Computational Geometry

4 Lectures
1 Tutorial Sheet
Michaelmas Term 2003
Dr ID Reid

Overview

Computational geometry is concerned with efficient algorithms and representations for geometric computation.

Techniques from computational geometry are used in:

- Computer Graphics
- Computer Vision
- Computer Aided Design
- Robotics

Topics

- Lecture 1: Euclidean, similarity, affine and projective transformations. Homogeneous coordinates and matrices. Coordinate frames. Perspective projection and its matrix representation.
- Lecture 2: Perspective projection and its matrix representation. Vanishing points. Applications of projective transformations.
- Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and quadrics, implicit and parametric forms, computation of intersections.
- Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.
- Bartels, Beatty and Barsky, "An introduction to splines for use in computer graphics and geometric modeling", Morgan Kaufmann, 1987. Everything you could want to know about splines.
- Faux and Pratt, "Computational geometry for design and manufacture", Ellis Horwood, 1979. Good on curves and transformations.
- Farin, "Curves and Surfaces for Computer-Aided Geometric Design : A Practical Guide", Academic Press, 1996.
- Foley, van Dam, Feiner and Hughes, "Computer graphics - principles and practice", Addison Wesley, second edition, 1995. The computer graphics book. Covers curves and surfaces well.
- Hartley and Zisserman "Multiple View Geometry in Computer Vision", CUP, 2000. Chapter 1 is a good introduction to projective geometry.
- O'Rourke, "Computational geometry in C", CUP, 1998. Very straightforward to read, many examples. Highly recommended.
- Preparata and Shamos, "Computational geometry, an introduction", Springer-Verlag, 1985. Very formal and complete for particular algorithms.

Example I: Virtual Reality Models from Images

Input: Four overlapping aerial images of the same urban scene

Objective: Texture mapped 3D models of buildings

1: Transformations, Homogeneous Coordinates, and Coordinate Frames

Topics 1.1

- Lecture 1: Euclidean, similarity, affine and projective transformations. Homogeneous coordinates and matrices. Coordinate frames.
- Lecture 2: Perspective projection and its matrix representation. Vanishing points. Applications of projective transformations.
- Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and quadrics, implicit and parametric forms, computation of intersections.
- Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.
Hierarchy of transformations

We will look at linear transformations represented by matrices of increasing generality:

- Euclidean \rightarrow Similarity \rightarrow Affine \rightarrow projective.

Consider both

- $2 D \rightarrow 2 D$ mappings ("plane to plane"); and
- $3 D \rightarrow 3 D$ transformations
as well as
$\bullet 3 D \rightarrow 2 D$ mappings ("projections")

Class I: Euclidean transformations: translation \& rotation

1. Translation -2 dof in 2D

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{t_{x}}{t_{y}}
$$

2. Rotation - 1 dof in 2D

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\binom{x}{y}
$$

In vector notation, a Euclidean transformation is written

$$
\mathrm{x}^{\prime}=\mathrm{Rx}+\mathrm{t}
$$

where R is the orthogonal rotation matrix, $\mathrm{RR}^{\top}=\mathrm{I}$, and x^{\prime} etc are column vectors.

Often useful to introduce intermediate coordinate frames.
Example: Object model described in body-centered coord frame. Pose (θ, \mathbf{t}) of model frame given w.r.t. world coord frame. Where is x_{B} in the world?

$$
\mathbf{x}_{A}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \mathbf{x}_{B}
$$

Check the above using the point $(1,0)$. It should be $(+\cos \theta,+\sin \theta)$ in the A frame.

$$
\mathbf{x}_{W}=\mathbf{x}_{A}+\mathbf{t}_{\text {Origin of } \mathrm{B} \text { in } \mathrm{W}}
$$

Check the above using the origin of A. It should be $\mathbf{t}_{O B W}$ in W frame ...

In 3D the transformation $\mathbf{X}^{\prime}=\mathrm{R}_{3 \times 3} \mathbf{X}+\mathbf{T}$ has 6 dof.
Two major ways of defining 3D rotation:
(i) rotation about successive new axes: eg YXY pan-tilt-verge, or XYZ tilt-pancyclorotation
(ii) rotation about "old fixed axes": eg ZXY roll-pitch-yaw In each case the order is important, as rotations do not commute.

$$
\begin{aligned}
\mathbf{X}_{W} & =\left[\begin{array}{ccc}
\cos p & -\sin p & 0 \\
\sin p & \cos p & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{X}_{1} \\
\mathbf{X}_{1} & =\left[\begin{array}{ccc}
\cos e & 0 & -\sin e \\
0 & 1 & 0 \\
\sin e & 0 & \cos e
\end{array}\right] \mathbf{X}_{2} \\
\mathbf{X}_{2} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos c & -\sin c \\
0 & \sin c & \cos c
\end{array}\right] \mathbf{X}_{B}
\end{aligned}
$$

Rotation about an axis

The rotation matrix corresponding to a rotation of an angle θ about an axis with unit length $\mathbf{a}=\left[a_{x}, a_{y}, a_{z}\right]^{T}$ is given by:
$R=\left[\begin{array}{ccc}\cos \theta+(1-\cos \theta) a_{x}^{2} & (1-\cos \theta) a_{x} a_{y}-\sin \theta a_{z} & (1-\cos \theta) a_{x} a_{z}+\sin \theta a_{y} \\ (1-\cos \theta) a_{x} a_{y}+\sin \theta a_{z} & \cos \theta+(1-\cos \theta) a_{y}^{2} & (1-\cos \theta) a_{y} a_{z}-\sin \theta a_{x} \\ (1-\cos \theta) a_{x} a_{z}-\sin \theta a_{y} & (1-\cos \theta) a_{y} a_{z}+\sin \theta a_{x} & \cos \theta+(1-\cos \theta) a_{z}^{2}\end{array}\right]$
Conversely, for a given rotation matrix R, the direction of the axis is given by the eqigenvector corresponding to the unit eigenvalue, and the angle by the solution to $\operatorname{trace}(R)=2 \cos \theta+1$.
Rotation example

Consider a pan-tilt device:

1. Tilt: rotate by angle t about x-axis

$$
R_{B 1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right]
$$

2. Pan: rotate by angle p about new y-axis

$$
\begin{gathered}
y^{\prime}=R_{x}(t) y=[0, \cos t, \sin t]^{T} \\
R_{21}=R_{y^{\prime}}=\left[\begin{array}{ccc}
\cos p & -\sin p \sin t & \sin p \cos t \\
\sin p \sin t & \cos p+(1-\cos p) \cos ^{2} t & (1-\cos p) \cos t \sin t \\
-\sin p \cos t & (1-\cos p) \cos t \sin t & \cos p+(1-\cos p) \sin t^{2}
\end{array}\right]
\end{gathered}
$$

Hence

$$
R_{2 B}=R_{21} R_{1 B}=\left[\begin{array}{ccc}
\cos p & 0 & \sin p \\
\sin t \sin p & \cos t & -\sin t \cos p \\
-\cos t \sin p & \sin t & \cos t \cos p
\end{array}\right]
$$

A little thought suggests an alternative derivation of $R_{2 B}$.
Start at the end of the kinematic chain when all axes in their rest positions. Now

1. Rotate pan axis around fixed y-axis

$$
\left[\begin{array}{ccc}
\cos p & 0 & \sin p \\
0 & 1 & 0 \\
-\sin p & 0 & \cos p
\end{array}\right]
$$

2. Rotate tilt axis around x-axis which was unaffected by previous rotation

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right]
$$

Yielding

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right]\left[\begin{array}{ccc}
\cos p & 0 & \sin p \\
0 & 1 & 0 \\
-\sin p & 0 & \cos p
\end{array}\right]=\left[\begin{array}{ccc}
\cos p & 0 & \sin p \\
\sin t \sin p & \cos t & -\sin t \cos p \\
-\cos t \sin p & \sin t & \cos t \cos p
\end{array}\right]
$$

as before.
Class II: Similarity transformations
$\overline{\text { A Euclidean transformation is an isometry - an action that preserves lengths }}$ and angles.
An Isometry composed with isotropic scaling, s is called a similarity transformation.

A similarity - 4 degrees of freedom in 2D

$$
\mathbf{x}^{\prime}=s \mathrm{Rx}+\mathbf{t}
$$

A similarity

- preserves ratios of lengths, ratios of areas, and angles.
- is the most general transformation that preserves "shape".

Class III: Affine transformations

An affine transformation (6 degrees of freedom in 2D)

- is a non-singular linear transformation followed by a translation:

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{ll}
\mathrm{A}
\end{array}\right]\binom{x}{y}+\binom{t_{x}}{t_{y}}
$$

with A a 2×2 non-singular matrix.
In vector form:

$$
\mathrm{x}^{\prime}=\mathrm{Ax}+\mathrm{t}
$$

- Angles and length ratios are not preserved.
- How many points required to determine an affine transform in 2D?

Examples of affine transformation

1. Both the previous classes: Euclidean, similarity.
2. Scalings in the x and y directions

$$
\mathrm{A}=\left[\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right]
$$

This is non-isotropic if $\mu_{1} \neq \mu_{2}$.
3. A a symmetric matrix.

Then A can be decomposed as: it's an eigen-decomposition

$$
\mathrm{A}=\mathrm{RDR}^{\top}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

where λ_{1} and λ_{2} are its eigenvalues. i.e. scalings in two dirns rotated by θ.

Affine transformations map parallel lines to parallel lines $\quad 1.13$

It is always useful to think what is preserved in a transformation ...

$$
\begin{aligned}
\mathbf{x}_{\mathrm{A}}(\lambda) & =\mathbf{a}+\lambda \mathbf{d} \\
\mathbf{x}_{\mathrm{B}}(\lambda) & =\mathbf{b}+\mu \mathbf{d} \\
\mathbf{x}^{\prime} & =\mathrm{A} \mathbf{x}+\mathbf{t} \\
& \\
\mathbf{x}_{\mathrm{A}}^{\prime}(\lambda) & =\mathrm{A}(\mathbf{a}+\lambda \mathbf{d})+\mathbf{t}=(\mathrm{Aa}+\mathbf{t})+\lambda(\mathrm{Ad}) \\
& =\mathbf{a}^{\prime}+\lambda \mathrm{d}^{\prime} \\
\mathbf{x}_{\mathrm{B}}^{\prime}(\mu) & =\mathrm{A}(\mathbf{b}+\mu \mathbf{d})+\mathbf{t}=(\mathrm{Ab}+\mathbf{t})+\mu(\mathrm{Ad}) \\
& =\mathbf{b}^{\prime}+\mu \mathbf{d}^{\prime}
\end{aligned}
$$

Lines are still parallel - they both have direction d^{\prime}.
Affine transformations also preserve ...

If the translation \mathbf{t} is zero, then transformations can be concatenated by simple matrix multiplication:

$$
\mathbf{x}_{1}=\mathrm{A}_{1} \mathbf{x} \quad \text { and } \mathbf{x}_{2}=\mathrm{A}_{2} \mathbf{x}_{1} \text { THEN } \mathbf{x}_{2}=\mathrm{A}_{2} \mathrm{~A}_{1} \mathbf{x}
$$

However, if the translation is non-zero it becomes a mess

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathrm{A}_{1} \mathbf{x}+\mathbf{t}_{1} \\
\mathbf{x}_{2} & =\mathrm{A}_{2} \mathbf{x}_{1}+\mathbf{t}_{2} \\
& =\mathrm{A}_{2}\left(\mathrm{~A}_{1} \mathbf{x}+\mathbf{t}_{1}\right)+\mathbf{t}_{2} \\
& =\left(\mathrm{A}_{2} \mathrm{~A}_{1}\right) \mathbf{x}+\left(\mathrm{A}_{2} \mathbf{t}_{1}+\mathbf{t}_{2}\right)
\end{aligned}
$$

Homogeneous notation

If 2D points $\binom{x}{y}$ are represented by a three vector $\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$ then the transformation can be represented by a 3×3 matrix with block form:

$$
\binom{\mathbf{x}^{\prime}}{1}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{x}}{1}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \vdots & t_{x} \\
a_{21} & a_{22} & \vdots & t_{y} \\
\ldots & \ldots & \vdots & \ldots \\
0 & 0 & \vdots & 1
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
\ldots \\
1
\end{array}\right)=\binom{\mathbf{A x}+\mathbf{t}}{1}
$$

Transformations can now ALWAYS be concatenated by matrix multiplication

$$
\begin{aligned}
\binom{\mathbf{x}_{1}}{1} & =\left[\begin{array}{cc}
\mathrm{A}_{1} & \mathbf{t}_{1} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{x}}{1}=\binom{\mathrm{A}_{1} \mathbf{x}+\mathbf{t}_{1}}{1} \\
\binom{\mathbf{x}_{2}}{1} & =\left[\begin{array}{cc}
\mathrm{A}_{2} & \mathbf{t}_{2} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{x}_{1}}{1}=\left[\begin{array}{cc}
\mathrm{A}_{2} & \mathbf{t}_{2} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{A}_{1} & \mathbf{t}_{1} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{x}}{1} \\
& =\left[\begin{array}{cc}
\mathrm{A}_{2} \mathrm{~A}_{1} & \mathrm{~A}_{2} \mathbf{t}_{1}+\mathbf{t}_{2} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{x}}{1}=\binom{\left(\mathrm{A}_{2} \mathrm{~A}_{1}\right) \mathbf{x}+\left(\mathrm{A}_{2} \mathbf{t}_{1}+\mathbf{t}_{2}\right)}{1}
\end{aligned}
$$

$\mathbf{x}=(x, y)^{\top}$ is represented in homogeneous coordinates by any 3-vector

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

such that

$$
x=x_{1} / x_{3} \quad y=x_{2} / x_{3}
$$

So the following homogeneous vectors represent the same point for any $\lambda \neq 0$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { and }\left(\begin{array}{l}
\lambda x_{1} \\
\lambda x_{2} \\
\lambda x_{3}
\end{array}\right)
$$

For example, the homogeneous vectors $(2,3,1)^{\top}$ and $(4,6,2)^{\top}$ represent the same inhomogeneous point $(2,3)^{\top}$

Homogeneous notation - rules for use

Then the rules for using homogeneous coordinates for transformations are

1. Convert the inhomogeneous point to an homogeneous vector:

$$
\binom{x}{y} \rightarrow\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

2. Apply the 3×3 matrix transformation.
3. Dehomogenise the resulting vector:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \rightarrow\binom{x_{1} / x_{3}}{x_{2} / x_{3}}
$$

NB the matrix needs only to be defined up to scale.
For example

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{ccc}
2 & 0 & 2 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

represent the same 2 D affine transformation
Think about degrees of freedom ...

A point

$$
\mathbf{X}=\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

is represented by a homogeneous 4 -vector:

$$
\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right)
$$

such that

$$
X=\frac{X_{1}}{X_{4}} \quad Y=\frac{X_{2}}{X_{4}} \quad Z=\frac{X_{3}}{X_{4}}
$$

$$
\mathbf{X}^{\prime}=\mathrm{RX}+\mathbf{T}
$$

where R is a 3×3 rotation matrix, and \mathbf{T} a translation 3-vector, is represented as

$$
\left(\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime} \\
X_{4}^{\prime}
\end{array}\right)=\left[\begin{array}{cc}
\mathrm{R} & \mathbf{T} \\
\mathbf{0}^{\top} & 1
\end{array}\right]_{4 \times 4}\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)=\left[\begin{array}{cc}
\mathrm{R} & \mathbf{T} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}}{1}
$$

with

$$
\mathbf{X}^{\prime}=\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\frac{1}{X_{4}^{\prime}}\left(\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime}
\end{array}\right)
$$

Application to coordinate frames: Example - stereo camera rig 1.20

$$
\binom{\mathbf{X}_{\mathrm{R}}}{1}=\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{RW}} & \mathbf{T}_{\mathrm{RW}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{\mathrm{W}}}{1} \quad\binom{\mathbf{X}_{\mathrm{L}}}{1}=\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{LW}} & \mathbf{T}_{\mathrm{LW}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{\mathrm{W}}}{1}
$$

Then

$$
\binom{\mathbf{X}_{\mathrm{R}}}{1}=\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{RW}} & \mathbf{T}_{\mathrm{RW}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{LW}} & \mathbf{T}_{\mathrm{LW}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]^{-1}\binom{\mathbf{X}_{\mathrm{L}}}{1}=\left[\begin{array}{l}
4 \times 4 \\
\end{array}\right]\binom{\mathbf{X}_{\mathrm{L}}}{1}
$$

Application to coordinate frames: Example - Puma robot arm 1.21

Kinematic chain:

$$
\begin{aligned}
\binom{\mathbf{X}_{\mathrm{T}}}{1} & =\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{T} 6} & \mathbf{T}_{\mathrm{T} 6} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \ldots\left[\begin{array}{cc}
\mathrm{R}_{32} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{R}_{21} & \mathbf{T}_{21} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{R}_{1 \mathrm{~B}} & \mathbf{T}_{1 \mathrm{~B}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{\mathrm{B}}}{1} \\
& =\left[\begin{array}{c}
4 \times 4 \\
1
\end{array}\right)
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{AB}} & \mathbf{T}_{\mathrm{AB}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathrm{R}_{\mathrm{BA}} & \mathbf{T}_{\mathrm{BA}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

Now,

$$
\mathrm{R}_{\mathrm{BA}}=\mathrm{R}_{\mathrm{AB}}^{-1}
$$

but what is \mathbf{T}_{BA} ?
Tempting to say $-\mathbf{T}_{\mathrm{AB}}$, but no.

$$
\begin{aligned}
\mathbf{X}_{A} & =\mathrm{R}_{A B} \mathbf{X}_{B}+\mathbf{T}_{A B}(\text { Origin of B in A) } \\
\Rightarrow \mathbf{X}_{B} & =\mathrm{R}_{B A}\left(\mathbf{X}_{A}-\mathbf{T}_{A B}\right) \\
\Rightarrow \mathbf{X}_{B} & =\mathrm{R}_{B A} \mathbf{X}_{A}-\mathrm{R}_{B A} \mathbf{T}_{A B} \\
\text { BUT } \mathbf{X}_{B} & =\mathrm{R}_{B A} \mathbf{X}_{A}+\mathbf{T}_{B A}(\text { Origin of A in B) } \\
\Rightarrow \mathbf{T}_{B A} & =-\mathrm{R}_{B A} \mathbf{T}_{A B}
\end{aligned}
$$

Class IV: Projective transformations

A projective transformation is a linear transformation on homogeneous n-vectors represented by a non-singular $n \times n$ matrix.
2D - plane to plane

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

- Note the difference from an affine transformation is only in the first two elements of the last row.
- In inhomogeneous (normal) notation, a projective transformation is a nonlinear map

$$
x^{\prime}=\frac{x_{1}^{\prime}}{x_{3}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}}, \quad y^{\prime}=\frac{x_{2}^{\prime}}{x_{3}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}}
$$

- The 3×3 matrix has 8 dof ...

3D

$$
\left(\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime} \\
X_{4}^{\prime}
\end{array}\right)=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{array}\right]\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right)
$$

- The 4×4 matrix has 15 dof ...

Perspective projection is a subclass of projective transformation 1.25

Perspective (central) projection - 3D to 2D	1.26

The camera model Mathematical idealized camera 3D $\rightarrow 2 \mathrm{D}$

- Image coordinates $x y$
- Camera frame $X Y Z$ (origin at optical centre)
- Focal length f, image plane is at $Z=$ f.

Similar triangles

$$
\frac{x}{f}=\frac{X}{Z} \quad \frac{y}{f}=\frac{Y}{Z} \quad \text { or } \quad \mathbf{x}=f \frac{\mathbf{X}}{Z}
$$

where x and X are 3-vectors, with

$$
\mathbf{x}=(x, y, f)^{\top}, \mathbf{X}=(X, Y, Z)^{\top} .
$$

Examples

1. Circle in space, orthogonal to and centred on the Z-axis:

$$
\begin{aligned}
& \mathbf{X}(\theta)=(a \cos \theta, a \sin \theta, Z)^{\top} \\
& \mathbf{x}(\theta)=\left(\frac{f a}{Z} \cos \theta, \frac{f a}{Z} \sin \theta, f\right)^{\top} \\
& \Rightarrow(x, y)=\frac{f a}{Z}(\cos \theta, \sin \theta) \\
& \text { Image is a circle of radius } f a / Z \\
& \text { - inverse distance scaling }
\end{aligned}
$$

2. Now move circle in X direction:

$\mathbf{X}_{1}(\theta)=\left(a \cos \theta+X_{0}, a \sin \theta, Z\right)^{\top}$
Exercise What happens to the image? Is it still a circle? Is it larger or smaller?

3. Sphere concentric with Z-axis:

grazing rays

Intersection of cone with image plane is a circle.
Exercise Now move sphere in the X direction. What happens to the image?

The Homogeneous 3×4 Projection Matrix
 1.29

$$
\mathbf{x}=f \frac{\mathbf{X}}{Z}
$$

Choose $f=1$ from now on.

Homogeneous image coordinates $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ correctly represent $\mathbf{x}=\mathbf{X} / Z$ if

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)=[\mathrm{I} \mid \mathbf{0}]\binom{\mathbf{X}}{1}
$$

because then

$$
x=\frac{x_{1}}{x_{3}}=\frac{X}{Z} \quad y=\frac{x_{2}}{x_{3}}=\frac{Y}{Z}
$$

Then perspective projection is a linear map, represented by a 3×4 projection matrix, from 3D to 2D.

Example: a 3D point

Non-homogeneous $\left(\begin{array}{c}X \\ Y \\ Z\end{array}\right)=\left(\begin{array}{l}6 \\ 4 \\ 2\end{array}\right)$ is imaged at $(x, y)=(6 / 2,4 / 2)=(3,2)$.

In homogeneous notation using 3×4 projection matrix:

$$
\left(\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
6 \\
4 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
2
\end{array}\right)
$$

which is the 2D inhomogeneous point $(x, y)=(3,2)$.

Supppose scene is describe in a World coord frame

$\overline{\text { The Euclidean transformation between the camera and world coordinate frames }}$ is $\mathbf{X}_{\mathrm{C}}=\mathrm{R} \mathbf{X}_{\mathrm{W}}+\mathbf{T}$:

$$
\binom{\mathbf{X}_{\mathrm{C}}}{1}=\left[\begin{array}{cc}
\mathrm{R} & \mathbf{T} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{\mathrm{W}}}{1}
$$

Concatenating the two matrices ...

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{R} & \mathbf{T} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{\mathrm{W}}}{1}=[\mathrm{R} \mid \mathbf{T}]\binom{\mathbf{X}_{\mathrm{W}}}{1}=\mathrm{P}\binom{\mathbf{X}_{\mathrm{W}}}{1}
$$

which defines the 3×4 projection matrix $P=[R \mid \mathbf{T}]$ from a Euclidean World coordinate frame to an image.

- Now each 3D object O is described in it own Object frame ...
- Each Object frame is given a Pose $\left[\mathrm{R}_{o}, \mathbf{T}_{o}\right]$ relative to World frame ...
- Cameras are placed at $\left[\mathrm{R}_{c}, \mathbf{T}_{c}\right]$ relative to world frame ...

$$
\binom{\mathbf{x}_{c}}{1}=\mathrm{K}_{c}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{R}_{c} & \mathbf{T}_{c} \\
\mathbf{0}^{\top} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\mathrm{R}_{o} & \mathbf{T}_{o} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\binom{\mathbf{X}_{o}}{1}
$$

- 3×3 matrix K_{c} allows each camera to have a different focal length etc ...
- You can now do 3D computer graphics ...

Isn't every projective transformation a perspective projection? 1.33

- A projective trans followed by a projective trans is a \qquad
- So a perspective trans followed by a perpspective trans is a \qquad

