of sites whose Voronoi

regions share a common

Voronoi edge according to

some specific rule.

Delaunay simplex (tetrahedron in 3D) defines a simplicial

configuration of spheres and a void (empty space) between spheres.

Delaunay Triangle and Void

Empty volume

Voronoi diagram and Delaunay triangulation in

2D

Under assumptions that no four sites from the object

(generator) set S are cocircular:

 Voronoi vertex is the intersection of 3 Voronoi edges and a

common point of 3 Voronoi regions

 Voronoi vertex is equidistant from 3 sites. It lies in the

center of a circle inscribed between 3 cites

 Empty circle property This inscribed circle is empty, i.e. it

does not contain any other sites

 Nearest-neighbor property If Q is the nearest neighbor of

P then their Voronoi regions share an edge (to find a

nearest neighbor it is sufficient to check only neighbors in

the VD)

Main properties of the Voronoi Diagram

Under assumptions that no three sites from the set S

(generator) lie on the same straight line:

 The straight-line dual of the Voronoi diagram is a

triangulation of S
 The circumcircle of any Delaunay triangle does not contain
any points of S in its interior

 If each triangle of a triangulation of the convex hull of S
satisfies the empty circle property, then this triangulation is the
Delaunay triangulation of S .

 If Q is the nearest neighbor of P then their Voronoi regions

share an edge (to find a nearest neighbor it is sufficient to

check only neighbors in the VD).

Main properties of the Delaunay Triangulation

The Optimal Path Planning Problem

18

The Problem

• Given two locations A and B and the geographical features of the
underlying terrain, what is the optimal route for a mobile agent
between these two locations?

• When the nature of the terrain is allowed to vary, the robot has to make a
decision which path is the most suitable based on the set of priorities.

• We concentrate on marine applications, where robot is conceived as a ship
sailing from one port to another. The decision making process can become
very complex and combines AI, uncertainty theory and multi-varied logic
with temporal-spatial data representation.

• The problem arises in such areas as Robotics, Risk Planning, Route
Scheduling, Navigation, and Processes Modeling.

The risk areas are defined by cluster analysis performed on the incident
database of the Maritime Activity and Risk Investigation System
(MARIS).

19

The Geometry-based approach

 Design of a new Delaunay triangulation based clustering method to identify

complicated cluster arrangements.

 Development of an efficient Delaunay triangulation and visibility graph

based method for determining clearance-based shortest path between

source and destination in the presence of simple, disjoint, polygonal

obstacles.

 Introduction of a new method for determining optimal path in a

weighted planar subdivision representing a varied terrain.

 This research was carried out at the SPARCS Laboratory, University of

Calgary, by graduate students Russel Apu, Priyadarshi Bhattachariya and

Mahmudul Hasan.

20

System Flowchart

Incident locations
from MARIS database

Cluster analysis

High risk areas

Optimal path planning

Landmass layer

Optimal path

Sea-ice layer

Polygon Fitting

Marine Risk Analysis

• Identification of high-risk areas in the sea based on
incident and traffic data from the Maritime Activity and
Risk Investigation System (MARIS), maintained primarily
by the University of Halifax.

Incident

data

Clustering

Algorithm

Marine

Route

Planning
High-risk

Areas

Location of

SAR Bases Ship route

intersection data

Clustering: the CRYSTAL Algorithm

23

• Clustering is the unsupervised

classification of patterns

(observations, data items or

feature vectors) into groups

(clusters).

 – A.K. Jain, M. N. Murty,

 P. J. Flynn, Data Clustering:

 A Review

Clustering a collection of
points

Definition of Clustering

24

Clustering – desired properties

• Linear increase in processing time with increase in size of dataset
(scalability).

• Ability to detect clusters of different shapes and densities.

• Minimal number of input parameters.

• Robust with regard to noise.

• Insensitive to data input order.

• Portable to higher dimensions.

Osmar R. Zaΐane, Andrew Foss, Chi-Hoon Lee, Weinan Wang, “On Data Clustering Analysis: Scalability,

Constraints and Validation”, Advances in Knowledge Discovery and Data Mining, Springer-Verlag, 2002.

25

Approaches to clustering

• Hierarchical clustering (Chameleon, 1999)

• Density-based clustering (DBScan, 1996)

• Grid-based clustering (Clique, 1998)

• Model-based clustering (Vladimir, Poss, 1996)

• Partition-based clustering (Greedy Elimination Method, 2004)

• Graph-based clustering (Autoclust, 2000)

Our algorithm

falls in this

category

Hierarchical Clustering

 Creates a tree structure to determine the clusters in a

dataset (top-down or bottom-up). Bottom-up: consider

each data element as a separate cluster and then

progressively merge clusters based on similarity until some

termination condition is reached (agglomerative).

Top-down: consider all data elements as a single cluster

and then progressively divides a cluster into parts

(divisive).

 Hierarchical clustering does not scale well and the

computational complexity is very high (CHAMELION).

The termination point for division or merging for divisive

and agglomerative clustering respectively is extremely

difficult to determine accurately.

Density-based clustering

• In density-based clustering, regions with sufficiently high

data densities are considered as clusters. It is fast but it is

difficult to define parameters such as epsilon-neighborhood

or minimum number of points in such neighborhoods to be

considered a cluster.

• These values are directly related to the resolution of the data.

If we simply increase the resolution (i.e. scale up the data),

the same parameters no longer produce the desired result.

• Advanced methods such as TURN consider the optimal

resolution out of a number of resolutions and are able to

detect complicated cluster arrangements but at the cost of

increased processing time.

Grid-based clustering

• Grid-based clustering performs clustering on cells that

discretize the cluster space. Because of this discretization,

clustering errors necessarily creep in.

• The clustering results are heavily dependent on the grid

resolution. Determining an appropriate grid resolution for a

dataset is not a trivial task. If the grid is coarse, the run-

time is lower but the accuracy of the result is questionable.

If the grid is too fine, the run-time increases dramatically.

Overall, the method is unsuitable for spatial datasets.

Model-based clustering

• In model-based clustering, the assumption is that a mixture of

underlying probability distributions generates the data and each

component represents a different cluster . It tries to optimize the

fit between the data and the model. Traditional approaches

involve obtaining (iteratively) a maximum likelihood estimate of

the parameter vectors of the component densities. Underfitting

(not enough groups to represent the data) and overfitting (too

many groups in parts of the data) are common problems, in

addition to excessive computational requirements.

• Deriving optimal partitions from these models is very difficult .

Also, fitting a static model to the data often fails to capture a

cluster's inherent characteristics. These algorithms break down

when the data contains clusters of diverse shapes, densities and

sizes.

Partition based clustering

1. Place K points into the space represented by the data points
that are being clustered. These points represent initial group
centroids.

2. Partition the data points such that each data point is assigned
to the centroid closest to it.

3. When all data points have been assigned, recalculate the
positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move.

Disadvantages

• Number of clusters have to be
prespecified.

• Clustering result is sensitive to
initial positioning of cluster
centroids.

• Able to detect clusters of convex
shape only.

• Clustering result is markedly
different from human perception
of clusters.

Greedy Elimination Method (K = 5)

Recent Papers

Z.S.H. Chan, N. Kasabov:

“Efficient global clustering using the

Greedy Elimination Method”,

Electronics Letters, 40(25), 2004.

Aristidis Likas, Nikos Vlassis, Jakob J.

Verbeek:

“The global k-means clustering

algorithm”,

Pattern Recognition, 36(2), 2003.

Global K-Means (K = 5)

33

Summary of shortcomings of existing methods

• Able to detect only convex clusters.

• Require prior information about dataset.

• Too many parameters to tune.

• Inability to detect elongated clusters or complicated

 arrangements such as cluster within cluster, clusters connected
by bridges or sparse clusters in presence of dense ones.

• Not robust in presence of noise.

• Not practical on large datasets.

Graph-based clustering – a chosen approach

• The graph-based clustering algorithms based on the triangulation

approach have proved to be successful. However, most algorithms

based on the triangulation derive clusters by removing edges from the

triangulation that are longer than a threshold (Eldershaw,Kang,Imiya).

But distance alone cannot be used in separating clusters. The technique

succeeds only when the intra-cluster distance is sufficiently high. It

fails in case of closely lying high density clusters or clusters connected

by bridges.

• We utilize a number of unique properties of Delaunay triangulation , as

it is an ideal data structure for preserving proximity information and

effectively eradicates the problem of representing spatial adjacency

using the traditional line-intersection model . It can be constructed in

O(nlogn) time and has only O(n) edges.

Triangulation based clustering
 Construct the Delaunay triangulation of

the dataset.

 Remove edges based on certain criteria
with connected components eventually
forming clusters.

 Vladimir Estivill-Castro, Ickjai Lee, “AUTOCLUST:

Automatic Clustering via Boundary Extraction for
Mining Massive Point-Data Sets”, Fifth International
Conference on Geocomputation, 2000.

 G. Papari, N. Petkov, “Algorithm That Mimics
Human Perceptual Grouping of Dot Patterns”,
Lecture Notes in Computer Science, 3704, 2005, pp.
497-506.

 Vladimir Estivill-Castro, Ickjai Lee, “AMOEBA:
Hierarchical clustering based on spatial proximity
using Delaunay Diagram”, 9th International
Symposium on Spatial Data handling, 2000.

Sparse

graph

Connected

components

Disadvantages

• The use of global density measures such as mean edge length
is misleading and often precludes the identification of sparse
clusters in presence of dense ones.

• The decision of whether to remove an edge or not is usually a
costly operation. Also, deletion of edges may result in loss of
topology information required for identification of later
clusters. As a result, algorithms often have to recuperate some
of the lost edges later on.

37

CRYSTAL - Description

• Initialization phase: Generates the Voronoi diagram of the data points and sorts

them in increasing order of the area of their Voronoi cells. This ensures that

clustering starts with the densest clusters.

• Grow cluster phase: Scans the sorted vertex list L and for each vertex Vi € L not

yet visited, attempts to grow a cluster. The Delaunay triangulation is utilized as

the underlying graph on which a breadth-first search is carried out. The cluster

growth stops at a point identified as a boundary point but continues from other

non-boundary points. Several criteria are employed to effectively determine the

cluster boundary.

• Noise removal phase: Identifies noise as sparse clusters or clusters that have very

few elements. They are removed at this stage.

Merits of CRYSTAL

• The growth model adopted for cluster growth allows spontaneous
detection of elongated and complicated cluster shapes.

• The algorithm avoids the use of global parameters and makes no
assumptions about the data.

• The clusters fail to grow from noise points or outliers. Thus noise
can be easily eliminated without any additional processing overhead.

• The algorithm works very fast in practice as the growth model
ensures that identification of different cases like cluster within
cluster or clusters connected by bridges do not require any
additional processing logic and are handled spontaneously.

• It requires no input parameter from user and the clustering output
closely resembles human perception of clusters.

CRYSTAL – Geometric Algorithms

 Triangulation phase:

 Forms the Delaunay Triangulation of the data points and sorts the vertices

 in the order of increasing average length of incident edges. This ensures

 that, in general, denser clusters are identified before sparser ones.

 Grow cluster phase:

 Scans the sorted vertex list and grows clusters from the vertices in that

 order, first encompassing first order neighbors, then second order

 neighbors and so on. The growth stops when the boundary of the cluster

 is determined. A sweep operation adds any vertices to the cluster that may

 have been left out.

 Noise removal phase:

 The algorithm identifies noise as sparse clusters. They can be easily
eliminated by removing clusters which are very small in size or which have
a very low spatial density.

Average cluster edge length

= Average of the length of edges incident on the vertex

= Edge Length between the two vertices (d) d

d1

d2
= (d1 + d2) / 2

In general, (Sum of edge lengths) / (Number of elements in

cluster – 1)

Detecting a cluster boundary

Vertex Vi

Mean of incident

edge lengths of Vi

>

1.6 * Average cluster

edge length?

Boundary

vertex

Inner

point of

the cluster

Boundary

vertex

Enqueue(Q, vk)

C ← vk

tot_dist ← 0

avg ← AvgadjEdgeLen(vk)
AvgadjEdgeLen(vi) –

Average of the length of

edges incident on a vertex vi d ← Head(Q)

L ← 1st-order neighbors of d sorted by edge length

For all Li є L do

 C ← C U Li

 tot_dist ← tot_dist + EdgeLen(d, Li)

 avg ← tot_dist / (Size(C) - 1)
 If Not a boundary vertex and Not connected to

 a boundary vertex then

 Enqueue(Q, Li)

 End If

End For

EdgeLen(vi , vj) –

Euclidean distance

between vertices vi and vj

Dequeue(Q)

Q = Φ ?
Y Perform sweep and

consider next vertex
N

Grow cluster

phase

Sweep

• Scan the vertices added to cluster.

• For each vertex, inspect if there are any 1st order neighbors for which

 edge length < 1.6 * average cluster edge length.

 If so, add that vertex to the cluster and update the average cluster edge
length.

 The average cluster edge length towards the end of Grow Cluster phase

better represents the local density than at the starting phase of cluster

growth.

 This operation ensures that any data points that were left out at the initial

stages of the cluster growth are put back into the cluster.

Description:

44

Boundary detection

A vertex is considered to be a boundary vertex of the cluster if any one of

the following is true:

• Voronoi cell area of the vertex in the Voronoi diagram is
> Th * {average Voronoi cell area of cluster}

• The maximum of the Voronoi cell areas of the neighbors of the vertex
(including itself) > Th * {average Voronoi cell area of cluster}

• The vertex is connected to another vertex in the Delaunay Triangulation which
is already present in the cluster so that the edge length is > Th * {average

cluster edge length}

The value of Th is empirically determined.

45

Example Processing

46

Sample output

Original dataset (n = 8,000)

CRYSTAL output (Th = 2.4)

Comparison

1G. Papari, N. Petkov, “Algorithm That

Mimics Human Perceptual Grouping of Dot

Patterns”, Lecture Notes in Computer

Science, 3704, 2005, pp. 497-506.

Reduced

Delaunay Graph

from 1

CRYSTAL

output

Discontinuity

Comparison

CRYSTAL

G. Papari, N. Petkov, “Algorithm That Mimics Human

Perceptual Grouping of Dot Patterns”, Lecture Notes in

Computer Science, 3704, 2005, pp. 497-506.

A

B

C

D

E

F

G

H

A K-Means k = 9

B CURE k = 9, α = 0.3 and 10

representative points per

cluster

C ROCK θ = 0.975 and k = 1000

D CHAMELEON K-NN = 10, MinSize =

2.5%, k = 9

E DBSCAN є = 5.9, MinPts = 4

F DBSCAN є = 5.5, MinPts = 4

G WaveCluster Resolution = 5, Г = 1.5

H WaveCluster Resolution = 5, Г =

1.999397

Clustering results on t7.10k dataset

Osmar R. Zaΐane, Andrew Foss, Chi-Hoon Lee, Weinan

Wang, “On Data Clustering Analysis: Scalability,

Constraints and Validation”

50

CRYSTAL output

t7.10k dataset (9 visible clusters, n = 10,000)

CRYSTAL on t7.10k dataset (Г = 1.8)

CRYSTAL output

52

More examples

Original dataset Crystal output (Th = 2.5)

Original dataset Crystal output (Th = 2.4)

Time Comparison

Cluster size Vs CPU time in seconds

(550 MHz processor , 128 MB memory)

Cluster size (in 1000) Vs CPU time

in milli-seconds

(3 GHz processor , 512 MB memory)
Vladimir Estivill-Castro, Ickjai Lee,

“AUTOCLUST: Automatic Clustering via

Boundary Extraction for Mining Massive Point-

Data Sets”, Fifth International Conference on

Geocomputation, 2000.

CRYSTAL

Demonstration

 t7.10k dataset

Demonstration

Cluster within cluster

Sparse and dense clusters

 Computational Geometry Algorithms

for Clearance-based Path Planning

57

The problem

Plan an optimal collision-free path for a mobile agent moving on the plane

amidst a set of convex, disjoint, polygonal obstacles {P1, … , Pm}, given start

and goal configurations s and g.

By optimal, we mean the path should be:

 Short – not containing unnecessary long detours.

 Having some clearance – not getting too close to an obstacle.

 Smooth – not containing sharp turns.

Existing approaches

Roadmap based techniques

The potential field approach

The cell decomposition method
Roadmap creates a map (partitioning) of the plane to navigate

the robot

Potential field approach fills the free area with a potential

field in which the robot is attracted towards its goal

position while being repelled from obstacles

Cell-decomposition method utilized grid and computes its

intersections with obstacles to compute the path.

Disadvantages of existing approaches

Potential field method: the robot may get stuck

 at a local minimum. The reported paths can

 be arbitrarily long.

Cell decomposition: path is not optimal because of the

connectivity limitations in a grid, very difficult to

correctly estimate the grid resolution.

Roadmap approaches (chosen approach):

 Probabilistic roadmap

 Visibility graph based

 Voronoi diagram based

Existing roadmap approaches

• Probabilistic roadmap is created by generating random points in the

plane and connecting these points to the k−nearest neighbours taking

care that the connecting edges do not cross any obstacle. The method

is fast but the reported path is very often of poor quality because of the

randomness inherent in the graph representing the free space

connectivity. Also, a path may never be detected even if one exists.

• A visibility graph is a roadmap whose vertices are the vertices of the

obstacles themselves and there is an edge between every pair of

vertices that can see each other. A visibility graph is a graph of

intervisible locations. However, the path planning based on quering

visibility graph is very slow, and incorporating the clearance is very

difficult.

Voronoi diagram based roadmap

(a) Shortest path from Voronoi diagram based roadmap (based on VD edges)

(b) Shortest path using developed algorithm (Cmin = 0).

(c) Clearance based path using proposed algorithm (Cmin = 2). Zoomed path on right.

62

Tools: Visibility graphs

• Used to plan shortest paths. Constructed in O (n2 log n) time, where n is the

total number of obstacle vertices.

• Output-sensitive O (n log n + k) algorithm exists for construction where k is

the number of edges in visibility graph.

Resulting

paths have

no clearance

63

Tools: Voronoi diagram

• Can be constructed in O (n log n)

time where n is the number of

obstacle vertices.

• Computes a path that has maximum

clearance from obstacles.

Path can be

arbitrarily long

depending on spacing

between obstacles

VD and visibility graph roadmaps

65

Clearance “hybrid” tool: the VV(c)-Diagram

 The Visibility-Voronoi diagram (Wein, 2005) for clearance ‘c’ is a

 hybrid between the visibility graph and Voronoi diagram

 Evolves from the visibility graph to the Voronoi diagram as ‘c’

 increases

Visibility-Voronoi diagram of a pair of

obstacles

66

The VV(c)-Diagram – Cont’d

Pros:

• Generates smooth paths

• Paths maintain some amount of clearance from obstacles

Cons:

 In case obstacles are very close to one another, dilation of obstacles may lead

to unstable situations because of overlapping.

 It takes O (n2 log n) time to construct the visibility-Voronoi diagram and hence

the method is impractical for large spatial datasets.

 The path is not the shortest possible for the required clearance value as length

of path is compromised in lieu of smoothness.

Our approach

 We provide an algorithm based on Voronoi diagram to compute an

optimal path between source and destination in the presence of simple

disjoint polygonal obstacles.

 We evaluate the quality of the path based on clearance from obstacles,

overall length and smoothness.

 We provide a detailed description of the algorithm for Voronoi

diagram maintenance and dynamic updates.

 Experimental results demonstrate superior performance of the method

in relation to other path planning algorithms.

68

Our approach: advantages

• Runs in just O (n log n) time where n is the number of

obstacle vertices.

• Generates paths that are near-optimal with respect to the

amount of clearance required. By optimal, we mean the

path is the shortest possible while maintaining the

necessary clearance.

• Since the refinement method is iterative, a tradeoff can be

obtained between the optimality and processing time.

Key features

• Inserting the source and destination dynamically has two major

advantages over simply connecting them to the nearest Voronoi vertex.

There is no possibility of the connecting edges crossing an obstacle as

they are contained inside the Voronoi cell. Also, multiple queries do

not require diagram reconstruction.

• We next remove all those edges in the resulting diagram that have a

clearance less then the minimum clearance required (Cmin, set by

user). This guarantees we can report only paths with necessary

clearance.

• We apply Dijkstra’s algorithm to determine shortest path in the

roadmap and refine the path through removing unnecessary turns.

• We next utilize Steiner points along the edges of this path to perform

corner-cutting to convert to an optimal path

70

Flow diagram of the Voronoi diagram based algorithm

Voronoi diagram based path -illustration

Voronoi diagram Roadmap extracted

Dynamic point removal in Voronoi diagram

Corner cutting using iterative Steiner point method

Iterative refinement Steiner point S

74

Output by stages

Path from Voronoi diagram based roadmap Path obtained after RemoveRedundancy

Path obtained after corner-cutting

75

Clearance-based path

Shortest path obtained from
Voronoi diagram based roadmap

Shortest path after iterative
refinement (Cmin= 0)

Top-left corner: 81.435 degrees latitude and −90.405 degrees longitude.
Bottom-right corner: 70.528 degrees latitude and −78.312 degrees longitude

Algorithm efficiency

77

Examples: Varying clearance

Clearance = 10 units Clearance = 15 units Clearance = 20 units

Clearance = 25 units Clearance = 30 units Clearance = 35 units

78

More examples

Clearance = 12

Clearance = 0

Clearance = 7

Clearance = 0

Clearance = 8

Clearance = 0

79

Value of minimum clearance required increases

More examples

80

Geraerts, 2004

Our approach

Cmin = 12

Cmin = 0

More examples

81

Clearance-based optimal path statistics

82

Processing time of developed method vs. visibility graph

approach

Demonstration

Clearance-based path demo

 Optimal Path in a weighted terrain

85

The more complex problem

 Given start and goal configurations ‘s’ and ‘g’, the problem is to

determine optimal path of a mobile agent in a plane subdivided

into non-overlapping polygons, with the ‘cost per unit distance’

traveled by the agent being homogeneous and isotropic within

each polygon.

 An optimal path is defined as a path Pi for which

 Σ (wi * |ei|) <= Σ (wj * |ej|) for all j ≠ i, where wi is weight of

edge ei and |ei| is the Euclidean length of edge ei (Mitchell,

Papadimitriou, 1991).

86

Existing approaches

• Continuous Dijkstra method – has very high computational complexity;

difficult to implement

• Grid based approach – accuracy limited to connectivity of a grid; path is

usually jagged and ugly (far from optimal)

• Region graph approach – obtained path may not be optimal as the underlying

graph is based on region adjacency which may not have anything to do with

path optimality

• Building a pathnet graph – computational complexity is O (n3) where n is the

number of region vertices. This is too high for spatial datasets; sensitive to

numerical errors

• Edge subdivision method – computational complexity and accuracy depends

on placement of Steiner points; Can generate high quality approximations

Our algorithm

falls under

this category

87

The approach

Concepts:

• Places Steiner points on region boundaries.

• Constructs a discrete graph with vertices that are either vertices of obstacles

or Steiner points.

Original features:

 Uses the region space as it is without triangulating it. This implies lesser

bending points for the path that lead to higher optimality.

 Applies a rotational sweep technique to generate the discrete graph.

 Uses grid-based refinement techniques to further optimize the path.

88

Flow chart

Overlay

layers

Data layers
weighted planar

subdivision

W = 3

W = 2

W = 5

2

3

2

5

Add Steiner
points

on region
boundaries

Construct
Discrete graph

(rotational sweep)

Assign weights to edges.
Edges common to two

regions are assigned minimum
of the two weights.

Connect source and
goal to discrete

graph
(rotational sweep)

Compute optimal
path

between
source and goal

Optimize path
using refinement

techniques

89

Optimal path in weighted region

Low risk

(avoids

detour))

High risk

(avoids

area))

90

Path follows
shipping lanes

wherever
possible

Top-left corner: 72.37 degrees latitude and
-102.69 degrees longitude

Bottom-right corner: 69.63 degrees
latitude and -96.17 degrees longitude

91

More examples

Artificially generated dataset

92

Different start-goal pairs

93

Underlying hierarchical data structure

Demonstration

Path planning in a varied terrain

 Application to Marine GIS

Goals of system utilization for marine GIS

 Finding intersections among ship routes.

 Identification of high-risk areas based on incident and
intersection data.

 Finding an optimal minimum-risk path subject to various
constraints like total distance traveled, environment and
weather conditions.

 Analysis of incidents and route intersections to identify any
correlation between the two.

Flow Diagram

Ship route

information

Finding

intersections

Delaunay

Triangulation

Incident

information

Intersection

Points

Identification

of high risk

zones

Proximity

Information

Start

Visibility

Graph

Visibility

edges

Shortest

Path

Vertices on

shortest path

route avoiding

obstacles

End

Steps performed

• Decide on the area under observation. This can be a simple bounding box.

• Determine the ship routes that cross that area.

• Find intersections between routes.

• Consider all incident locations in the area.

• Determine the Delaunay Triangulation of the intersections/incident locations.

• Using the proximity information in the Delaunay Triangulation determine the
clusters (high-risk areas). The minimum cluster size can be controlled by user.

Steps performed

• Represent the clusters as Convex Polygonal regions.

• Determine the Reduced Visibility Graph for the set of convex polygonal regions

• Accept the source and destination from user.

• Add to the Visibility Graph, the visibility edges for these two points.

• Apply Dijkstra's Algorithm on the edges in the Reduced Visibility Graph to find the
shortest path between the source and destination.

CG Algorithms

Snapshot from program

Snapshot from program

 Line Intersection Algorithm -

 O ((n+k)*logn) where k is the number of intersections.

 A vertical sweep has been used.

 Processing at every event point is O (L) where L is the number of segments in the status

 structure at that point.

 The algorithm takes care of all degenerate cases. In case of horizontal lines, the left end

 point has been taken as the upper endpoint. In case of collinear lines, intersection point is

 reported only once.

 Delaunay Triangulation - O(nlogn)

 The winged-edge data structure has been used for representation. The incremental

 method of construction has been used as it offers maximum flexibility and the

 advantages of local modification.

CG Algorithms

Snapshot from program

Destination

Source

?
Obstacle

Clustering algorithm – Based on analysis of edge lengths in

the Delaunay Triangulation.

Convex Hull algorithm - Graham's scan with a

complexity of O(nlogn).

Visibility Graph – O(n2logn) algorithm using rotational

sweep.

But are all visibility edges required to find the shortest path in

case obstacles are convex polygons?

 The shortest path between any two points that avoids a set of
polygonal obstacles is piecewise linear and has vertices which
are either vertices of the obstacles or the start and end vertices.

 It can be proved that the shortest path will consist of only those
visibility edges that are common tangents between a pair of
simple disjoint polygons.

CG Algorithms

Snapshot from program

Minimum cluster size set to 5

 Finding the tangential common segments

 between a pair of convex polygons is done in

 O(n1 + n2) where n1 and n2 are the

 number of vertices in the convex

 polygons.

 Finding whether the common tangents

 cross any obstacle edge takes O(n) time

 where n is the number of obstacle edges.

 Thus the overall time for constructing the

Reduced Visibility Graph is O(n2) .

CG Algorithms

• How to find common tangents between a pair of convex polygons?

Check whether the vertex V2 is on same side of e1 and e2. If V2 is on same side, then the

visibility edge V1V2 is not a common tangent with respect to convex hull C1. Finding on which

side of a line a point is can be done using cross product.

e1

e2 V2

C

1

C

2

V1

CG Algorithms

Dijkstra's Algorithm - Takes O(V2 + E) = O(V2) time where V is the Number of vertices

in the Reduced Visibility Graph. This can be reduced to O(VlogV) by using a balanced

binary tree in place of a list for storing the vertices.

Snapshots from program

Description of System

• The program has been implemented in Java using Eclipse SDK.

• The user is provided with the option of either reading the ship routes from a
file or entering them on the screen by clicking on the left mouse button.
Clicking on the right mouse button would indicate that the route has been
entered and the user wants to enter the next route. An option has been
provided to save the user-entered routes to a text file.

Snapshots

Snapshots of System

Snapshots of System

109

Summary

• A Delaunay triangulation based clustering algorithm has been developed
which is able to detect complicated cluster arrangements and is robust in the
presence of noise.

• The clearance-based optimal path finding algorithm has been experimentally
observed to be successful at reporting high quality optimal paths.

• The geomery-based solution to the weighted region problem has been
successfully applied in planning the route of a ship amidst landmass, sea-ice
and high-risk areas.

110

Future Research Directions

• Investigation into how to completely automate the

clustering process.

• Incorporation of learning and AI methods in path planning

process

• Adding temporal analysis to spatial data

• Conducting user-studies on system features and interface

Publications

• M. L. Gavrilova, Chapter “Computational Geometry and Image Processing in

Biometrics: on the Path to Convergence,” in Book Image Pattern Recognition: Synthesis

and Analysis in Biometrics, Chapter 4, pp. 103-133, World Scientific Publishers, 2007

• Wecker, F. Samavati, M. Gavrilova, Contextual Void Patching for Digital Elevation

Model, The Visual Computer Journal, Springer, August 2007

• R. Apu and M. Gavrilova, Fast and Efficient Rendering System for Real-Time Terrain

Visualization, IJCSE Journal, Inderscience, Vol. 3, No 1, pp. 29-44, 2007

• N. Medvedev, V.P.Voloshin,V.A. Luchnikov, Gavrilova M.L The algorithm for three

dimensional Voronoi S-network, Journal of Computational Chemistry, Wiley, vol 27,

issue 14, pp. 1676-1692, November 2006

• P. Bhattachariya, M. Gavrilova and J. Rokne “A Geometric Approach to Clearance

Based Path Optimization”, LNCS 4705, Part I, pp. 136–150, 2007 Springer-Verlag

Berlin Heidelberg, August 2007

• P. Bhattacharya and Marina Gavrilova, Voronoi Diagram in Optimal Path Planning,

ISVD 2007, pp. 38-47, IEEE Proceedings, July 2007

• Bhattachariya, P. and Gavrilova, M. CRYSTAL - A new density-based fast and efficient

clustering algorithm, IEEE-CS proceedings, ISVD 2006, pp. 102-111, Banff, AB,

Canada, July 2006

• R. Apu and M. Gavrilova “Intelligent approach to adaptive hierarchical systems in

terrain modeling, robotics and evolutional computing”, Springer-Verlag Book Chapter

“Intelligent Computing – a geometry-based approach,” 2008.

Thank you for your attention!

113

Only distance may not be enough
Inter-cluster distance not greater than intra-cluster distance:

114

Time Comparison

Cluster size Vs CPU time in seconds

(550 MHz processor , 128 MB memory)

Cluster size (in 1000) Vs CPU time

in milli-seconds

(3 GHz processor , 512 MB memory)
Vladimir Estivill-Castro, Ickjai Lee,

“AUTOCLUST: Automatic Clustering via

Boundary Extraction for Mining Massive Point-

Data Sets”, Fifth International Conference on

Geocomputation, 2000.

CRYSTAL

115

Grow-cluster phase is O (n)

116

Resolution Vs. Number of vertices

Resolution Vs. Time consumed (sec)

117

Data sources
Sea-ice layer:

National Atlas of the United States, http://www.nationalatlas.gov/atlasftp.html,

(last modified date - 2006)

Landmass:

Census 2000 TIGER/Line Data,
http://www.esri.com/data/download/census2000/tigerline/index.html, 2000

Risk-areas:

Maritime Activity and Risk Investigation system (MARIS)

 http://www.marin-research.ca/english/index.html, (last updated - 2006)

