Equations of Motion

Computational Physics

Orbital Motion

Outline

- Fourth Order Runge-Kutta Method
- Equation of motion in 3 dimensions
- Projectile Motion Problem
- Orbit Equations

Second Order Runge-Kutta

$$\frac{dy}{dt} = f(y,t)$$

Differential Equation

$$y(t + \frac{\Delta t}{2}) = y(t) + f(y(t), t)\frac{\Delta t}{2}$$

Estimate value of y at half-step (Euler Method)

 $y(t + \Delta t) = y(t) + f(y(t + \frac{\Delta t}{2}), t + \frac{\Delta t}{2})\Delta t$

Use value at half-step to find new estimate of derivative

Fourth Order Runge-Kutta

Motion in Three Dimensions

Independent Equations for each dimension

d^2x	_	F_x
$\overline{dt^2}$	_	\overline{m}
d^2y		$\overline{F_y}$
dt^2	_	m
d^2z		F_z
$\overline{dt^2}$		\overline{m}

Single Vector Equation $\frac{d^2 \overrightarrow{r}}{dt^2} = \frac{\overrightarrow{F}}{m}$

in Python we write vectors:

$$r = [x, y, z]$$

$$F = [F_x, F_y, F_z]$$

3D Solution in Python Independent Equations - Euler Method

X[0] = 0.Initialization Y[0] = 0.Z[0] = 0.VX[0] = 0.VY[0] = 0.VZ[0] = 0.# FX, FY, FZ are components of force for i in range(n): VX[i+i] = VX[i] + FX[i]/m*dtVelocity VY[i+i] = VY[i] + FY[i]/m*dtComponents $VZ[i+i] = VZ[i] + FZ[i]/m^*dt$ $X[i+i] = X[i] + VX[i]^*dt$ Position $Y[i+i] = Y[i] + VY[i]^*dt$ Components $Z[i+i] = Z[i] + VZ[i]^*dt$

3D Solution in Python *Vector Equations - Euler Method*

VO = [0.,0.,0.]

XO = [0., 0., 0.]

Initialization

Velocity Vector

Position Vector

X = np.zeros((nsteps,3)) V = np.zeros((nsteps,3)) # use colon operator to set vectors X[0,:] = X0V[0,:] = VO# F[i,:] has FX, FY, FZ] for each step i for i in range(nsteps): V[i+1,:] = V[i,:] + F[i,:]/m*dtX[i+1,:] = X[i,:] + V[i,:]*dt

Projectile Motion Problem

- Motion of particle under gravity, and eventually other realistic forces.
- Initial Conditions:
 - specify location of beginning of trajectory
 - specify initial velocity

Equation of Motion *Gravity Only*

$$\frac{d^2x}{dt^2} = \frac{F_x}{m} = 0$$

$$\frac{d^2y}{dt^2} = \frac{F_y}{m} = 0$$

$$\frac{d^2z}{dt^2} = \frac{F_z}{m} = -g$$
Gravity is only force:
Acceleration in -z direction

Constants of the Motion *Gravity Only*

- Constants of motion are useful for evaluating whether your program works!
- No Force in X and Y directions:
 - momentum in X and Y conserved
- Force of gravity depends on position only
 - total energy is conserved
 - potential energy = m g z
 - kinetic energy = $\frac{1}{2}$ m $|v|^2$
 - total energy: $E = \frac{1}{2} m |v|^2 + m g z$

Orbit Problem Equation of Motion

- Second Order ODE
- Radial Force dependent on position only:
 - Angular Momentum conserved; Motion in a plane.
 - Energy conserved.

The r unit vector.

- Gravitational Force is radial, so need unit vector in r direction to derive force.
- A convenient way to look at this, for python programs is:

$$\stackrel{\wedge}{r} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|}$$

Magnitude of r is numpy.linalg.norm(r)

Initial Conditions

- 3 Dimensional, Second Order D.E.
 - 6 Numbers
 - initial position: r = [x, y, z] at time = 0
 - initial velocity: rdot = [vx, vy, vz] at time = 0
- Each set of initial conditions has unique orbit. Can characterize orbit with any six numbers that will describe it.
- Astronomers use "Orbital Elements" to specify and describe orbits.

Orbital Elements

• Size and Shape of Orbit

Semimajor Axis - a Eccentricity - e

Orientation of Orbital Plane in Space

Inclination wrt Ecliptic Longitude of Ascending Node Argument of Perihelion

• Time of Perihelion Passage

С

Constants of the Motion

Specific Energy (Energy per mass) Conserved

$$\epsilon = -rac{\mu}{r} + rac{1}{2}v^2 \qquad \mu = GM_{\odot}$$

Potential Kinetic

Specific Angular Momentum Conserved

$$\overrightarrow{h} = \overrightarrow{r} \times \overrightarrow{v}$$

Orbital Elements and Constants of the Motion

Semimajor Axis - a

$$a = -\frac{\mu}{2\epsilon}$$

Semimajor Axis depends only on energy

Eccentricity - e

$$e = \left| \frac{\overrightarrow{v} \times \overrightarrow{h}}{\mu} - \frac{\overrightarrow{r}}{|\overrightarrow{r}|} \right| \stackrel{\text{Eccentricity depends}}{\text{on angular momentum}}$$

Note: Eccentricity Vector above points towards periapsis