
Equations of Motion

Computational Physics

Orbital Motion

Outline

Fourth Order Runge-Kutta Method

Equation of motion in 3 dimensions

Projectile Motion Problem

Orbit Equations

Second Order Runge-Kutta

Diferential
Equation

Estimate value
of y at half-step
(Euler Method)

Use value at
half-step to
fnd new estimate
of derivative

Fourth Order Runge-Kutta

Estimate of derivative in interval

Value at beginning
of interval

Estimate of value at
end of interval

Two estimates of
value at mid-point

Motion in Three Dimensions

Independent Equations
for each dimension

in Python we write vectors:

 r = [x , y , z]

 F = [F
x
, F

y
, F

z
]

Single Vector Equation

3D Solution in Python
Independent Equations - Euler

Method
X[0] = 0.
Y[0] = 0.
Z[0] = 0.
VX[0] = 0.
VY[0] = 0.
VZ[0] = 0.
FX, FY, FZ are components of force
for i in range(n):

VX[i+i] = VX[i] + FX[i]/m*dt
VY[i+i] = VY[i] + FY[i]/m*dt
VZ[i+i] = VZ[i] + FZ[i]/m*dt

X[i+i] = X[i] + VX[i]*dt
Y[i+i] = Y[i] + VY[i]*dt
Z[i+i] = Z[i] + VZ[i]*dt

Initialization

Velocity
Components

Position
Components

{
{

3D Solution in Python
Vector Equations - Euler Method

Initialization

Velocity Vector

Position Vector

X0 = [0.,0.,0.]
V0 = [0.,0.,0.]

X = np.zeros((nsteps,3))
V = np.zeros((nsteps,3))
use colon operator to set vectors
X[0,:] = X0
V[0,:] = V0

F[i,:] has FX, FY, FZ] for each step i
for i in range(nsteps):

V[i+1,:] = V[i,:] + F[i,:]/m*dt
X[i+1,:] = X[i,:] + V[i,:]*dt

X0 = [0.,0.,0.]
V0 = [0.,0.,0.]

X = np.zeros((nsteps,3))
V = np.zeros((nsteps,3))
use colon operator to set vectors
X[0,:] = X0
V[0,:] = V0

F[i,:] has FX, FY, FZ] for each step i
for i in range(nsteps):

V[i+1,:] = V[i,:] + F[i,:]/m*dt
X[i+1,:] = X[i,:] + V[i,:]*dt

Projectile Motion Problem

Motion of particle
under gravity, and
eventually other
realistic forces.

Initial Conditions:

specify location of
beginning of
trajectory

specify initial
velocity

Equation of Motion
Gravity Only

Gravity is only force:
Acceleration in -z direction

Constants of the Motion
Gravity Only

Constants of motion are useful for
evaluating whether your program
works!

No Force in X and Y directions:

momentum in X and Y conserved

Force of gravity depends on position
only

total energy is conserved
potential energy = m g z
kinetic energy = ½ m |v|2

total energy: E = ½ m |v|2 + m g z

Orbit Problem
Equation of Motion

Second Order ODE

Radial Force
dependent on
position only:

Angular Momentum
conserved; Motion in
a plane.

Energy conserved. r

Sun

. Object

The r unit vector.

Gravitational Force is radial, so need
unit vector in r direction to derive force.

A convenient way to look at this, for
python programs is:

Magnitude of r is numpy.linalg.norm(r)

Initial Conditions

3 Dimensional, Second Order D.E.

6 Numbers

initial position: r = [x, y, z] at time = 0

initial velocity: rdot = [vx, vy, vz] at time = 0

Each set of initial conditions has unique
orbit. Can characterize orbit with any six
numbers that will describe it.

Astronomers use "Orbital Elements" to
specify and describe orbits.

Orbital Elements

Size and Shape of Orbit

Semimajor Axis - a

Eccentricity - e

Orientation of Orbital Plane in Space

Inclination wrt Ecliptic

Longitude of Ascending Node

Argument of Perihelion

Time of Perihelion Passage

aea

Constants of the Motion

Specifc Energy (Energy per mass) Conserved

Specifc Angular Momentum Conserved

Potential Kinetic

Orbital Elements and
Constants of the Motion

Semimajor Axis - a

Eccentricity - e

Semimajor Axis
depends
only on energy

Eccentricity depends
on angular momentum
and energy

Note: Eccentricity Vector above
 points towards periapsis

	Title
	Outline
	Slide 3
	Slide 4
	Motion in 3D
	3D Solution: Component Equations
	3D Solution: Vector Equations
	Projectile Motion Problem
	Equation of Motion
	Constants of Motion
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

