Equations of Motion

Computational Physics

Orbital Motion

Outline

- Fourth Order Runge-Kutta Method
- Equation of motion in 3 dimensions
- Projectile Motion Problem
- Orbit Equations

Second Order Runge-Kutta

$$
\frac{d y}{d t}=f(y, t)
$$

Differential Equation

Estimate value

 of y at half-step (Euler Method)$$
y(t+\Delta t)=y(t)+f\left(y\left(t+\frac{\Delta t}{2}\right), t+\frac{\Delta t}{2}\right) \Delta t
$$

Use value at half-step to find new estimate of derivative

Fourth Order Runge-Kutta

$$
y(t+\Delta t)=y(t)+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \Delta t
$$

Estimate of derivative in interval

$$
k_{1}=f(y(t), t) \quad \longleftarrow \quad \begin{aligned}
& \text { Value at beginning }
\end{aligned}
$$

$$
k_{2}=f\left(y(t)+k_{1} \frac{\Delta t}{2}, t+\frac{\Delta t}{2}\right) \quad \boldsymbol{k}_{\text {Two estimates of }}
$$

$$
k_{3}=f\left(y(t)+k_{2} \frac{\Delta t}{2}, t+\frac{\Delta t}{2}\right) \star \text { value at mid-point }
$$

$$
k_{4}=f\left(y(t)+k_{3} \Delta t, t+\Delta t\right) \text { Estimate of value at }
$$ end of interval

Motion in Three Dimensions

Independent Equations for each dimension

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{F_{x}}{m} \\
& \frac{d^{2} y}{d t^{2}}=\frac{F_{y}}{m} \\
& \frac{d^{2} z}{d t^{2}}=\frac{F_{z}}{m}
\end{aligned}
$$

Single Vector Equation

$$
\frac{d^{2 \vec{r}}}{d t^{2}}=\frac{\vec{F}}{m}
$$

in Python we write vectors:

$$
\begin{aligned}
r & =[x, y, z] \\
F & =\left[F_{x}, F_{y}, F_{z}\right]
\end{aligned}
$$

3D Solution in Python Independent Equations - Euler Method

Initialization

Velocity Components $\{$

```
\(X[0]=0\).
\(Y[0]=0\).
\(z[0]=0\).
\(\operatorname{VX[0]}=0\).
\(V Y[0]=0\).
\(\mathrm{VZ}[0]=0\).
\# FX, FY, FZ are components of force
for \(i\) in range( \(n\) ):
```

 \(V X[i+i]=V X[i]+F X[i] / m * d t\)
 \(V Y[i+i]=V Y[i]+F Y[i] / m^{*} d t\)
 \(V Z[i+i]=V Z[i]+F Z[i] / m^{*} d t\)
 \(X[i+i]=X[i]+V X[i]^{*} d t\)
 \(Y[i+i]=Y[i]+V Y[i]^{*} d t\)
 \(z[i+i]=Z[i]+V Z[i]^{*} d t\)

3D Solution in Python Vector Equations - Euler Method

$$
\begin{aligned}
& X 0=[0 ., 0 ., 0 .] \\
& V 0=[0 ., 0 ., 0 .] \\
& X=n p . z e r o s((\text { nsteps }, 3)) \\
& V=\text { np.zeros }(\text { (nsteps,3) }) \\
& \# \text { use colon operator to set vectors } \\
& X[0,:]=X 0 \\
& V[0,:]=V 0
\end{aligned}
$$

Velocity Vector
Position Vector

Projectile Motion Problem

- Motion of particle under gravity, and eventually other realistic forces.
- Initial Conditions:
- specify location of beginning of trajectory
- specify initial velocity

Equation of Motion Gravity Only

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{F_{x}}{m}=0 \\
& \frac{d^{2} y}{d t^{2}}=\frac{F_{y}}{m}=0 \quad \frac{d^{2} \vec{r}}{d t^{2}}=\frac{\vec{F}}{m}=-g \hat{z} \\
& \left.\frac{d^{2} z}{d t^{2}}=\frac{F_{z}}{m}=-g \quad \begin{array}{l}
\text { Gravity is only force: } \\
\text { Acceleration in }-z
\end{array}\right) \text { direction }
\end{aligned}
$$

Constants of the Motion Gravity Only

- Constants of motion are useful for evaluating whether your program works!
- No Force in X and Y directions:
- momentum in X and Y conserved
- Force of gravity depends on position only
- total energy is conserved
- potential energy $=\mathrm{m} \mathrm{g} \mathrm{z}$
- kinetic energy $=1 / 2 \mathrm{~m}|\mathrm{v}|^{2}$
- total energy: $\mathrm{E}=1 / 2 \mathrm{~m}|\mathrm{v}|^{2}+\mathrm{mgz}$

Orbit Problem Equation of Motion

- Second Order ODE
- Radial Force dependent on position only:
- Angular Momentum conserved; Motion in a plane.
- Energy conserved.
. Object
$\vec{F}=-\frac{G M_{\odot} m}{r^{2}} \hat{r}$

The r unit vector.

- Gravitational Force is radial, so need unit vector in r direction to derive force.
- A convenient way to look at this, for python programs is:

$$
\hat{r}=\frac{\vec{r}}{|\vec{r}|}
$$

- Magnitude of r is numpy.linalg.norm(r)

Initial Conditions

- 3 Dimensional, Second Order D.E.
- 6 Numbers
- initial position: $r=[x, y, z]$ at time $=0$
- initial velocity: rdot $=[v x, v y, v z]$ at time $=0$
- Each set of initial conditions has unique orbit. Can characterize orbit with any six numbers that will describe it.
- Astronomers use "Orbital Elements" to specify and describe orbits.

Orbital Elements

- Size and Shape of Orbit

Semimajor Axis - a
Eccentricity - e

- Orientation of Orbital Plane in Space

Inclination wrt Ecliptic
Longitude of Ascending Node
Argument of Perihelion

- Time of Perihelion Passage

Constants of the Motion

Specific Energy (Energy per mass) Conserved

$$
\epsilon=-\frac{\mu}{r}+\frac{1}{2} v^{2} \quad \quad \mu=G M_{\odot}
$$

Specific Angular Momentum Conserved

$$
\vec{h}=\vec{r} \times \vec{v}
$$

Orbital Elements and Constants of the Motion

Semimajor Axis - a

$$
a=-\frac{\mu}{2 \epsilon} \quad \begin{aligned}
& \text { Semimajor Axis } \\
& \text { depends } \\
& \text { only on energy }
\end{aligned}
$$

Eccentricity - e
$e=\left|\frac{\vec{v} \times \vec{h}}{\mu}-\frac{\vec{r}}{|\vec{r}|}\right| \begin{aligned} & \text { Eccentricity depends } \\ & \text { on angular momentum } \\ & \text { and energy }\end{aligned}$
Note: Eccentricity Vector above points towards periapsis

