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Day 4: Applying hidden Markov models to morphological analysis.
Day 5: Other methods and models for morphological analysis.
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What is morphology?

�Morphology is the study of the forms of words, and the ways in

which words are related to other words of the same language.�

(R. Andersen).

�Morphology is the part of linguistics which studies the word in all

its relevant aspects.� (I. A. Melchuk).

Informally, morphology studies:

How the word changes in di�erent contexts (word in�ection).
What factors determine these changes (morphological categories).
What parts of the word re�ect these changes (morpheme analysis).
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Tasks of computational morphology

Basic tasks of computational morphology:

Morphological analysis (tagging):

lirons (�(we will) read�) 7→ lire+Fut+Pl+1

Morphological synthesis:

lire+Fut+Pl+1 7→ lirons

Lemmatization:

parent 7→ parent �parent�, parer �(to) block�

Morpheme segmentation:

overcomed 7→ over + com(e) + ed

Paradigm detection:

parler 7→ parl-er, parl-e, parl-es, parl-e,

parl-ons, parl-ez, parl-ent

parler 7→ 1+er, 1+e, 1+es, 1+e, 1+ons, 1+ez, 1+ent

trouver 7→ 1+er, 1+e, 1+es, 1+e, 1+ons, 1+ez, 1+ent
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Context-dependent morphology

Morphological synthesis and paradigm detection do not depend

on context.
But lemmatization and analysis DO!

parent 7→ parent+NOUN+Masc+Sg:

Mon parent es grand
�My parent is tall�

parent 7→ parer+VERB+Pres+Pl+3:

Les d�efenseurs parent tous les tirs
�The defenders block all the shots�

The e�ect of context is far more strong in highly in�ective

languages (Russian, Czech etc.).
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Applications

Machine translation:

Pete bought a book 7→ Petya kupil knigu

boughty
buy+Past (with single masculine object)y

kupit'+Past+Sg+3+Mascy
kupil

Information retrieval.
Language modelling: making a probability model more sparse.
Actually, morphological tagging is a preprocessing step for almost

all NLP tasks.
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Theory of formal languages

Regular languages

Regular languages: �rst example

How to describe phonological conditions formally?
A syllable is a sequence of letters containing one vowel (V ) and

arbitrary number of consonants (C ).

A syllable can be described as:

Arbitrary number of consonants (possibly zero).
Followed by one vowel.
Followed by arbitrary number of consonants (possibly zero).

Formally, a syllable is C ∗VC ∗ where ∗ stands for an arbitrary

number of symbols.
Now let us describe a word...
A word includes at least one vowel and arbitrary number of

consonants.
Answer: (C |V )∗V (C |V )∗ where | stands for OR.
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Theory of formal languages

Regular languages

More complex examples

We wish to describe the syllable structure of the word more

carefully.

We add the condition that exactly one syllable is stressed V0

and the syllables are separated by hyphens (−).
Then a stressed syllable is C ∗V0C

∗.
Let us separate two cases. First case: stressed syllable is the

last one.
Second case: stressed syllable is not the last one.
The answer is ((C ∗VC ∗−)∗C ∗V0C

∗)|((C ∗VC ∗−)∗C ∗V0C
∗ −

(C ∗VC ∗−)∗C ∗VC ∗).
Regrouping (? is �can be present or not�):

((C ∗VC ∗−)∗C ∗V0C
∗)((−(C ∗VC ∗−)∗C ∗VC ∗)?).

Another variant:

(C ∗VC ∗−)∗C ∗V0C
∗(−C ∗VC ∗)∗.
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Then a stressed syllable is C ∗V0C

∗.
Let us separate two cases. First case: stressed syllable is the

last one. (C ∗V0C
∗−)∗C ∗V0C

∗

Second case: stressed syllable is not the last one.

(C ∗VC ∗−)∗C ∗V0C
∗ − (C ∗VC ∗−)∗C ∗VC ∗

The answer is ((C ∗VC ∗−)∗C ∗V0C
∗)|((C ∗VC ∗−)∗C ∗V0C

∗ −
(C ∗VC ∗−)∗C ∗VC ∗).

Regrouping (? is �can be present or not�):

((C ∗VC ∗−)∗C ∗V0C
∗)((−(C ∗VC ∗−)∗C ∗VC ∗)?).

Another variant:

(C ∗VC ∗−)∗C ∗V0C
∗(−C ∗VC ∗)∗.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Regular languages

Examples for morphology

Spanish verb in�nitive ends with -ar,-ir,-er which is followed by

-se in case of re�exive verbs.

It is simple: (C |V )∗(a|i |e)r(se)?.
C is an arbitrary consonant (just join all consonants with |) and
V is a vowel.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Regular languages

Examples for morphology

More complex example: the plural form of English nouns:

-es follows a sibilant (s, x, z, ch, sh).
-s cannot appear after e preceded by a consonant (sky 7→ skies).

For this task it is easier to parse witches as witche+s, not to
deal with -es.
But -s must be avoided after s, x, z, ch, sh, Cy,
where C is arbitrary consonant.
But regular expression cannot express negative patterns.
Solution: list all that is allowed.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Regular languages

Examples for morphology

A plural form is a stem followed by -s, where a stem can be
anything that:

Ends with vowel not equal to y : (C |V )∗(a|e|i |o|u).
Ends with vowel+y: (C |V )∗Vy .
Contains a vowel and ends with a consonant not equal to s, x , z , h
(let C′ denote their complete list): (C |V )∗V (C |V )∗C ′

Contains a vowel and ends with h or C′′h, where C′′ stands for
all consonants except s, c : (C |V )∗V (C |V )∗C ′′?h

Grouping all together: (C |V )∗((a|e|i |o|u|Vy)|V (C |V )∗(C ′|C ′′?h))s.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Regular languages

Formal de�nitions

Alphabet � arbitrary �nite set Σ, its elements � letters.

Words � �nite sequences of letters, the set of words � Σ∗.
ε � empty word.
· � concatenation of words, ad · bc = adbc .
Languages � sets of words: L ⊆ Σ∗.
Operations on languages:

Boolean operations: L1 ∪ L2, L1 ∩ L2, L1 − L2, L(complement).
Concatenation: L1 · L2 = {w1 · w2|w1 ∈ L1,w2 ∈ L2}.
Power Lk = L · . . . · L︸ ︷︷ ︸

k times

. L0 = {ε}, L1 = L.

Iteration (Kleene star): L∗ =
∞⋃
k=0

Lk .

{a, b}∗ = {a, b}0∪{a, b}1∪{a, b}2∪. . . = {ε, a, b, aa, ab, ba, bb, . . .}.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Regular languages

Regular expressions: what is it formally
We distinguish regular expression α and its language L(α).
For example, if α = (a|b)(a|c), then L(α) = {aa, ac, ba, bc}.

Let some alphabet Σ be �xed.
Regular expressions (Reg(Σ)):

Any a ∈ Σ is a regular expression, L(a) = {a}.
0, 1 are regular expressions, L(0) = ∅, L(1) = {ε}.
For all α, β ∈ Reg(Σ) also (α|β) ∈ Reg(Σ),
L((α|β)) = L(α) ∪ L(β).
For all α, β ∈ Reg(Σ) also (α · β) ∈ Reg(Σ),
L((α · β)) = L(α) · L(β).
If α ∈ Reg(Σ), then α∗ ∈ Reg(Σ), L(α∗) = L(α)∗.

Priority of operations: ∗, ·, |, so α∗β|γ = ((α∗) · β)|γ.
Common conventions: α+ = αα∗ (positive iteration),

α? = (α|1) (optionality).
Regular languages: languages that can be expressed by regular

expressions.
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Theory of formal languages

Regular languages

Examples of regular languages

Words with exactly two a-s (alphabet a, b): (a|b)∗a(a|b)∗a(a|b)∗.

Words with even number of a-s (alphabet a, b):
((a|b)∗a(a|b)∗a)∗(a|b)∗.
Words with odd number of a-s (alphabet a, b): Exercise.
a is immediately followed by b (alphabet a, b, c): (b|c |ab)∗.
a is immediately preceded by b: Exercise.
After every a b occurs earlier than c (alphabet a, b, c , d):
(ad∗b|b|c |d)∗.
Left to a b occurs closer than c : Exercise.
No repeating letters (alphabet a, b):

b?(ab)∗a?

.
Non-empty word with no repetitions:

H = a(ba)∗b?|b(ab)∗a?.
No repeating letters (alphabet a, b, c):

H?(cH)∗c?

.
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Theory of formal languages

Regular languages

Exercise: vowel harmony

Words that have at least one letter among V ,V1,V2, but not

V1 and V2 together.

Explanation: V1 and V2 are disharmonic types of vowels (say,

soft and round). V are neutral vowels, C are consonants.

C ∗(V |V1)(C |V |V1)∗|C ∗(V |V2)(C |V |V2)∗

.

Exercise: Turkish in�nitives.

In Turkish there are 8 vowels:

Front Back

Soft e i a �

Round �u �o u o

In�nitive is formed by su�x -mek/-mak attached to verb stem, where

e appears if the last vowel of stem is front and a � if it is back. Write

a regular expression for Turkish in�nitives.
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Theory of formal languages

Finite automata

Finite automata

Regular expressions are convinient to describe patterns.

But there is no way to check that a word satis�es to an expression.
Example: a(a|b|c)∗b(a|b|c).
How we can process it:

Read the �rst letter, check that it is a, otherwise reject.
Read the letters until the penultimate letter appears.
Check that it is b.
Check that exactly one letter remains.

Schematically:

q0 q1 q2 q3
a

a, b, c

b a, b, c

That is �nite automaton.
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Theory of formal languages

Finite automata

Finite automata

Finite automaton consists of:

Final set of states Q.
Alphabet Σ.

Set of transitions (edges) ∆ ⊆ Q × Σ∗ × Q:

q1 q2
w 〈q1,w〉 → q2

Initial state q0.
Set of (possibly multiple) �nal states F ⊆ Q.

Every edge have its label. The label of a path is the concatenation

of its edges labels.
Automaton A accepts language L(A) of all words that label

paths from initial state to some �nal.
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Set of (possibly multiple) �nal states F ⊆ Q.

Every edge have its label. The label of a path is the concatenation

of its edges labels.
Automaton A accepts language L(A) of all words that label

paths from initial state to some �nal.
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Finite automata

Finite automata: examples

A syllable: states check vowel presence.

q0 q1
V

C C ,V

Even number of a-s, alphabet a, b. States check parity of a-s.

ab b

a

Every a is immediately followed by b, alphabet a, b, c .

a
b, c

b
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Finite automata: examples

No repeating letters, alphabet a, b, c . States correspond to letters:

0 B

A

C

a

b

c

b

c

a

cb
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Finite automata: examples

Word syllabi�cation: each syllable contains exactly one vowel

and exactly one vowel is stressed, syllables are separated by

hyphens.

States check two conditions:

There was a vowel in current syllable (the �rst coordinate).
There was a stressed vowel (the second coordinate).

NN YN

YY NY

V
C C

−

V

−

V

C C
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Theory of formal languages

Finite automata

Finite automata: English plural
All plural forms can be decomposed as stem + s, where

A stem is anything with at least one vowel, but not ending with:

-s, -x, -z, -sh, -ch, -zh (sibilants).
Cy.

Automaton for all possible stems
(C0 = C − {s, x , z , c , h},C1 = C0 ∪ {s, x , z}):

V0

y

C

V0, y

y

C
1

C1

s, c

s, c

V
0

y

s,c

V
0

y

C1

C1
s,c

C1, c , h

C
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C1
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C1, c

s
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Finite automata

Properties of �nite automata

Theorem

Every automata language is recognized by an automaton with single
letter labels.

Sketch of the proof

Split all labels of length > 2 by inserting additional states.
Now we have only letters and ε as labels.
Add an edge 〈q1, a〉 → q2 if there exist states q3, q4 such that

(〈q3, a〉 → q4) ∈ ∆ and there are ε-paths from q1 to q3 and

from q4 to q2.
Mark as terminal all states from which terminal states are ε-
reachable.
Now remove all ε-paths.
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Theory of formal languages

Finite automata

Properties of �nite automata

De�nition

An automaton with one-letter labels is deterministic if no state has
two outcoming edges with the same label.

Theorem

Every automata language can be recognized by deterministic
automata.

Sketch of the proof

New automaton states are sets of old states.
An edge labeled by a leads from set Q1 to Q2 if Q2 contains

exactly the states reachable from Q1 by a.
Start state Q0 = {q0} (only old start state).
Final states: subsets containing at least one old �nal state.
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Theory of formal languages

Finite automata

Kleene theorem

Theorem

The classes of automata and regular languages are the same.

Sketch of the proof

We should transform every �nite automaton to regular

expression and every regular expression to �nite automaton.
Automaton → expression: di�cult, we will not prove it.
Expression → automaton: simple proof by induction:
Regular languages are constructed from primitives by means of

concatenation, union and iteration.
Primitive regular languages (singletons and empty language) are

certainly automata.
We should prove that regular operations preserve automata

languages.
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Sketch of the proof

Iteration: L1 = L(M1), L∗1 = L(M)
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Finite automata

Properties of automata languages
Theorem

The class of automata languages is closed under complement.

Sketch of the proof

Consider the deterministic automaton for language L.
Complete it: add a new sink state q′.
If a state q1 does not have outcoming edge labeled by letter a,
add an edge 〈q1, a〉 → q′.
Add edge 〈q′, a〉 → a for every letter a.
Now for every q1 ∈ Q, a ∈ Σ there is an edge of the form

〈q1, a〉 → q2.
Consequently, every word w leads from q0 to exactly one state:

terminal if w ∈ L and non-terminal if w ∈ L.
Switching non-terminal and terminal states yields automaton for

the complement.
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Computational morphology. Day 1. Theory of formal languages.

Theory of formal languages

Finite automata

Properties of automata languages
Theorem

The class of automata languages is closed under intersection.

Sketch of the proof

Easy variant: L1 ∩ L2 = L1 ∪ L2.
Complex (but e�ective) variant: consider complete deterministic

automata M1 for L1 and M2 for L2.
Let Q1,Q2 be their sets of states, q01, q02 be initial states and

F1,F2 be sets of �nal states.
Consider a new automaton whose states are pairs 〈q1, q2〉,
q1 ∈ Q1, q2 ∈ Q2.
Its start state is 〈q01, q02〉.
On the �rst coordinate it operates like M1, on the second like

M2.
Finite states are pairs of �nal states (the automaton accepts i�

it accepts for both coordinates).
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it accepts for both coordinates).
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Finite automata

Properties of automata languages
Theorem

The class of automata languages is closed under intersection.

Sketch of the proof

Easy variant: L1 ∩ L2 = L1 ∪ L2.
Complex (but e�ective) variant: consider complete deterministic

automata M1 for L1 and M2 for L2.
Let Q1,Q2 be their sets of states, q01, q02 be initial states and

F1,F2 be sets of �nal states.
Consider a new automaton whose states are pairs 〈q1, q2〉,
q1 ∈ Q1, q2 ∈ Q2.
Its start state is 〈q01, q02〉.
On the �rst coordinate it operates like M1, on the second like

M2.
Finite states are pairs of �nal states (the automaton accepts i�

it accepts for both coordinates).



Computational morphology. Day 1. Theory of formal languages.

Recursive construction of automata

Recursive construction of automata

Finite automata are closed under a couple of operations.

Moreover, this closure is e�ective: corresponding automata are

built algorithmically.
Therefore we may combine automata just as regular expressions,

but with more operations.
For example, the automata for English plural can be expressed

as:

(Lsib · es) ∪ (((Lsib ∩ LC ) ∪ LCy ∪ LV ) · s),

where

Lsib � words ending with sibilant.
LC � words ending with consonant.
LCy � words ending with consonant+y.
LV � words ending with vowel (not y).

The basic languages are the automata ones; the automaton for

the whole expression could be constructed recursively.
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Recursive construction of automata
Turkish in�nitive

Construct a �nite automaton for Turkish in�nitive

In�nitive has the form stem+mEk.
Placeholder E is �lled by e if the stem ends with e, i, �o, �u and a if it
ends with a, �, o, u.

M1 is the automaton for expression C∗V (C |V )∗m(a|e)k (it is easy
to construct it).
M2 checks the condition for vowels:

C ,V
e, i,

�o, �u

a, �, o, u

C ,V

C ,V

e

a

M1 ∩M2 is the required automaton.
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Recursive construction of automata
Turkish in�nitive

Construct a �nite automaton for turkish passive in�nitive

In�nitive has the form stem+X+mEk.
Placeholder E is �lled by e if the stem ends with e, i, �o, �u and a if it
ends with a, �, o, u.
Su�x X is -n if the stem ends with vowel, -In if the stem ends with
l and -Il otherwise.
Placeholder I equals � after a, �; u after u, o; i after e, i ; �u after �u, �o.
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Where to get presentations

https://www.irit.fr/esslli2017/courses/33.
http://tipl.philol.msu.ru/~otipl/index.php/department/

faculty/AAS/esslli

For the next day:

Install (simply download and unpack) �nite-state compiler FOMA

from https://code.google.com/archive/p/foma/.

https://www.irit.fr/esslli2017/courses/33
http://tipl.philol.msu.ru/~otipl/index.php/department/faculty/AAS/esslli
http://tipl.philol.msu.ru/~otipl/index.php/department/faculty/AAS/esslli
https://code.google.com/archive/p/foma/
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