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A general overview of computational mechanics
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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nominally identical sys-
tems)
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A complex structural dynamical system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite Element) model
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (deter-
ministic)

Unknown Analysis (forward
problem)

FEM/BEM/Finite
difference

Known (deter-
ministic)

Incorrect (deter-
ministic)

Known (deter-
ministic)

Updating/calibration Modal updating

Known (deter-
ministic)

Unknown Known (deter-
ministic)

System identifica-
tion

Kalman filter

Assumed (de-
terministic)

Unknown (de-
terministic)

Prescribed Design Design optimisa-
tion

Unknown Partially Known Known Structural Health
Monitoring (SHM)

SHM methods

Known (deter-
ministic)

Known (deter-
ministic)

Prescribed Control Modal control

Known (ran-
dom)

Known (deter-
ministic)

Unknown Random vibration Random vibration
methods
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (ran-
dom)

Unknown Stochastic analysis
(forward problem)

SFEM/SEA/RMT

Known (ran-
dom)

Incorrect (ran-
dom)

Known (ran-
dom)

Probabilistic updat-
ing/calibration

Bayesian calibra-
tion

Assumed (ran-
dom/deterministic)

Unknown (ran-
dom)

Prescribed (ran-
dom)

Probabilistic de-
sign

RBOD

Known (ran-
dom/deterministic)

Partially known
(random)

Partially known
(random)

Joint state and pa-
rameter estimation

Particle Kalman
Filter/Ensemble
Kalman Filter

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from
experiment and
model (random)

Model validation Validation meth-
ods

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from dif-
ferent computa-
tions (random)

Model verification verification meth-
ods
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Outline of the presentation

Uncertainty Propagation (UP) in structural dynamics

Brief review of parametric approach
Stochastic finite element method

Non-parametric approach: Wishart random matrices
Analytical derivation
Parameter selection
Computational results

Experimental results

Conclusions & future directions
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UP approaches: key challenges

The main difficulties are:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and

the need for general purpose software tools: as the
state-of-the art methodology stands now (such as the
Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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Main objectives

Our work is aimed at developing methodologies [the 10-10-10
challenge] with the ambition that they should:

not take more than 10 times the computational time required
for the corresponding deterministic approach;

result a predictive accuracy within 10% of direct Monte Carlo
Simulation (MCS);

use no more than 10 times of input data needed for the
corresponding deterministic approach; and

enable engineering graduates to perform probabilistic
structural dynamic analyses with a reasonable amount of
training.

University of Pretoria, 11 March 2009 Computational mechanics & applications – p.10/55



Current UP approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications (building
under earthquake load, steering column vibration in cars)
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Current UP approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA):

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications (eg,
noise propagation in vehicles)
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Random continuous dynamical systems

The equation of motion:

ρ(r, θ)
∂2U(r, t)

∂t2
+L1

∂U(r, t)

∂t
+L2U(r, t) = p(r, t); r ∈ D, t ∈ [0, T ]

(1)

U(r, t) is the displacement variable, r is the spatial position vector
and t is time.

ρ(r, θ) is the random mass distribution of the system, p(r, t)

is the distributed time-varying forcing function, L1 is the
random spatial self-adjoint damping operator, L2 is the
random spatial self-adjoint stiffness operator.

Eq (1) is a Stochastic Partial Differential Equation (SPDE)
[ie, the coefficients are random processes].
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Stochastic Finite Element Method

Problems of structural dynamics in which the uncertainty in specifying mass and stiffness of the
structure is modeled within the framework of random fields can be treated using the Stochastic
Finite Element Method (SFEM). The application of SFEM in linear structural dynamics typically
consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary
conditions

2. Replacement of the element property random fields by an equivalent set of a finite number
of random variables. This step, known as the ‘discretisation of random fields’ is a major
step in the analysis.

3. Formulation of the equation of motion of the form D(ω)u = f where D(ω) is the random
dynamic stiffness matrix, u is the vector of random nodal displacement and f is the applied
forces. In general D(ω) is a random symmetric complex matrix.

4. Calculation of the response statistics by either (a) solving the random eigenvalue problem,
or (b) solving the set of complex random algebraic equations.
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Dynamics of a general linear system

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (2)

Due to the presence of (parametric/nonparametric or both)
uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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Random Matrix Method (RMM)

The methodology :

Derive the matrix variate probability density functions of
M, C and K a using available information.
Propagate the uncertainty (using Monte Carlo simulation
or analytical methods) to obtain the response statistics
(or pdf)

aAIAA Journal, 45[7] (2007), pp. 1748-1762
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n × m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ ⊗ Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2det {Σ}−p/2 det {Ψ}−n/2

etr

{
−

1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(3)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{
2

1

2
np Γn

(
1

2
p

)
det {Σ}

1

2
p

}
−1

|S|
1

2
(p−n−1)etr

{
−

1

2
Σ−1S

}

(4)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Distribution of the system matrices

The distribution of the random system matrices M, C and K
should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of the dynamic
stiffness matrix D(ω) = −ω2M + iωC + K should exist ∀ω.
This ensures that the moments of the response exist for all
frequency values.
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by M, C

and K respectively. Using the notation G (which stands for any
one the system matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the following

constrains to obtain pG (G):

∫

G>0

pG (G) dG = 1 (normalization) (5)

and
∫

G>0

G pG (G) dG = G (the mean matrix) (6)
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Further constraints

Suppose that the inverse moments up to order ν of the
system matrix exist. This implies that E

[∥∥G−1
∥∥

F

ν]
should be

finite. Here the Frobenius norm of matrix A is given by

‖A‖F =
(
Trace

(
AAT

))1/2
.

Taking the logarithm for convenience, the condition for the
existence of the inverse moments can be expresses by

E
[
ln det {G}−ν] < ∞
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MEnt distribution - 1

The Lagrangian becomes:

L
(
pG

)
= −

∫

G>0

pG (G) ln
{
pG (G)

}
dG+

(λ0 − 1)

(∫

G>0

pG (G) dG − 1

)
− ν

∫

G>0

ln det {G} pG dG

+ Trace

(
Λ1

[∫

G>0

G pG (G) dG − G

])
(7)

Note: ν cannot be obtained uniquely!
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MEnt distribution - 2

Using the calculus of variation

∂L
(
pG

)

∂pG
= 0

or − ln
{
pG (G)

}
= λ0 + Trace (Λ1G) − ln det {G}ν

or pG (G) = exp {−λ0} det {G}ν etr {−Λ1G}
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MEnt distribution - 3

Using the matrix variate Laplace transform
(T ∈ Rn,n,S ∈ Cn,n, a > (n + 1)/2)

∫

T>0

etr {−ST} det {T}a−(n+1)/2 dT = Γn(a)det {S}−a

and substituting pG (G) into the constraint equations it can be
shown that

pG (G) = r−nr {Γn(r)}−1 det
{
G

}
−r

det {G}ν etr
{
−rG

−1
G

}
(8)

where r = ν + (n + 1)/2.
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MEnt Distribution - 4

Comparing it with the Wishart distribution we have: If ν-th or-

der inverse-moment of a system matrix G ≡ {M,C,K} exists

and only the mean of G is available, say G, then the maximum-

entropy pdf of G follows the Wishart distribution with parame-

ters p = (2ν + n + 1) and Σ = G/(2ν + n + 1), that is G ∼

Wn

(
2ν + n + 1,G/(2ν + n + 1)

)
.
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Properties of the distribution

Covariance tensor of G:

cov (Gij, Gkl) =
1

2ν + n + 1

(
GikGjl + GilGjk

)

Normalized standard deviation matrix

σ2
G =

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2
F

=
1

2ν + n + 1



1 +

{Trace
(
G

)
}2

Trace
(
G

2
)





σ2
G ≤

1 + n

2ν + n + 1
and ν ↑ ⇒ δ2

G ↓.
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Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic
finite element modeling) the mean (G0) and the (normalized)
standard deviation (σG) of the system matrices:

σ2
G =

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2
F

. (9)

The parameters of the Wishart distribution can be identified
using the expressions derived before.
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Stochastic dynamic response-1

The dynamic response of the system can be expressed in
the frequency domain as

q(ω) = D−1(ω)f(ω) (10)

where the dynamic stiffness matrix is defined as

D(ω) = −ω2M + iωC + K. (11)

This is a complex symmetric random matrix.

The calculation of the response statistics requires the
calculation of statistical moments of the inverse of this
matrix.
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Stochastic dynamic response-2

Using the eigenvectors (Φ) and eigenvalues (Ω2) of M and K

and assuming C is simultaneously diagonalisable

D−1(ω) =
[
−ω2M + iωC + K

]
−1

(12)

= Φ
[
−ω2In + iζωΩ + Ω2

]
−1

ΦT (13)

Because the system is random, we assume that Ω2 is a random
matrix. Note that Ω2 is actually a diagonal (therefore, trivially
symmetric) and positive definite matrix. We model Ω2 by a
Wishart random matrix (can be derived using the maximum
entropy approach), Ω2 ∼ Wn(p,Σ)
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Parameter-selection of Wishart matrices

Approach 1: M and K are fully correlated Wishart (most
complex)

Approach 2: (Scalar Wishart) Σ = c1In (most simple)

Approach 3: (Diagonal Wishart with different entries)
Σ = c2Ω

2
0 (where Ω2

0 is the matrix containing the eigenvalues
of the baseline system) (something in the middle)

The parameter p can be related to the standard deviation of the
system:

p = (1 + β)/σ̃Ω2 , β =
{
Trace

(
Ω2

0

)}2
/Trace

(
Ω4

0

)
(14)
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Numerical Examples
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A vibrating cantilever plate

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
−0.5

0

0.5

1

6

4

X direction (length)

5

Outputs

2

3

Input

1

Y direction (width)

Fixed edge

Baseline Model: Thin plate elements with 0.7% modal damping assumed for all
the modes.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness
are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (15)

µ(x) = µ̄ (1 + ǫµf2(x)) (16)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (17)

and t(x) = t̄ (1 + ǫtf4(x)) (18)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and
ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by
attaching 10 oscillators with random spring stiffnesses at
random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally later.
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Mean of cross-FRF: Utype 1
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Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.078 and σK = 0.205.
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Error in the mean of cross-FRF: Utype 1
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Standard deviation of driving-point-FRF: Utype 1
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M and K are fully correlated Wishart
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Error in the standard deviation of driving-point-FRF:

Utype 1
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries

Error in the standard deviation of the amplitude of the response of the driving-
point-FRF of the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Mean of cross-FRF: Utype 2
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M and K are fully correlated Wishart
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Diagonal Wishart with different entries
Direct simulation

Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.133 and σK = 0.420.
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Error in the mean of cross-FRF: Utype 2
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries

Error in the mean of the amplitude of the response of the cross-FRF of the plate,
n = 1200, σM = 0.133 and σK = 0.420.
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Standard deviation of driving-point-FRF: Utype 2
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.133 and σK = 0.420.
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Error in the standard deviation of driving-point-FRF:

Utype 2
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries

Error in the standard deviation of the amplitude of the response of the driving-
point-FRF of the plate, n = 1200, σM = 0.133 and σK = 0.420.

University of Pretoria, 11 March 2009 Computational mechanics & applications – p.44/55



Main observations

Error in the low frequency region is higher than that in the
higher frequencies a

In the high frequency region all methods are similar

Overall, parameter selection 3 turns out to be most cost
effective.

ato appear in ASCE J. of Engineering Mechanics
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Experimental investigation for
uncertainty type 2 (randomly attached

oscillators)
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A cantilever plate: front view

The test rig for the cantilever plate; front view (to appear in Probabilistic Engineer-
ing Mechanics).
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Comparison of driving-point-FRF
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are
from experiment)
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Comparison of driving-point-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are
from experiment)
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Comparison of cross-FRF
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Comparison of the mean and standard deviation of the amplitude of the cross-
FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are from
experiment)
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Comparison of cross-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the cross-
FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are from
experiment)
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Future works on random matrix theory

Random matrix inversion based computational method:
utilize analytical inverted matrix variate probability
density functions for response moment calculation
explore different random matrix parameter fitting options

Random eigenvalue based computational method:
utilize eigensolution density function of Wishart matrices
in response statistics calculation
simple analytical expressions via asymptotic approach
applicable for large systems
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Conclusions

Uncertainties need to be taken into account for credible
predictions using computational methods.

This talk concentrated on Uncertainty Propagation (UP) in
structural dynamic problems.

A general UP approach based on Wishart random matrix is
discussed and the results are compared with experimental
results.

Based on numerical and experimental studies, a suitable
simple Wishart random matrix model has been identified.
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Summary of research activities

Dynamics of Complex Engineering Systems
Generally damped systems
Uncertainty quantification

Inverse problems and model updating
Linear systems
Nonlinear systems

Nanomechanics
Carbon nanotube
Graphene sheet

Renewable Energy
Wind energy quantification
Vibration energy harvesting
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